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Abstract: The solitary wave solutions of nonlinear evolution equations, in the recent years is being 

attractive in the field of physical sciences and engineering. In this article, we have investigated 

further general solitary wave solutions of three important nonlinear evolution equations, via the 

simplified MCH equation, the Pochhammer-Chree equation and the Schrödinger-Hirota equation by 

using modified simple equation method. These equations play an important role in the study of 

nonlinear sciences. The obtained solutions are expressed in terms of exponential and trigonometric 

functions including kink, singular kink and periodic soliton solutions. It is shown that the obtained 

solutions are more general and fresh and can be helpful to analyze the intricate physical incident in 

mathematical physics. 
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1. Introduction 

Now it is well recognized that nonlinear evolution equations (NLEEs) and its solutions are the 

most embracing way to describe the physical significance of nonlinear phenomena appearing in the 

field of science and engineering. In particular, the soliton solutions are most remarkable in the study 

of the nonlinear physical sciences, as for instance the wave phenomena are observed in fluid 

mechanics, optical fibers, biophysics, high-energy physics, chemical kinematics etc. But, the 

nonlinear processes are one of the basic challenges and not easy to control, because the nonlinear 

characteristic of the system sharply changes due to small changes of valid parameters including time. 

Thus the issue becomes more intricate and hence ultimate solution is needed. Therefore, searching 
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solitary wave solutions to NLEEs is becoming increasingly attractive field in nonlinear sciences day 

by day. There are lot of NLEEs that can be solved using different mathematical methods. For these 

physical problems, soliton solutions, compactons, singular solitons and the other solutions have been 

originated. However, not all equations posed of these models are solvable. Thus, the methods for 

deriving exact solutions for the governing equations have to be developed. As a result, significant 

improvements have been made for searching solitary wave solutions to NLEEs and many effective 

and powerful methods have been established to examine the NLEEs, such as the nonlinear 

transformation method [1], the Hirota’s bilinear transformation method [2,3], the first integral 

method [4], the sine-cosine method [5,6], the Jacobi-elliptic function expansion method [7,8], the 

functional variable method [9], the Adomian decomposition method [10], the modified Exp-function 

method [11], the generalized Riccati equation method [12], the Exp-function method [13,14], the 

bifurcation theory [15], the exp(-Φ(η))-expansion method [16,17], the extended direct algebraic 

method [18–20], the (    )-expansion method and its different variant [21–28], the variational 

method [29–31], the generalized Kudryashov method [32], the ansatz method [33–38], the modified 

simple equation (MSE) [39–42] method, the modified extended direct algebraic method [43,44], the 

modified extended auxiliary equation method [45], the modified auxiliary equation method [46,47], 

the generalized exponential rational function method [48], the bilinear forms [49], the generalized 

unified method [50,51], the extended unified method [52,53] etc. The modified simple equation 

method is a recently developed method and getting popularity in use because of its straight forward 

calculation procedure. The objective of this article is to contrivance the modified simple equation 

method to construct solitary wave solutions to the simplified modified Camassa-Holm (MCH) 

equation, the Pochhammer-Chree (PC) equation and the Schrödinger-Hirota equation. The rest of the 

article is organized as follows: In section 2, we summarize the description of the method. In section 3, 

the MSE method is applied to extract exact soliton solutions to the NLEEs stated earlier. In section 4, 

explanation and physical interpretation of the solutions are presented and in section 5, we have 

drawn our conclusions. 

2. The modified simple equation (MSE) method 

To describe the MSE, let us consider a nonlinear evolution equation in two independent 

variables   and   in the form: 

                                                                     (2.1) 

where          is an unknown function and   is a polynomial of        and its partial 

derivatives wherein the highest order derivatives and nonlinear terms are involved and the subscripts 

are used for partial derivatives. The essential steps of this method are presented as the following: 

Step 1: Initiating a compound variable  , we combine the real variables   and  : 

                                                                        (2.2) 

where   is the speed of the traveling wave. 

The traveling wave transformations (2.2) allow us in reducing Eq. (2.1) into an ODE for 

        in the form: 
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    ,       ,                                                                   (2.3) 

where   is a polynomial in      and its derivatives with respect to  . 

Step 2: Affording the MSE method, it is assume that the solution of (2.3) can be expressed in the 

subsequent form: 

              
     

    
 
 

  
                                                         (2.4) 

where                  are arbitrary constants to be determined such that       and      

is an unknown function to be evaluated later, such that        . The attribute and uniqueness of 

this method is that, it is not possible to assumption in advance what kind of solutions one may obtain 

through this method. Thus, it might be possible to achieve some fresh solution by this method. 

Step 3: The positive integer   arises in (2.4) can be found by the balancing principle of the highest 

order of linear and nonlinear terms appearing in (2.3). 

Step 4: Compute the necessary derivatives          and insert Eq. (2.4) into (2.3) and then we 

account the function      . The above procedure yields a polynomial in (      ). Equating the 

coefficients of same power of this polynomial to zero delivers a system of algebraic and differential 

equations that can be solved to get                  and      . This completes the 

determination of solutions of Eq. (2.1). 

3. Determination of the solutions 

In this section, we will investigate the solitary wave solutions leading to the simplified MCH 

equation, the PC equation and the Schrödinger-Hirota equation using the MSE method. 

3.1. The simplified MCH equation 

In this subsection, the MSE method has been put in use to examine the closed form soliton 

solutions and then the solitary wave solution to the simplified MCH equation of the form [19]: 

                 
                                               (3.1) 

where   and   are constants.  Camassa and Holm derived a completely integrable wave equation 

namely CH equation for water waves by retaining two terms that are usually neglected in the small 

amplitude, shallow water limit [54]. Tian and Song [55] has investigated MCH equation and obtained 

peaked solitary wave solutions. Wazwaz [56] investigated a modified form of the Camassa-Holm 

equation, which is simplified from of MCH equation and Eq. (3.1) is obtained by considering     

is called the simplified MCH equation. More details can be found in references [14,36,54,55]. 

The traveling wave transformation                     , converts Eq. (3.1) to the 

following form 

                                                                      (3.2) 

where   is the wave speed. 

Integrating (3.2) with respect to   once and the setting the constant of integration to zero, we obtain 

the following result 
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                                                     (3.3) 

Since, solitary waves are localized and they decay as      and we are probing solitary 

wave solutions, therefore the boundary conditions must be       ,        ,            etc. 

as      and these boundary conditions yield zero constant. 

Balancing between the terms     and     yield    . Therefore, the solution of Eq. (3.3) 

becomes 

           
  

 
                                                                   (3.4) 

where    and    are constants, such that       and      is an unknown function to be 

calculated. Inserting (3.4) and its derivatives into (3.3) yield a polynomial and equating the 

coefficients of   ,    ,    ,     to zero, we achieve the successive algebraic and differential 

equations 

  

 
  
                                                                      (3.5) 

     
       

    
       

      
                                             (3.6) 

        
           

   
 
                                                      (3.7) 

       
   

  

 
  
   

 
                                                              (3.8) 

From Eq. (3.5) and Eq. (3.8), we obtain       
         

    
 and     

     

   
  since     . 

From Eq. (3.7), it can be deduced that 

        
   

  
 

     

   
                                                                           (3.9) 

Integrating (3.9) with respect to  , yields 

      
                                                                          (3.10) 

and    
   

     

 
                                                                                                                                 (3.11) 

where    and    are constants of integration and   
     

   
  

Case 1: When     
         

    
 and     

     

   
, solving Eqs. (3.6) and (3.7) with (3.10) and 

(3.11), provides     and    
         

   
. Making use of the values of       and   in (3.4), 

we found the subsequent general solution 

      
         

    
   

   

       
                                                         (3.12) 
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where           and    
         

   
. 

Thus, in       variables, the general closed form traveling wave solution of the simplified 

MCH equation is obtained as follows: 

        
         

    
   

   

       
                                                        (3.13) 

The exponential solution (3.13) can be transformed to the closed form hyperbolic function 

solution as 

        
         

    
   

         
        

 
       

        

 
  

             
        

 
               

        

 
 
                    (3.14) 

Since    and    are integral constants, we may generally pick their values, Therefore, if we 

put      and      into solution (3.14), we attain the following kink shape soliton solution to 

the simplified MCH equation 

        
         

    
      

        

 
                                          (3.15) 

On the other hand, if we put       and      into solution (3.14), we obtain the 

following closed form singular kink type solution to the simplified MCH equation 

        
         

    
      

        

 
                                             (3.16) 

Using hyperbolic function identities, solutions (3.15) and (3.16) can be rewritten as 

        
         

    
      

         

 
                                             (3.17) 

and          
         

    
      

         

 
                                                                              (3.18) 

Case 2: When       and     
     

   
, solving Eqs. (3.6) and (3.7) together with (3.10) and 

(3.11), we achieve        and    . Introducing these values into solution (3.4), we achieve 

the next rational function solution 

      
     

   
 
 

 
                                                                (3.19) 

where            . 

Thus, in       variables, the general closed form traveling wave solution of the simplified 

MCH equation is obtained as follows: 

        
    

   
 

 

       
                                                            (3.20) 

 



1204 

AIMS Mathematics  Volume 5, Issue 2, 1199–1215. 

3.2. The Pochhammer-Chree equation 

In this subsection, we will put in use the method described in section 2 to extract the closed 

form solutions of the Pochhammer-Chree (PC) equation of the form [27]: 

                
                                                     (3.21) 

where     and   are constants and the equation describes the nonlinear model for longitudinal 

wave propagation in elastic rods. Li et al. [15] and Zhang et al. [56] derived some explicit solitary 

wave solution to the generalized PC equation of the form 

                
                   , considering    . In this article, we will 

study Eq. (3.21) considering    . For details see the references [15,56–57]. 

The traveling wave transformation                    , where   is the wave speed to 

be determined latter, converts (3.21) to the ODE in the form 

                                                                     (3.22) 

here      stands for the fourth derivative and     indicate the second derivative of   with respect to 

 . Eq. (3.22) is integrable, therefore integrating twice and setting constant of integration to zero, we 

obtain 

                                                                        (3.23) 

Taking homogeneous balance between     and    yields    
  . To establish a closed form 

analytic solution through an ansatz method   should be an integer. This requires the use of the 

transformation          
 

 . This transformation converts Eq. (3.23) to the following equation: 

                                                                (3.24) 

Balancing     and    gives    . Therefore, the solution structure of Eq. (3.24) is identical 

to solution (3.4). Substituting solution (3.4) and its derivatives into Eq. (3.24) and completing the 

analogous process described in subsection 3.1, we achieve the successive algebraic and differential 

equations, 

     
      

      
      

                                              (3.25) 

                     
         

     
          

                     (3.26) 

    
    

 
    

                
    

 
         

          
               (3.27) 

     
   

 
                 

         
    

 
                                     (3.28) 

     
   

 
      

   
 
                                                        (3.29) 

From Eqs. (3.25) and (3.29), we achieve      
                

  
 and     

    

   
, since     . 

From Eq. (3.26) it can be figure out that 

   

  
                                                                               (3.30) 
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Integrating (3.30) with respect to  , yields 

      
                                                                                (3.31) 

and    
   

     

 
                                                                                                                            (3.32) 

where   
   

    
         

   
  and       are integral constants. 

Case 1: When    
                

  
 and     

    

   
, solving Eqs. (3.26) and (3.27) with (3.31) 

and (3.32), we achieve     
         

   
 and   

     

          
. Embedding the values of       

and   into (3.4) provides 

     
  

  
    

  

       
                                                              (3.33) 

where        and   
     

          
. 

Thus, in       variables, the general solitary wave solution of the PC equation is obtained as 

follows: 

        
  

  
    

  

       
         

 

 
                                              (3.34) 

Simplifying the exponential solution to the hyperbolic function, the solitary wave solution of the 

Eq. (3.34) turns into 

        
  

  
    

        
       

 
       

       

 
  

              
       

 
               

       

 
  

 

 

 

                     (3.35) 

Since    and    are integral constants, we might spontaneously choose their values, Therefore, 

if we choose      and     , from solution (3.35) we attain the following closed form solution 

to the PC equation: 

        
  

   
         

       

 
  

 

 
                                          (3.36) 

Setting       and      into solution (3.35), we arrive at the following solitary wave 

solution to the PC equation: 

        
  

   
         

       

 
  

 

 
                                          (3.37) 

Using hyperbolic function identities, solutions (3.36) and (3.37) can be rewritten as 

        
  

   
         

        

 
  

 

 
                                         (3.38) 



1206 

AIMS Mathematics  Volume 5, Issue 2, 1199–1215. 

and          
  

   
         

        

 
  

 

 
                                                                                  (3.39) 

where    
         

   
 and   

     

          
. 

Case 2: When      and     
    

   
, solving Eq. (3.26) and (3.27) with (3.31) and (3.32), we 

achieve    
         

   
 and   

     

          
. Replace the values of         and   into solution 

(3.4) provides 

      
  

  
 

   
  

   
      

                                                              (3.40) 

where        and   
     

          
. 

In       variables, the general solitary wave solution to the PC equation becomes: 

         
  

  
 

   
       

   
           

 

 

 
                                                         (3.41) 

Changing the exponential solution into the hyperbolic function solution, the solitary wave 

solution of the Eq. (3.41) turns into 

         
  

  
 

        
       

 
       

       

 
  

              
       

 
               

       

 
  

 

 

 

                             (3.42) 

Inasmuch as    and    are arbitrary constants, we may arbitrarily select their values, 

Therefore, if we select      and     , solution (3.42) to the PC equation turns into the stable 

kink type solution as follows: 

         
  

   
        

       

 
  

 

 
                                     (3.43) 

Setting       and       into solution (3.42), we arrive to the following solution to the 

PC equation: 

         
  

   
        

       

 
  

 

 
                                       (3.44) 

Using hyperbolic functions identities, solutions (3.43) and (3.44) can be rewritten as 

         
  

   
        

        

 
  

 

 
                                         (3.45) 
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and           
  

   
        

        

 
  

 

 
                                                                                    (3.46) 

where     
         

   
 and   

     

          
. 

3.3. The nonlinear Schrödinger-Hirota equation 

Let us consider the nonlinear Schrödinger-Hirota Equation [6]: 

    
 

 
              

                                                         (3.47) 

The Eq. (3.47) analyzes the propagation of optical soliton in a dispersive optical fiber. Here   

represents the wave profile and   is the third order dispersion coefficient. The first term represents 

the evolution, while the second term is the group velocity dispersion and the fourth term is the Kerr 

law of nonlinearity that arises when the intensity of the light is dependent on the refractive index of 

the material. The third order dispersion term is taken into account when the group velocity dispersion 

is small so that there is performance enhancement during pulse propagation across transoceanic and 

trans-continental distances [37]. 

The complex transformation                                , where       and 

  are real constants reduces Eq. (3.47) to an ordinary differential equation of the form: 

 
  

 
                              

  

 
                      (3.48) 

From the above Eq. (3.48), we obtain           and      satisfy the differential equation 

   

 
       

 

    
                                                           (3.49) 

Eq. (3.49) can be rewritten as 

       
                                                                  (3.50) 

where    
 

   
 and    

 

   
   

 

    
   

Taking homogeneous balance between linear term     and nonlinear term    yields    . 

Therefore, the solution structure of Eq. (3.50) is same as the solution (3.4). Hence substituting 

solution (3.4) and its derivatives into Eq. (3.50), and completing the similar procedure described in 

subsection 3.1, we achieve the successive algebraic and differential equations 

    
                                                                         (3.51) 

   
         

    
       

                                                     (3.52) 

     
            

   
 
                                                       (3.53) 

    
       

   
 
                                                            (3.54) 
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From Eq. (3.51) and Eq. (3.54), we obtain        
  

  
  and      

  

  
  since     . And 

from Eq. (3.53), we attain 

        
   

  
                                                                        (3.55) 

Integrating (3.55) with respect to  , yields 

      
                                                                      (3.56) 

and    
   

     

 
                                                                                                                                (3.57) 

where    and    are arbitrary constants and           

Case 1: When      
  

  
  and      

  

  
, and          , substitute the values of      and 

  into solution (3.4), we determine 

       
  

  
   

   

       
                                                     (3.58) 

where       
 

  
   and         . 

Forasmuch as    and    are arbitrary constants, we may freely accept their values. Therefore, 

if we set      and      into solution (3.58) and simplifying the exponential solution to 

hyperbolic function, we attain the following solitary wave solution of the Eq. (3.47) 

       
  

  
      

  

 
                                                        (3.59) 

Moreover, setting       and      into solution (3.58), we arrive at the following solitary 

wave solution of the nonlinear Schrödinger-Hirota equation: 

       
  

  
      

  

 
                                                           (3.60) 

Thus, in       variables, the general solitary wave solution to the nonlinear Schrödinger-Hirota 

equation is obtained as follows: 

             
 

    
       

 
  

   
   

 

    
      

 

  
   

 
                              (3.61) 

and             
 

    
       

 
  

   
   

 

    
      

 

  
   

 
                                                    (3.62) 

Case 2: When      and      
  

  
, and          , making use of the values of       and 

  into (3.4), it does not satisfy the Eq. (3.53) and hence the solution must be rejected. 
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4. Explanation and physical interpretation of the solutions 

In this section, we have discussed about the obtained solution of the simplified MCH equation, 

the PC equation and the Schrödinger-Hirota equation. Using the MSE method, we get the traveling 

wave solutions assembled from Eqs. (3.12) to (3.20) to the simplified MCH equation. The solutions 

are general solitary wave solutions which are periodic wave solution, kink shape soliton and singular 

kink shape soliton respectively. From the above solution, it has been detected that the solutions (3.12) 

and (3.13) provides periodic wave solution where the solutions (3.15), (3.17) and (3.19) gives kink 

shape wave solution. The solutions (3.14), (3.16) and (3.20) present singular kink solutions. The kink 

shape wave solution (3.15) is represented in Figure 1 for             and    . The 

singular kink solutions (3.16) and (3.20) for                 and for          

are plotted in the Figures 2 and 3 respectively. From the solutions to the PC equation, it is observed 

that the solutions (3.34) and (3.35) show the nature of singular kink, solutions (3.36), (3.38), (3.43) 

and (3.45) represent the kink shape soliton and solutions (3.37), (3.39), (3.44) and (3.46) are singular 

solution. Singular solitons can be connected to solitary waves when the center position of the solitary 

wave is imaginary [58]. This solution has spike and therefore it can probably provide an explanation 

to the formation of Rogue waves [38]. The kink shape solution (3.43) for   
 

 
     and 

     is represented in Figure 4. From the solutions of the Schrödinger-Hirota equation, the 

solutions (3.59)–(3.62) are categorized to the character of singular periodic solution and (3.58) 

represents periodic solution. Periodic traveling waves play an important role in numerous physical 

phenomena, including reaction-diffusion-advection systems, self-reinforcing systems, impulsive 

systems etc. Mathematical modeling of many intricate physical events, for instance physics, 

mathematical physics, engineering and many more phenomena resemble periodic traveling wave 

solutions. The singular periodic solutions (3.59) for                and (3.60) for 

              are given in Figures 5 and 6 respectively. The figures of other solutions are 

similar mentioned above and ignored these figures for simplicity. 

 

Figure 1. Plot of kink shape soliton of solution (3.15) of simplified MCH equation for 

            and    . 
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Figure 2. Plot of singular kink soliton of solution (3.16) of simplified MCH equation for 

            and    . 

 

Figure 3. Plot of singular kink solution (3.20) of the simplified MCH equation for     

and    . 

 

Figure 4. Plot of kink shape soliton of solution (3.43) of PC equation for   
 

 
     

and       
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Figure 5. Plot of singular periodic solution (3.60) of Schrödinger-Hirota equation for 

               

 

Figure 6. Plot of singular periodic solution (3.62) of Schrödinger-Hirota equation for 

             . 

5. Conclusion 

In this article, the modified simple equation method has successfully been used to establish the 

solitary wave solutions to the simplified MCH equation, the Pochhammer-Chree equation and the 

Schrödinger-Hirota equation. The attribute and uniqueness of this method is that the considered 

function      is not an early known function. So is not possible to presume in advance what kind 

of solutions one may obtain through this method. Therefore, the obtained solutions are more general 

and fresh and important to analyze the inner mechanism of these nonlinear phenomena. The 

solutions are confirmed through checking the correctness by inserting them into the original 

equations and found correct. The results show that the method is reliable and effective. The used 

method has several advantages: it is straightforward and its calculation procedure is concise. 

Therefore this efficient method could be more effectively used to solve various NLEEs which 

regularly arise in science, engineering and other technical arenas. 
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