Research article

Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation

  • Received: 11 October 2019 Accepted: 14 December 2019 Published: 15 January 2020
  • MSC : 35Q51, 35Q53, 37K40

  • Under investigation is a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation which can be used to describe nonlinear wave propagation in dissipative media. Via the bilinear transformation method, the mixed lump and soliton solutions are obtained for the equation. The asymptotic behavior of the mixed solutions are analyzed. Furthermore, the fusion and fission behaviors of the lump and soliton are observed for the first time. The lump and soliton can merge into a whole soliton over time, or, on the contrary, the soliton may differentiate into a lump and a new soliton. During the processes, the amplitude of the lump will greatly vary, while the amplitude of the soliton will change slightly.

    Citation: Yu-Lan Ma, Bang-Qing Li. Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation[J]. AIMS Mathematics, 2020, 5(2): 1162-1176. doi: 10.3934/math.2020080

    Related Papers:

  • Under investigation is a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation which can be used to describe nonlinear wave propagation in dissipative media. Via the bilinear transformation method, the mixed lump and soliton solutions are obtained for the equation. The asymptotic behavior of the mixed solutions are analyzed. Furthermore, the fusion and fission behaviors of the lump and soliton are observed for the first time. The lump and soliton can merge into a whole soliton over time, or, on the contrary, the soliton may differentiate into a lump and a new soliton. During the processes, the amplitude of the lump will greatly vary, while the amplitude of the soliton will change slightly.


    加载中


    [1] G. Whitham, Linear and nonlinear waves, Wiley, New York, 1974.
    [2] G. Eilenberger, Solitons, Springer-Verlag, Berlin, 1983.
    [3] S. Burger, K. Bongs, S. Dettmer, et al. Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 5198-5201. doi: 10.1103/PhysRevLett.83.5198
    [4] K. E. Strecker, G. G. Partridge, A. G. Truscott, et al. Formation and propagation of matter-wave soliton trains, Nature, 417 (2002), 150-153. doi: 10.1038/nature747
    [5] L. Khaykovich, F. Schreck, G. Ferrari, et al. Formation of a matter-wave bright soliton, Science, 296 (2002), 290-1293.
    [6] B. Kibler, J. Fatome, C. Finot, et al. The Peregrine soliton in nonlinear fibre optics, Nat. Phys., 6 (2010), 790-795. doi: 10.1038/nphys1740
    [7] B. Q. Li, Y. L. Ma, J. Z. Sun, The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation, Appl. Math. Comput., 216 (2010), 3522-3535.
    [8] A. M. Wazwaz, Multiple soliton solutions and multiple complex soliton solutions for two distionct Boussinesq equations, Nonlinear Dyn., 85 (2016), 731-737. doi: 10.1007/s11071-016-2718-0
    [9] L. Liu, B. Tian, H. P. Chai, et al. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber, Phys. Rev. E, 95 (2017), 032202.
    [10] Q. M. Huang, Y. T. Gao, S. L. Jia, et al. Bilinear Backlund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation, Nonlinear Dyn., 87 (2017), 2529-2540. doi: 10.1007/s11071-016-3209-z
    [11] Y. L. Ma, Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97 (2019), 95-105.
    [12] B. Q. Li, Y. L. Ma, The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets, Physica A, 494 (2018), 169-174. doi: 10.1016/j.physa.2017.12.014
    [13] E. Pelinovsky, C. Kharif, Extreme Ocean Waves, Springer, Berlin, 2008.
    [14] A. R. Osborne, Nonlinear ocean waves, Academic Press, New York, 2009.
    [15] A. Chabchoub, N. Hoffmann, H. Branger, et al. Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model, Phys. Fluids, 25 (2013), 101704.
    [16] A. Lechuga, Rogue waves in a wave tank: experiments and modeling, Nat. Hazards Earth Sys. Sci., 13 (2013), 2951-2955. doi: 10.5194/nhess-13-2951-2013
    [17] M. Närhi, B. Wetzel, C. Billet, et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability, Nat. Commun., 7 (2016), 13675.
    [18] D. R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation, Phys. Rev. Lett., 101 (2008), 233902.
    [19] Y. V. Bludov, V. V. Konotop, N. Akhmediev, Matter rogue waves, Phys. Rev. A, 80 (2009), 033610.
    [20] Z. Y. Yan, V. V. Konotop, N. Akhmediev, Three-dimensional rogue waves in nonstationary parabolic potentials, Phys. Rev. E, 82 (2010), 036610.
    [21] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502.
    [22] H. Bailung, S. K. Sharma, Y. Nakamura, Observation of peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 107 (2011), 255005.
    [23] B. L. Guo, L. M. Ling, Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations, Chin. Phys. Lett., 28 (2011), 110202.
    [24] B. L. Guo, L. M. Ling, Q. P. Liu, Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012), 026607.
    [25] Y. Ohta, J. K. Yang, Dynamics of rogue waves in the Davey-Stewartson II equation, J. Phys. A, 46 (2013), 105202.
    [26] Z. Y. Ma, S. H. Ma, Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation, Chinese Phys. B, 21 (2012), 030507.
    [27] J. S. He, H. R. Zhang, L. H. Wang, et al. Generating mechanism for higher-order rogue waves, Phys. Rev. E, 87 (2013), 052914.
    [28] J. S. He, S. W. Xu, K. Porsezian, et al. Rogue wave triggered at a critical frequency of a nonlinear resonant medium, Phys. Rev. E, 93 (2016), 062201.
    [29] Y. Zhang, H. H. Dong, X. E. Zhang, et al. Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73 (2017), 246-252. doi: 10.1016/j.camwa.2016.11.009
    [30] Y. H. Yin, W. X. Ma, J. G. Liu, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 76 (2018), 1275-1283. doi: 10.1016/j.camwa.2018.06.020
    [31] H. N. Xu, W. Y. Ruan, Y. Zhang, et al. Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett., 99 (2020), 105976.
    [32] C. J. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation, Nonlinear Dyn., 84 (2016), 697-702. doi: 10.1007/s11071-015-2519-x
    [33] C. J. Wang, H. Fang, X. X. Tang, State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation, Nonlinear Dyn., 95 (2019), 2943-2961. doi: 10.1007/s11071-018-04733-5
    [34] Z. L. Zhao, L. C. He, Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 95 (2019), 114-121. doi: 10.1016/j.aml.2019.03.031
    [35] Z. L. Zhao, L. C. He, Y. B. Gao, Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin-Ono equation in fluid mechanics, Complexity, 2019 (2019), 8249635.
    [36] Z. L. Zhao, B. Han, Residual symmetry, Backlund transformation and CRE solvability of a (2+1)-dimensional nonlinear system, Nonlinear Dyn., 94 (2018), 461-474. doi: 10.1007/s11071-018-4371-2
    [37] Y. F. Hua, B. L. Guo, W. X. Ma, et al. Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model., 74 (2019), 184-198. doi: 10.1016/j.apm.2019.04.044
    [38] C. J. Wang, Z. D. Dai, C. F. Liu, Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation, Mediterr. J. Math., 13 (2016), 1087-1098. doi: 10.1007/s00009-015-0528-0
    [39] J. C. Chen, Z. Y. Ma, Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a (2+1)-dimensional Korteweg-de Vries equation, Appl. Math. Lett., 64 (2017), 87-93. doi: 10.1016/j.aml.2016.08.016
    [40] B. Q. Li, Y. L. Ma, L. P. Mo, et al. The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation, Comput. Math. Appl., 74 (2017), 504-512. doi: 10.1016/j.camwa.2017.04.036
    [41] B. Q. Li, Y. L. Ma, T. M. Yang, The oscillating collisions between the three solitons for a dual-mode fiber coupler system, Superlattice Microst., 110 (2017), 126-132. doi: 10.1016/j.spmi.2017.08.054
    [42] B. Q. Li, Y. L. Ma, Solitons resonant behavior for a waveguide directional coupler system in optical fibers, Opt. Quant. Electron., 50 (2018), 270.
    [43] S. Wang, X. Y. Tang, S. Y. Lou, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation, Chaos Solitons Fractals, 21 (2004), 231-239. doi: 10.1016/j.chaos.2003.10.014
    [44] W. T. Zhu, S. H. Ma, J. P. Fang, et al. Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiffsystem, Chinese Phys. B, 23 (2014), 060505.
    [45] M. J. Ablowitz, H. Segur, On the evolution of packets of water waves, J. Fluid. Mech., 92 (1979), 691-715. doi: 10.1017/S0022112079000835
    [46] E. Infeld, G. Rowlands, 3 dimensional stability of Korteweg-de Vries waves and solitons, Acta Phys. Pol. A, 56 (1979), 329-332. doi: 10.1063/1.32091
    [47] E. A. Kuznetsov, S. K. Turitsyn, Two- and three-dimensional solitons in weakly dispersive media, J. Exp. Theor. Phys., 55 (1982), 844-847.
    [48] W. X. Ma, Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations, Commun. Nonlinear Sci., 16 (2011), 2663-2666. doi: 10.1016/j.cnsns.2010.10.003
    [49] C. Qian, J. G. Rao, Y. B. Liu, et al. Rogue waves in the three-dimensional Kadomtsev-Petviashvili equation, Chinese Phys. Lett., 33 (2016), 110201.
    [50] M. Khalfallah, New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation, Commun. Nonlinear Sci., 14 (2009), 1169-1175. doi: 10.1016/j.cnsns.2007.11.010
    [51] D. I. Sinelshchikov, Comment on: New exact traveling wave solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation, Commun. Nonlinear Sci., 15 (2010), 3235-3236. doi: 10.1016/j.cnsns.2009.11.028
    [52] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379 (2015), 1975-1978. doi: 10.1016/j.physleta.2015.06.061
    [53] W. X. Ma, Z. Y. Qin, X. Lu, Lump solutions to dimensionally reduced -gKP and -gBKP equations, Nonlinear Dyn., 84 (2016), 923-931. doi: 10.1007/s11071-015-2539-6
    [54] X. Lu, W. X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn., 85 (2016), 1217-1222. doi: 10.1007/s11071-016-2755-8
    [55] W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys., 133 (2018), 10-16. doi: 10.1016/j.geomphys.2018.07.003
    [56] H. Q. Sun, A. H. Chen, Lump and lump kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61. doi: 10.1016/j.aml.2016.12.008
    [57] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, UK, 2004.
    [58] D. S. Wang, B. L. Guo, X. L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equations, 266 (2019), 5209-5253. doi: 10.1016/j.jde.2018.10.053
    [59] D. S. Wang, X. L. Wang, Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal-Real, 41 (2018), 334-361. doi: 10.1016/j.nonrwa.2017.10.014
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5051) PDF downloads(649) Cited by(58)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog