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Abstract: Under investigation is a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation
which can be used to describe nonlinear wave propagation in dissipative media. Via the bilinear
transformation method, the mixed lump and soliton solutions are obtained for the equation. The
asymptotic behavior of the mixed solutions are analyzed. Furthermore, the fusion and fission behaviors
of the lump and soliton are observed for the first time. The lump and soliton can merge into a whole
soliton over time, or, on the contrary, the soliton may differentiate into a lump and a new soliton.
During the processes, the amplitude of the lump will greatly vary, while the amplitude of the soliton
will change slightly.
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1. Introduction

As we know, nonlinearity is a large class of essential phenomena of the world, and the soliton
theory plays a critical part in nonlinear science [1–12]. Lump, sometimes called as rogue wave, is a
special form of solitons, which has been observed in the deep ocean [13, 14], water wave experiments
in tank [15, 16], and optical fibers experiments [17]. Lump is generally localized for space and time
variables, and has a bigger amplitude being several times than ones of its surrounding waves. Lump
would be harmful, disastrous, and even destructive for some nonlinear systems, such as ocean and
water engineering. But lump may be used to amplify signals in other systems, such as in ferrite
magnetic materials and optical fibers. It is significant to predict and find where and when it appears
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and disappears. The research on the lump solution has drawn more and more attention [18–36].
Interaction behaviors between solitons are meaningful in physic and its applications, because they

will affect the wave propagation, such as elastic and non-elastic collisions [9, 37–40], nonlinear
superposition effects [41, 42], fusion and fission phenomena [43, 44].

In this work, we investigate a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation,
which reads

(ut + 6uux + uxxx)x + α
(
uyy + uzz

)
= 0, (1.1)

where u stands for a normalized physical quantity depending on spatial variable (x, y, z) and temporal
variable t, and α is a equation parameter.

Equation (1.1) was initially considered to model the nonlinear wave propagations in dissipative
media [45–47]. When α < 0, Eq. (1.1) is called as KPI-type equation, and when α > 0, Eq. (1.1)
is called as KPII-type equation. Because of the importance in theory and application, Eq. (1.1) has
been extensively investigated by various methods. In Ref. [48], the integrability and Painlevé test
was discussed, and the one-soliton and two-soliton solutions and four classes of specific three-soliton
solutions were explicitly presented to Eq. (1.1) with α = ±3. In Ref. [49], analytical breather solution
was obtained via the bilinear transformation method for Eq. (1.1) with α = −1. Then, rogue wave
solution was attained as a long wave homoclinic limit of the breathers. In Refs. [50, 51], the traveling
wave solutions were discussed to Eq. (1.1) with α = −3. However, novel fusion and fission dynamics
of mixed lump and soliton solution has not been reported for the equation (1.1) so far.

Recently, a method was proposed to calculate the lump solution by extending the bilinear
method [52–56]. Its key idea is to construct proper polynomial functions in the bilinear form. We
obtain the mixed lump and soliton solutions of Eq. (1.1) with α < 0 via the method. Furthermore, the
fusion and fission behaviors between the lump and soliton are first observed.

2. Bilinear form of Equation (1.1)

In this section, we will give the following theorem derived from the bilinear theory.
Theorem 1. The bilinear form of Eq. (1.1) is[

DxDt + 6u0D2
x + D4

x + α
(
D2

y + D2
z

)]
( f · f ) = 0, (2.1)

where D is the bilinear operator defined in Ref. [57] (also see Refs. [40, 41]).

Proof. Firstly, we are able to introduce a transformation to Eq. (1.1) as

u = u0 + 2(ln f )xx, (2.2)

where f > 0 is a real function of x, y, z and t, u0 is an arbitrary real constant.
From (2.2), it is seen that

ut = 2(ln f )xxt, ux = 2(ln f )xxx, uxxx = 2(ln f )xxxxx, uyy = 2(ln f )xxyy, uzz = 2(ln f )xxzz. (2.3)

Substituting (2.2) and (2.3) into Eq. (1.1) and integrating once with respect to x and letting the
integral constant be zero, it follows

(ln f )xxt + 6u0(ln f )xxx + 12(ln f )xx (ln f )xxx + (ln f )xxxxx + α
[
(ln f )xyy + (ln f )xzz

]
= 0. (2.4)
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Integrating once again with respect to x and letting the integral constant be zero, it yields

(ln f )xt + 6u0(ln f )xx + 6(ln f )xx (ln f )xx + (ln f )xxxx + α
[
(ln f )yy + (ln f )zz

]
= 0. (2.5)

Noticing that

(ln f )xt =
1
2

DxDt ( f · f )
f 2 , 6u0(ln f )xx =

6u0

2
D2

x ( f · f )
f 2 , (2.6)

(ln f )xxxx + 6(ln f )xx (ln f )xx =
1
2

D4
x ( f · f )

f 2 , (2.7)

(ln f )yy =
1
2

D2
y ( f · f )

f 2 , (ln f )zz =
1
2

D2
z ( f · f )

f 2 , (2.8)

and substituting (2.6)-(2.8) into Eq. (2.5), we find Eq. (2.5) is right. Thus, the Theorem 1 is proved.

3. Mixed lump and soliton solutions

In this section, we first obtain the lump solution for Eq. (1.1) from the bilinear form (2.1). Then the
mixed lump and soliton solutions will be attained.

3.1. Lump solution

According to the idea in Refs. [52, 53], we set f in the bilinear form (2.1) as

f = h0 + ξ2
1 + ξ2

2, (3.1)

where ξi = aix + biy + ciz + dit, i = 1, 2.
Substituting (3.1) into (2.1), collecting the terms with the same power of (ξ2

1 − ξ
2
2), ξ1ξ2, ξ

0
1ξ

0
2, and

letting their coefficients be zero, we get a set of equations. When a2
1 + a2

2 , 0 and (a1b2 − a2b1)2 +

(a1c2 − a2c1)2 , 0, we have
d1 = −6u0a1 + α

a2
1+a2

2

[
a1

(
b2

2 + c2
2 − b2

1 − c2
1

)
− 2a2 (b1b2 + c1c2)

]
,

d2 = −6u0a2 −
α

a2
1+a2

2

[
a2

(
b2

2 + c2
2 − b2

1 − c2
1

)
+ 2a1 (b1b2 + c1c2)

]
,

h0 =
−3(a2

1+a2
2)

3

α[(a1b2−a2b1)2+(a1c2−a2c1)2] , α < 0.

(3.2)

Therefore, the lump solution of Eq. (1.1) can be obtained as follow

u(x, y, z, t) = u0 +
4
[
h0

(
a2

1 + a2
2

)
+

(
a2

2 − a2
1

) (
ξ2

1 − ξ
2
2

)
− 4a1a2ξ1ξ2

]
(
h0 + ξ2

1 + ξ2
2

)2 , (3.3)

where ξi = aix + biy + ciz + dit, i = 1, 2.
We give the plots of the solution (3.3) in six coordinates, namely, the x-y-u, the x-z-u, the y-z-u, the

x-t-u, the y-t-u and the z-t-u coordinates (see Figure 1). The lump wave is localized in all the spaces
and time directions. In fact, for the solution (3.3), it is seen to prove

lim
∀x,y,z,t→±∞

u(x, y, z, t) = u0.
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Figure 1. The plots of the lump solution (3.3) in different coordinates. The parameter settings
are as follows: u0 = 0.2, a1 = 1.0, a2 = 0.2, b1 = 1.0, b2 = 1.9, c1 = 1.2, c2 = 1.3, α = −0.3,
(a) the x-y-u coordinate with z = t = 0; (b) the x-z-u coordinate with y = t = 0; (c) the y-z-u
coordinate with x = t = 0; (d) the x-t-u coordinate with y = z = 0; (d) the y-t-u coordinate
with x = z = 0; (f) the z-t-u coordinate with x = y = 0.

3.2. Mixed lump and soliton solutions

We set f in the bilinear form (2.1) as

f = h0 + ξ2
1 + ξ2

2+eξ3 , (3.4)

where ξi = aix + biy + ciz + dit, ai, bi, ci and di (i = 1, 2, 3) are constants to be determined later.
Substituting (3.4) into (2.1), collecting the terms with the same power of

(
ξ2

1 + ξ2
2

)
eξ3 ,

ξ2
1 − ξ

2
2, ξ1ξ2, ξ1eξ3 , ξ2eξ3 , eξ3 and ξ0

1ξ
0
2, and letting their coefficients be zero, we get a set of equations.

Solving this set of equations will yields two sets of solutions with respect to ai, bi, ci, di (i = 1, 2, 3)
and h0 as follows
Case I: 

a1 = a3 = (−1) j 4
√
−α3

(
b2

2 + c2
2

)
, j = 0, 1, a2 = 0,

b1 = b3 = b , 0, c1 = c3 = c , 0,

d1 = −6u0a1 +
α

a1

(
b2

2 + c2
2 − b2 − c2

)
, d2 = −

2α
a1

(bb2 + cc2) ,

d3 = −6u0a1 − a3
1 −

α(b2+c2)
a1

, h0 = 1,

(3.5)
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Case II:



a1 = (−1) j 4

√
−
αc2

3b2

(
b2

2 + c2
2

)
, j = 0, 1, a2 = 0, a3 =

ba1

c
,

b1 = c1 = c , 0, b3 = c3 = b , 0,
d1 = −6u0a1 + α

a1

(
b2

2 + c2
2 − 2b2

)
, d2 = −2αc

a1
(b2 + c2) ,

d3 = −6u0ba1
c −

(
ba1
c

)3
− 2αbc

a1
, h0 = c2

b2 ,

(3.6)

where b , 0, c , 0 are arbitrary real constants, b2 and c2 are arbitrary real constants and satisfy
b2

2 + c2
2 , 0.

Thus, we are able to obtain two mixed solutions for Eq. (1.1) corresponding to (3.5) and (3.6),
respectively,

u1(x, y, z, t) = u0 + 2

√
−
α
(
b2

2 + c2
2

)
3

(
2 − 2

(
ξ2

1 − ξ
2
2

)
+ 3eξ3 − 4ξ1eξ3 +

(
ξ2

1 + ξ2
2

)
eξ3

)
(
h0 + ξ2

1 + ξ2
2 + eξ3

)2 , (3.7)

with ξi = aix + biy + ciz + dit, ai, bi, ci and di (i = 1, 2, 3) are given by (3.5), and

u2(x, y, z, t) = u0 + 2

√
−
αc2

(
b2

2 + c2
2

)
3b2

(
2c2

b2 − 2
(
ξ2

1 − ξ
2
2

)
+ 3eξ3 − 4b

c ξ1eξ3 + b2

c2

(
ξ2

1 + ξ2
2

)
eξ3

)
(
h0 + ξ2

1 + ξ2
2 + eξ3

)2 , (3.8)

ξi = aix + biy + ciz + dit, h0 ai, bi, ci and di (i = 1, 2, 3) are given by (3.6).

The mixed lump and soliton solutions (3.7) and (3.8) involve exponential function and rational
function, which mathematically represents lump and soliton, respectively. In Figure 2, the plots of the
solution (3.7) are figured in all the six coordinates.

Remark: The mixed lump and soliton solutions (3.7) and (3.8) are also named as lump-kink
solutions.
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Figure 2. The plots of the mixed lump and soliton solution (3.7) in different coordinates. The
parameter settings are as follows: u0 = 0.2, a2 = 0, b = 0.2, b2 = 0.8, c = 1, c2 = 1.2, h0 =

1, α = −0.5, (a) the x-y-u coordinate with z = t = 0; (b) the x-z-u coordinate with y = t = 0;
(c) the y-z-u coordinate with x = t = 0; (d) the x-t-u coordinate with y = z = 0; (d) the y-t-u
coordinate with x = z = 0; (f) the z-t-u coordinate with x = y = 0.

3.3. Asymptotic behavior of the mixed solutions

Asymptoticity is an important concept that depicts the global characteristics of a system [58, 59].
We take the solution (3.7) under t → ∞ as the example to discuss the asymptotic behavior of the mixed
solutions.

When (x, y, z)→ (x0, y0, z0), t → +∞ and d3 > 0 to (3.7), we are able to derive(
h0 + ξ2

1 + ξ2
2 + eξ3

)2
= O

((
eξ3

)2
)
,

(
2 − 2

(
ξ2

1 − ξ
2
2

)
+ 3eξ3 − 4ξ1eξ3 +

(
ξ2

1 + ξ2
2

)
eξ3

)
= O

((
ξ2

1 + ξ2
2

)
eξ3

)
.

Thereby, we have

lim
t→+∞

(
ξ2

1 + ξ2
2

)
eξ3

e2ξ3
= lim

t→+∞

(
ξ2

1 + ξ2
2

)
eξ3

= 0.

When (x, y, z)→ (x0, y0, z0), t → +∞ and d3 < 0, we can derive(
h0 + ξ2

1 + ξ2
2 + eξ3

)2
= O

((
ξ2

1+ξ2
2

)2
)
,

(
2 − 2

(
ξ2

1 − ξ
2
2

)
+ 3eξ3 − 4ξ1eξ3 +

(
ξ2

1 + ξ2
2

)
eξ3

)
= O

((
ξ2

1 + ξ2
2

)2
)
.
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Thus, we know

lim
t→+∞

O
(
ξ2

1 + ξ2
2

)
O

((
ξ2

1 + ξ2
2

)2
) = 0.

Consequently, the mixed solution (3.7) will lead

lim u1(x, y, z, t)
(x,y,z)→(x0,y0,z0),
t→+∞

= u0 + 2

√
−
α
(
b2

2 + c2
2

)
3

O
(
ξ2

1 + ξ2
2

)
O

((
ξ2

1 + ξ2
2

)2
) = u0. (3.9)

Similarly, we have
lim u1(x, y, z, t)

(x,y,z)→(x0,y0,z0),
t→−∞

= u0. (3.10)

Thereby, it is seen that
lim u1(x, y, z, t)

(x,y,z)→(x0,y0,z0),
t→∞

= lim u2(x, y, z, t)
(x,y,z)→(x0,y0,z0),
t→∞

= u0. (3.11)

Besides, the solitons, involved in the mixed solutions, are global. This feature is different from one
of the lump. We give graphically the asymptotic feature of the solitons. In Figure 3, the solitons will
hold its profile, and its amplitude will tend to a stable value which is determined by the settings.

Figure 3. The asymptotic behavior of the mixed solution over time. The plots are given by
the mixed solution (3.7). The settings are as follows: y = z = 0, α = −0.5, u0 = 0.2, j =

0, b = 0.6, b2 = 2, c = 0.6, c2 = 3, and different t.
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4. Fusion and fission dynamics between lump and soliton

Without loss of generality, we just discuss the fusion and fission dynamics of the mixed solutions
(3.7) and (3.8) with z = 0 in the x-y-u coordinate.

4.1. Fusion of lump and soliton

Figure 4. The fusion behavior between the lump and soliton over time. The plots are given
by the mixed solution (3.7). The settings are as follows: z = 0, α = −0.5, u0 = 0.2, j = 0, b =

0.6, b2 = 2, c = −1, c2 = 2.5, the other parameters are determined by (3.5), and different t:
(a) t = −10; (b) t = −5; (c) t = −2.5; (d) t = 0; (e) t = 2.5; (f) t = 5.
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We first unearth the fusion behavior between the lump and soliton for the equation (1.1). By setting
z = 0, α = −0.5, u0 = 0.2, j = 0, b = 0.6, b2 = 2, c = −1 and c2 = 2.5 in the mixed solution (3.7),
and letting the time variable t vary from t = −10 to t = 5, we are able to observe the fusion between
the lump and soliton over time. A series of plots are given to demonstrate the fusion behavior (see
Figure 4). In detail, the lump and soliton all move from the negative to the positive direction of the
x-axis during the process. As t = −10, the lump and soliton are completely separated. As t varies form
−10 to 0, they are gradually approach. At t = 0, the lump and soliton are together, but their amplitudes
are greatly different. With the further increase of time, their amplitudes are getting closer and closer
until the lump and soliton completely merge into a soliton.

In addition, during the fusion process between the lump and soliton, it is very clear that the
amplitude of the lump obviously decreases (from about 20 to 3). However, the amplitude of the
soliton gradually increases. It means that the energy of the lump is transmitted into the soliton. The
amplitude evolution of the soliton is illustrated in Figure 5.

-40 -30 -20 -10 0 10 20 30 40
x

0

0.5

1

1.5

2

2.5

3

u

t=-10
t=-5
t=-2.5
t=0
t=2.5
t=5
t=10

Figure 5. The amplitude evolution of the soliton over time. The plots are given by the mixed
solution (3.7). The settings are as follows: y = 25, z = 0, α = −0.5, u0 = 0.2, j = 0, b =

0.6, b2 = 2, c = −1, c2 = 2.5, and different t.

4.2. Fission of lump and soliton

The behavior corresponding to the fusion is fission. Now, we investigate the fission behavior
between the lump and soliton via the mixed solution (3.8) by a similar way used in the previous
subsection.

By z = 0, α = −0.5, u0 = 0.2, j = 0, b = 1, b2 = 1, c = 0.2 and c2 = 1 in the mixed solution (3.8),
and letting the time variable t vary from t = −1 to t = 1, we are able to observe the fission behavior over
time at the seven values (t = −1,−0.5,−0.25, 0, 0.25 and 0.5, respectively). During the process, the
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lump is gradually separated from the soliton, and are thrown farther and farther away. Simultaneously,
the amplitude of the lump increases rapidly, and the amplitude of the soliton decreases gradually. More
details can be found in Figures 6 and 7.

Figure 6. The fission behavior between the lump and soliton over time. The plots are given
by the mixed solution (3.8). The settings are as follows: z = 0, α = −0.5, u0 = 0.2, j = 0, b =

1, b2 = 1, c = 0.2, c2 = 1, the other parameters are determined by (3.6), and different t: (a)
t = −1; (b) t = −0.5; (c) t = −0.25; (d) t = 0; (e) t = 0.25; (f) t = 0.5.

AIMS Mathematics Volume 5, Issue 2, 1162–1176.



1172

-20 -15 -10 -5 0 5 10 15 20 25 30
x

0

1

2

3

4

5

6

7

u
t=-1
t=-0.5
t=-0.25
t=0
t=0.25
t=0.5
t=1

Figure 7. The amplitude evolution of the soliton over time. The plots are given by the mixed
solution (3.8). The settings are as follows: y = 10, z = 0, α = −0.5, u0 = 0.2, j = 0, b =

1, b2 = 1, c = 0.2, c2 = 1, and different t.

5. Conclusions

The (3+1)-dimensional Kadomtsev-Petviashvili equation (1.1) is widely used to depict the
nonlinear wave propagation in diverse dissipative media. The lump and soliton are two classical types
of nonlinear waves. In this work, the main attention is focused on the mixed lump and soliton
solutions and their dynamics for the equation.

Starting from the bilinear transformation of the equation (1.1), through properly constructing the
polynomial functions in the bilinear forms, the lump solution was first obtained, then two mixed lump
and soliton solutions were constructed under the equation parameter α < 0. The mixed solutions are
fundamental for the further study of the interaction behaviors between the lump and soliton.

Based on the mixed solutions, the asymptotic behavior of the mixed solutions are analyzed.
Furthermore, novel fusion and fission behaviors between the lump and soliton were observed for the
first time. The lump and soliton can merge into a whole soliton, or, on the contrary, the soliton may be
differentiated into a lump and a new soliton. During the processes, the amplitude of the lump will
greatly vary, while the amplitude of the soliton will change slightly. Considering the importance of
the lump and soliton in physics and its applications, these new observations are valuable to increase
understanding of the equation and can be used to explain interesting interaction phenomena between
different nonlinear waves.
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