Research article

Some Grüss-type inequalities using generalized Katugampola fractional integral

  • Received: 14 November 2019 Accepted: 30 December 2019 Published: 09 January 2020
  • MSC : 26A33, 26D10

  • The main objective of this paper is to obtain a generalization of some Grüss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Grüss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.

    Citation: Tariq A. Aljaaidi, Deepak B. Pachpatte. Some Grüss-type inequalities using generalized Katugampola fractional integral[J]. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070

    Related Papers:

  • The main objective of this paper is to obtain a generalization of some Grüss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Grüss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.


    加载中


    [1] E. Akin, S. Aslıyüce, A. F. Güvenilir, et al. Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl., 2015 (2015), 174.
    [2] V. L. Chinchane, D. B. Pachpatte, A note on fractional integral inequality involving convex functions using saigo fractional integral, Indian J. Math., 61 (2019), 27-39.
    [3] V. L. Chinchane, D. B. Pachpatte, On some new Grüss-type inequality using Hadamard fractional integral operator, J. Fract. Calc. Appl., 5 (2014), 1-10.
    [4] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93-99.
    [5] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci., 9 (2010), 493-497.
    [6] S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452
    [7] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pur. Appl. Math., 31 (2000), 397-415.
    [8] T. S. Du, J. G. Liao, L. Z. Chen, et al. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306.
    [9] T. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21.
    [10] N. Elezovic, L. J. Marangunic, J. Pecaric, Some improvements of Grüss type inequality, J. Math. Inequal., 1 (2007), 425-436.
    [11] G. Gruss, Uber das maximum des absoluten betrages von, Math. Z., 39 (1935), 215-226. doi: 10.1007/BF01201355
    [12] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
    [13] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv:1612.08596 (eprint).
    [14] A. M. D Mercer, P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appl., 1 (2004), 12.
    [15] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Springer, 1993.
    [16] N. Minculete, L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities, J. Inequal. Appl., 2014 (2014), 119.
    [17] B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. sci., 22 (2006), 29-37.
    [18] B. G. Pachpatte, On multidimensional Grüss type integral inequalities, J. Inequal. Pure Appl. Math., 3 (2002), 27.
    [19] J. V. C. Sousa, D. S. Oliveira, E. C. de Oliveira, Grüss-type inequalities by means of generalized fractional integrals, B. Braz. Math. Soc., 50 (2019), 1029-1047. doi: 10.1007/s00574-019-00138-z
    [20] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014).
    [21] G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 2014 (2014), 147.
    [22] C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Grüss-type inequalities and other inequalities, J. Inequal. Appl., 2012 (2012), 299.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3350) PDF downloads(416) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog