Research article

Soft prime and semiprime int-ideals of a ring

  • Received: 22 September 2019 Accepted: 02 December 2019 Published: 24 December 2019
  • MSC : 06E20, 06D72, 16N40

  • In this paper, some properties of soft radical of a soft int-ideal have been developed and soft prime int-ideal, soft semiprime int-ideal of a ring are defined. Several characterizations of soft prime (soft semiprime) int-ideals are investigated. Also it is shown that the direct and inverse images of soft prime (soft semiprime) int-ideals under homomorphism remains invariant.

    Citation: Jayanta Ghosh, Dhananjoy Mandal, Tapas Kumar Samanta. Soft prime and semiprime int-ideals of a ring[J]. AIMS Mathematics, 2020, 5(1): 732-745. doi: 10.3934/math.2020050

    Related Papers:

  • In this paper, some properties of soft radical of a soft int-ideal have been developed and soft prime int-ideal, soft semiprime int-ideal of a ring are defined. Several characterizations of soft prime (soft semiprime) int-ideals are investigated. Also it is shown that the direct and inverse images of soft prime (soft semiprime) int-ideals under homomorphism remains invariant.



    加载中


    [1] L. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [2] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341-356. doi: 10.1007/BF01001956
    [3] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.
    [4] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726-2735. doi: 10.1016/j.ins.2006.12.008
    [5] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458-3463. doi: 10.1016/j.camwa.2010.03.034
    [6] A. O. Atagun, A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl., 61 (2011), 592-601. doi: 10.1016/j.camwa.2010.12.005
    [7] F. Feng, Y. B. Jun, X. Zhao, soft semirings, Comput. Math. Appl., 56 (2008), 2621-2628. doi: 10.1016/j.camwa.2008.05.011
    [8] X. Liu, D. Xiang, J. Zhan, et al. Isomorphism theorems for soft rings, Algebra Colloquium, 19 (2012), 649-656. doi: 10.1142/S100538671200051X
    [9] Q. M. Sun, Z. L. Zhang, J. Liu, Soft sets and soft modules, Lecture Notes in Comput. Sci., 5009 (2008), 403-409. doi: 10.1007/978-3-540-79721-0_56
    [10] A. Aygunoglu, H. Aygun, Introduction to fuzzy soft groups, Comput. Math. Appl., 58 (2009), 1279-1286. doi: 10.1016/j.camwa.2009.07.047
    [11] Y. Celik, C. Ekiz, S. Yamak, Applications of fuzzy soft sets in ring theory, Ann. Fuzzy Math. Inform., 5 (2013), 451-462.
    [12] F. Feng, C. Li, B. Davvaz, et al. Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput. 14 (2010), 899-911. doi: 10.1007/s00500-009-0465-6
    [13] J. Ghosh, B. Dinda, T. K. Samanta, Fuzzy soft rings and fuzzy soft ideals, Int. J. Pure Appl. Sci. Technol. 2 (2011), 66-74.
    [14] X. Liu, D. Xiang, J. Zhan, Fuzzy isomorphism theorems of soft rings, Neural Comput. Appl., 21 (2012), 391-397. doi: 10.1007/s00521-010-0439-8
    [15] N. Cagman, F. Citak, H. Aktas, Soft int-group and its applications to group theory, Neural Comput. Appl., 21 (2012), 151-158. doi: 10.1007/s00521-011-0752-x
    [16] N. Cagman, F. Citak, Soft int-rings and its algebraic applications, J. Intell. Fuzzy Syst., 28 (2015), 1225-1233. doi: 10.3233/IFS-141406
    [17] J. Ghosh, D. Mandal, T. K. Samanta, Soft semiprimary int-ideals of a ring, Analele Universitatii Oradea Fasc. Matematica, 2 (2018), 141-151.
    [18] A. S. Sezer, N. Cagman, A. O. Atagun, et al. Soft Intersection Semigroups, Ideals and Bi-Ideals; a New Application on Semigroup Theory I, Filomat, 29 (2015), 917-946. doi: 10.2298/FIL1505917S
    [19] M. I. Ali, F. Feng, X. Liu, et al. On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547-1553. doi: 10.1016/j.camwa.2008.11.009
    [20] D. M. Burton, First Course in Rings and Ideals, Addison-Wesley series in Mathematics, 1970.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3477) PDF downloads(463) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog