Research article

Ostrowski type inequalities via the Katugampola fractional integrals

  • Received: 15 July 2019 Accepted: 26 September 2019 Published: 17 October 2019
  • MSC : 26A33, 26D10, 26D15

  • The main aim of this study is to reveal new generalized-Ostrowski-type inequalities using Katugampola fractional integral operator which generalizes Riemann-Liouville and Hadamard fractional integral operators into a single form. For this purpose, at first, a new fractional integral identity is generated by the researchers. Then, by using this identity, some inequalities for the class of functions whose certain powers of absolute values of derivatives are $p-$convex are derived. Some applications to special means for positive real numbers are also given. It is observed that the obtained inequalities are generalizations of some well known results.

    Citation: Mustafa Gürbüz, Yakup Taşdan, Erhan Set. Ostrowski type inequalities via the Katugampola fractional integrals[J]. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004

    Related Papers:

  • The main aim of this study is to reveal new generalized-Ostrowski-type inequalities using Katugampola fractional integral operator which generalizes Riemann-Liouville and Hadamard fractional integral operators into a single form. For this purpose, at first, a new fractional integral identity is generated by the researchers. Then, by using this identity, some inequalities for the class of functions whose certain powers of absolute values of derivatives are $p-$convex are derived. Some applications to special means for positive real numbers are also given. It is observed that the obtained inequalities are generalizations of some well known results.


    加载中


    [1] R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasciculi Mathematici, 56 (2016), 5-27. doi: 10.1515/fascmath-2016-0001
    [2] M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038
    [3] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense, Journal of Applied Mathematics and Computational Mechanics, 15 (2016), 11-21.
    [4] A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Higher transcendental functions, Vol. I-Ⅲ, Krieger Pub., Melbourne, Florida, 1981.
    [5] İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, 3 (2016), 140-150.
    [6] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
    [7] U. N. Katugampola, New approach to generalized fractional derivatives, Bulletin of Mathematical Analysis and Applications, 6 (2014), 1-15.
    [8] A. A. Kilbas, Hadamard-type fractional calculus, Journal of Korean Mathematical Society, 38 (2001), 1191-1204.
    [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006.
    [10] G. W. Leibniz, "Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695", Leibniz Mathematische Schriften. Olms-Verlag, Hildesheim, Germany, 1962. p.301-302, First published in 1849.
    [11] A. Ostrowski, Uber die absolutabweichung einer differentienbaren funktionen von ihren Integralmittelwert, Comment. Math. Hel., 10 (1938), 226-227.
    [12] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, P. Am. Math. Soc., 145 (2017), 1527-1538.
    [13] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-Convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
    [14] K. S. Zhang, J. P. Wan, p-Convex functions and their properties, Pure Appl. Math., 23 (2007), 130-133.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3769) PDF downloads(692) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog