Research article

Monotonic solutions for a quadratic integral equation of fractional order

  • Received: 18 April 2019 Accepted: 30 June 2019 Published: 16 July 2019
  • In this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order $ x(t) = p(t) + h(t, x(t)) \int_{0}^{t} k(t, s)( f_1( s, I^\alpha f_2(s, x(s)))+g_1( s, I^\beta g_2(s, x(s)))) ds, ~t\in [0, 1], \alpha, \beta \gt 0 $ by applying the technique of measures of weak noncompactness. As an application, we consider an initial value problem of arbitrary (fractional) order differential equations.

    Citation: A. M. A. El-Sayed, Sh. M. Al-Issa. Monotonic solutions for a quadratic integral equation of fractional order[J]. AIMS Mathematics, 2019, 4(3): 821-830. doi: 10.3934/math.2019.3.821

    Related Papers:

  • In this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order $ x(t) = p(t) + h(t, x(t)) \int_{0}^{t} k(t, s)( f_1( s, I^\alpha f_2(s, x(s)))+g_1( s, I^\beta g_2(s, x(s)))) ds, ~t\in [0, 1], \alpha, \beta \gt 0 $ by applying the technique of measures of weak noncompactness. As an application, we consider an initial value problem of arbitrary (fractional) order differential equations.


    加载中


    [1] J. A. Alamo and J. Rodriguez, Operational calculus for modified ErdélyiKober operators, Serdica Bulgaricae Math. Publ., 20 (1994), 351-363.
    [2] Sh. M. Al-Issa and A. M. A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Commentat. Math., 49 (2009), 171-177.
    [3] J. Appell and E. De Pascale, Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili, Boll. Un. Mat. Ital., 6 (1984), 497-515.
    [4] J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal., 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7
    [5] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust. Math. Soc., 46 (1989), 61-68.
    [6] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 47 (2004), 271-279. doi: 10.1016/S0898-1221(04)90024-7
    [7] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008
    [8] J. Banaś and K.Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA.60 (1980)
    [9] J. Banaś, M. Lecko and W. G. El-Sayed, Existence theorems of some quadratic integral equation, J. Math. Anal. Appl., 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941
    [10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [11] F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. math. Soc. Sci. Math. R. S. Roumanie, 21 (1977), 259-262.
    [12] A. M. A. El-Sayed and H. H. G. Hashem, Integrable and continuous solutions of nonlinear quadratic integral equation, Electron. J. Qual. Theory Differ. Equations, 25 (2008), 1-10.
    [13] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., 33 (2010), 27-34.
    [14] A. M. A. El-Sayed and Sh. M. Al-Issa, Global integrable solution for a nonlinear functional integral inclusion, SRX Mathematics, 2010 (2010).
    [15] A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., 18 (2019).
    [16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 204 (2006).
    [17] A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes in Mathematics, 31 (1979).
    [18] K. S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiely and Sons Inc, (1993).
    [19] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego-New York-london, (1999).
    [20] I. Podlubny and A. M. A. EL-Sayed, On two defintions of fractional calculus, Preprint UEF, Solvak Academy of science-Institute of Experimental Phys, (1996), 03-69.
    [21] B. Ross and K. S. Miller, An introduction to the fractional calculus and fractional differential equations, John Wiley, New York, (1993).
    [22] S. G. Samko, A. A. Kilbasa and O. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, (1987).
    [23] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnoselskii, et al. Integral Equations, Noordhoff, Leyden, (1975).
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3900) PDF downloads(626) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog