Research article

Existence of positive weak solutions for a nonlocal singular elliptic system

  • Received: 18 April 2019 Accepted: 27 June 2019 Published: 05 July 2019
  • MSC : Primary 35A15; Secondary 35S15, 47G20, 46E35

  • Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with $C^{1, 1}$ boundary, and let $s\in\left(0, 1\right) $ be such that $s < \frac{n}{2}.$ We give sufficient conditions for the existence of a weak solution $\left(u, v\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s}\left(\mathbb{R}^{n}\right) $ of the nonlocal singular system $\left(-\Delta\right) ^{s}u = ad_{\Omega}^{-\gamma_{1}}v^{-\beta_{1}}$ in $\Omega, $ $\left(-\Delta\right) ^{s}v = bd_{\Omega}^{-\gamma_{2}}u^{-\beta_{2}}$ in $\Omega, $ $u = v = 0$ in $\mathbb{R}^{n}\setminus\Omega, $ $u>0$ in $\Omega, $ $v>0$ in $\Omega, $ where $a$ and $b$ are nonnegative bounded measurable functions such that $\inf_{\Omega}a>0$ and $\inf_{\Omega}b>0.$ For the found weak solution $\left(u, v\right), $ the behavior of $u$ and $v$ near $\partial\Omega$ is also investigated.

    Citation: Tomas Godoy. Existence of positive weak solutions for a nonlocal singular elliptic system[J]. AIMS Mathematics, 2019, 4(3): 792-804. doi: 10.3934/math.2019.3.792

    Related Papers:

  • Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with $C^{1, 1}$ boundary, and let $s\in\left(0, 1\right) $ be such that $s < \frac{n}{2}.$ We give sufficient conditions for the existence of a weak solution $\left(u, v\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s}\left(\mathbb{R}^{n}\right) $ of the nonlocal singular system $\left(-\Delta\right) ^{s}u = ad_{\Omega}^{-\gamma_{1}}v^{-\beta_{1}}$ in $\Omega, $ $\left(-\Delta\right) ^{s}v = bd_{\Omega}^{-\gamma_{2}}u^{-\beta_{2}}$ in $\Omega, $ $u = v = 0$ in $\mathbb{R}^{n}\setminus\Omega, $ $u>0$ in $\Omega, $ $v>0$ in $\Omega, $ where $a$ and $b$ are nonnegative bounded measurable functions such that $\inf_{\Omega}a>0$ and $\inf_{\Omega}b>0.$ For the found weak solution $\left(u, v\right), $ the behavior of $u$ and $v$ near $\partial\Omega$ is also investigated.


    加载中


    [1] C. Alves, Multiplicity of positive solutions for amixed boundary value problem, Rocky MT J. Math., 38 (2008), 19-39. doi: 10.1216/RMJ-2008-38-1-19
    [2] I. Bachar, H. Mâagli and V.Rădulescu, Singular solutions of a nonlinear elliptic equation ina punctured domain, Electron. J. Qual. Theo., 94 (2017), 1-19.
    [3] B. Barrios, I. De Bonis, M. Medina, et al.Semilinear problems for the fractional laplacian with a singularnonlinearity, Open Math., 13 (2015), 390-407.
    [4] U. Biccari, M Warma and E. Zuazua,Local elliptic regularity for the Dirichlet fractional laplacian,Adv. Nonlinear Stud., 17 (2017), 387-409.
    [5] A. Callegari and A. Nachman, A nonlinear singularboundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl.Math., 38 (1980), 275-281. doi: 10.1137/0138024
    [6] M. Chhetri, P. Drabek, R. Shivaji, Analysis ofpositive solutions for classes of quasilinear singular problems on exteriordomains, Adv. Nonlinear Anal., 6 (2017), 447-459.
    [7] M. B. Chrouda, Existence and nonexistence ofpositive solutions to the fractional equation ${\Delta ^{\frac{\alpha }{2}}}u = - {u^\gamma }$ in bounded domains, Annales Academiæ Scientiarum Fennicæ Mathematica, 42 (2017), 997-1007. doi: 10.5186/aasfm.2017.4262
    [8] F. Cîrstea, M. Ghergu and V.Rădulescu, Combined effects of asymptotically linear and singularnonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math.Pure. Appl., 84 (2005), 493-508. doi: 10.1016/j.matpur.2004.09.005
    [9] D. S. Cohen and H. B. Keller, Some positive problemssuggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361-1376.
    [10] M. G. Crandall, P. H. Rabinowitz and L. Tartar, Ona Dirichlet problem with a singular nonlinearity, Commun. Part. Diff.Eq., 2 (1977), 193-222. doi: 10.1080/03605307708820029
    [11] L. M. Del Pezzo and A. Quaas, Globalbifurcation for fractional p-laplacian and an application, Zeitschriftfür Analysis und ihre Anwendungen, 35 (2016), 411-447.%doi: 10.4171/ZAA/1572. doi: 10.4171/ZAA/1572
    [12] M. A. del Pino, A global estimate for the gradientin a singular elliptic boundary value problem, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341-352. doi: 10.1017/S0308210500021144
    [13] J. I. Diaz, J. Hernandez and J. M. Rakotoson,On very weak positive solutions to some semilinear elliptic problemswith simultaneous singular nonlinear and spatial dependence terms, Milan J.Math., 79 (2011), 233.
    [14] J. I. Díaz, J. M. Morel and L. Oswald, Anelliptic equation with singular nonlinearity, Commun. Part. Diff.Eq., 12 (1987), 1333-1344. doi: 10.1080/03605308708820531
    [15] E. Di Nezza, G. Palatucci and E. Valdinoci,Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math.,136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [16] L. Dupaigne, M. Ghergu and V.Rădulescu, Lane-Emden-Fowler equations with convection andsingular potential, J. Math. Pure. Appl., 87 (2007), 563-581. doi: 10.1016/j.matpur.2007.03.002
    [17] OK. W. Fulks and J. S. Maybee, A singularnonlinear equation, Osaka J. Math., 12 (1960), 1-19.
    [18] A. Fiscella, R. Servadei and E.Valdinoci, Density properties for fractional Sobolev Spaces, Ann.Acad. Sci. Fenn. Math., 40 (2015), 235-253. doi: 10.5186/aasfm.2015.4009
    [19] L. Gasiński and N. S. Papageorgiou,Nonlinear elliptic equations with singular terms and combinednonlinearities, Ann. Henri Poincaré, 13 (2012), 481-512. doi: 10.1007/s00023-011-0129-9
    [20] M. Ghergu, V. Liskevich and Z. Sobol, Singularsolutions for second-order non-divergence type elliptic inequalities inpunctured balls, J. Anal. Math., 123 (2014), 251-279. doi: 10.1007/s11854-014-0020-y
    [21] M. Ghergu, V. Rădulescu, Singularelliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Seriesin Mathematics and its Applications, The Clarendon Press, OxfordUniversity Press, Oxford, 2008.
    [22] J. Giacomoni, J. Hernandez and P. Sauvy,Quasilinear and singular elliptic systems, Adv. Nonlinear Anal.,2 (2013), 1-41. doi: 10.1515/anona-2012-0019
    [23] J. Giacomoni, T. Mukherjee, K. Sreenadh,Positive solutions of fractional elliptic equation with critical andsingular nonlinearity, Adv. Nonlinear Anal., 6 (2017), 327-354.
    [24] T. Godoy, A semilnear singular problem for thefractional laplacian, AIMS Mathematics, 3 (2018), 464-484. doi: 10.3934/Math.2018.4.464
    [25] A. C. Lazer and P. J. McKenna, On a singularnonlinear elliptic boundary value problem, Proc. Amer. Math. Soc.,111 (1991), 721-730. doi: 10.1090/S0002-9939-1991-1037213-9
    [26] H. Mâagli, Asymptotic behavior of positivesolutions of a semilinear Dirichlet problem, Nonlinear Analysis: Theory, Methods \& Applications, 74 (2011), 2941-2947.
    [27] H. Mâagli and M. Zribi, Existence andestimates of solutions for singular nonlinear elliptic problems, J. Math.Anal. Appl., 263 (2001), 522-542. doi: 10.1006/jmaa.2001.7628
    [28] G. Molica Bisci, V. Rădulescu and R. Servadei,Variational methods for nonlocal fractional problems, Encyclopedia ofMathematics and its Applications, Cambridge University Press,Cambridge, 2016.
    [29] M. Montenegro and A. Suárez, Existenceof a positive solution for a singular system, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 140 (2010), 435-447. doi: 10.1017/S0308210509000705
    [30] N. S. Papageorgiou and G. Smyrlis,Nonlinear elliptic equations with singular reaction, Osaka J. Math.,53 (2016), 489-514.
    [31] N. S. Papageorgiou, D. D. Repov and V.D. Rădulescu, Nonlinear analysis-theory and methods, SpringerMonographs in Mathematics, Springer, Cham, 2019.
    [32] K. Ho, K. Perera, I. Sim, et al.A note on fractional p-laplacian problems with singular weights, J.Fixed Point Theory A., 19 (2017), 157-173. doi: 10.1007/s11784-016-0344-6
    [33] V. D. Rădulescu, Singular phenomena innonlinear elliptic problems. From blow-up boundary solutions to equations withsingular nonlinearities, In: Handbook of Differential Equations: StationaryPartial Differential Equations (M. Chipot, Editor), North-HollandElsevier Science, Amsterdam, 4 (2007), 483-591.
    [34] X. Ros-Oton, Nonlocal elliptic equations in boundeddomains: a survey, Publ. Mat., 60 (2016), 3-26. doi: 10.5565/PUBLMAT_60116_01
    [35] X. Ros Oton and J. Serra, The Dirichletproblem fot the fractional laplacian: Regularity up to the boundary, J. Math.Pure. Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003
    [36] R. Servadei and E. Valdinoci, Variationalmethods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst.,33 (2013), 2105-2137.
    [37] Z. Zhang, The asymptotic behaviour of the uniquesolution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl.,312 (2005), 33-43. doi: 10.1016/j.jmaa.2005.03.023
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3782) PDF downloads(974) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog