Research article

$\mathcal{A}$-valued norm parallelism in Hilbert $\mathcal{A}$-modules

  • Received: 10 February 2019 Accepted: 14 May 2019 Published: 29 May 2019
  • MSC : 46L08, 46L05

  • We define the concept of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module, and then we investigate some properties of this notion and present some characterizations of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module. We also show that if $X$ and $Y$ are two inner product $\mathcal{A}$-modules and $T:X \to Y $ is a linear map such that $|Tx| = |x|$, then $T$ preserves $\mathcal{A}$-valued norm parallelism in both directions.

    Citation: Ali Khalili, Maryam Amyari. $\mathcal{A}$-valued norm parallelism in Hilbert $\mathcal{A}$-modules[J]. AIMS Mathematics, 2019, 4(3): 527-533. doi: 10.3934/math.2019.3.527

    Related Papers:

  • We define the concept of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module, and then we investigate some properties of this notion and present some characterizations of $\mathcal{A}$-valued norm parallelism in a Hilbert $\mathcal{A}$-module. We also show that if $X$ and $Y$ are two inner product $\mathcal{A}$-modules and $T:X \to Y $ is a linear map such that $|Tx| = |x|$, then $T$ preserves $\mathcal{A}$-valued norm parallelism in both directions.


    加载中


    [1] L. Arambašića and R. Rajić, On some norm equalities in pre-Hilbert C*modules, Linear Algebra Appl., 414 (2006), 19-28. doi: 10.1016/j.laa.2005.09.006
    [2] L. Arambasic and R. Rajic, On the C*valued triangle equality and inequality in Hilbert C*-modules, Acta Math. Hung., 119 (2008), 373-380. doi: 10.1007/s10474-007-7055-9
    [3] D. Bakic and B. Guljas, On a class of module maps of Hilbert C*-modules, Math. Commun., 7 (2002), 177-192.
    [4] T. Bottazzi, C. Conde, M. S. Moslehian, et al. Orthogonality and parallelism of operators on various Banach spaces, J. Aust. Math. Soc., 106 (2019), 160-183. doi: 10.1017/S1446788718000150
    [5] E. C. Lance, Hilbert C*-modules, A Toolkit for Operator Algebraists, Cambridge Univ. Press, Cambridge, 1995.6. M. Mehrazin, M. Amyari, M. Erfanian Omidvar, A new type of Numerical radius of operators on Hilbert C*-modules, Rendiconti del Circolo Matematico di Palermo Series 2, 2018. Available from: http://doi.org/10.1007/s12215-018-0385-3.
    [6] 7. A. Zamani, The operator-valued parallelism, Linear Algebra Appl., 505 (201, 282-295. doi: 10.1016/j.laa.2016.05.004
    [7] 8. A. Zaman, M. S. Moslehian, Norm-parallelism in the geometry of Hilbert C*-modules, Indagat. Math. New. Ser., 2(2016), 266-281. doi: 10.1016/j.indag.2015.10.008
    [8] 9. A. Zamani, M. S. Moslehian, M. Frank, Angle preserving mappings, Z. Anal. Anwend., 34 (2015), 4-500. doi: 10.4171/ZAA/1551
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3344) PDF downloads(556) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog