Review

A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials

  • Received: 08 February 2020 Accepted: 14 May 2020 Published: 27 May 2020
  • In the present review paper, we have explained the structure of Y-type hexagonal ferrite and various synthesis techniques. This paper also includes structural, electrical, magnetic properties and applications of Y-type hexaferrites and focusses on their use in antenna applications and microwave absorbing characteristic materials. Ferromagnetic nature of hexaferrites cause the induction of magnetisation within the crystal structure, which divide them into two groups: First with easy axis of magnetisation is known as uniaxial hexaferrites and second is known as ferroxplana having easy plane of magnetisation. The excellent magnetic properties of Y-type ferrites make them useful in the devices operating at high frequency range. The persistence of high refractive index upto 1 GHz enables these hexagonal ferrites useful in UHF antenna designs with small dimensions. The doping in Y-type hexaferrites affect all the properties. Current developments in Y-type hexaferrites will be explained in detail in the review of literature related to Y-type hexaferrites for the last 25 years, i.e. from 1994 to 2019 in this review paper.

    Citation: Monika Chandel, Virender Pratap Singh, Rohit Jasrotia, Kirti Singha, Rajesh Kumar. A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials[J]. AIMS Materials Science, 2020, 7(3): 244-268. doi: 10.3934/matersci.2020.3.244

    Related Papers:

  • In the present review paper, we have explained the structure of Y-type hexagonal ferrite and various synthesis techniques. This paper also includes structural, electrical, magnetic properties and applications of Y-type hexaferrites and focusses on their use in antenna applications and microwave absorbing characteristic materials. Ferromagnetic nature of hexaferrites cause the induction of magnetisation within the crystal structure, which divide them into two groups: First with easy axis of magnetisation is known as uniaxial hexaferrites and second is known as ferroxplana having easy plane of magnetisation. The excellent magnetic properties of Y-type ferrites make them useful in the devices operating at high frequency range. The persistence of high refractive index upto 1 GHz enables these hexagonal ferrites useful in UHF antenna designs with small dimensions. The doping in Y-type hexaferrites affect all the properties. Current developments in Y-type hexaferrites will be explained in detail in the review of literature related to Y-type hexaferrites for the last 25 years, i.e. from 1994 to 2019 in this review paper.


    加载中


    [1] Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites. AIP Conference Proceedings 2142: 140004. doi: 10.1063/1.5122517
    [2] Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites. AIP Conference Proceedings 2142: 090004. doi: 10.1063/1.5122448
    [3] Zhang H, Zhou J, Wang Y, et al. (2002) Microstructure and physical characteristics of novel Z-type hexaferrite with Cu modification. J Electroceram 9: 73-79.
    [4] Zhang H, Zhou J, Wang Y, et al. (2002) Investigation on physical characteristics of novel Z-type Ba3Co2(0.8-x)Cu0.40Zn2xFe24O41 hexaferrite. Mater Lett 56: 397-403.
    [5] Zhang H, Zhou J, Wang Y, et al. (2002) The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite. Ceram Int 28: 917-923. doi: 10.1016/S0272-8842(02)00074-3
    [6] Kračunovska S, Töpfer J (2009) Preparation, thermal stability and permeability behavior of substituted Z-type hexagonal ferrites for multilayer inductors. J Electroceram 22: 227-232. doi: 10.1007/s10832-007-9387-9
    [7] Bai Y, Zhou J, Gui Z, et al. (2002) An investigation of the magnetic properties of Co2Y hexaferrite. Mater Lett 57: 807-811. doi: 10.1016/S0167-577X(02)00877-7
    [8] Bai Y, Zhou J, Gui Z, et al. (2002) Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J Magn Magn Mater 246: 140-144. doi: 10.1016/S0304-8853(02)00040-9
    [9] Bai Y, Zhou J, Gui Z, et al. (2003) Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components. J Magn Magn Mater 264: 44-49. doi: 10.1016/S0304-8853(03)00134-3
    [10] Özgür Ü, Alivov Y, Morkoç H (2009) Microwave ferrites, part 1: fundamental properties. J Mater Sci-Mater El 20: 789-834. doi: 10.1007/s10854-009-9923-2
    [11] Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405: 54-61. doi: 10.1016/j.jmmm.2015.12.027
    [12] Trukhanov AV, Turchenko VO, Bobrikov IA, et al. (2015) Crystal structure and magnetic properties of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions. J Magn Magn Mater 393: 253-259.
    [13] Trukhanov AV, Kostishyn VG, Panina LV, et al. (2018) Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloy Compd 754: 247-256. doi: 10.1016/j.jallcom.2018.04.150
    [14] Jasrotia R, Singh VP, Sharma B, et al. (2020) Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications. J Alloy Compd 154687.
    [15] Trukhanov AV, Darwish MA, Panina LV, et al. (2019) Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J Alloy Compd 791: 522-529. doi: 10.1016/j.jallcom.2019.03.314
    [16] Vinnik DA, Zhivulin VE, Starikov AY, et al. (2020) Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12-xTixO19. J Magn Magn Mater 498: 166117. doi: 10.1016/j.jmmm.2019.166117
    [17] Karilainen AO, Ikonen PM, Simovski CR, et al. (2011) Experimental studies on antenna miniaturisation using magneto-dielectric and dielectric materials. IET Microw Antenna P 5: 495-502. doi: 10.1049/iet-map.2010.0212
    [18] Souriou D, Mattei JL, Chevalier A, et al. (2010) Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization. J Appl Phys 107: 09A518.
    [19] Lee J, Hong YK, Bae S, et al. (2011) Broadband bluetooth antenna based on Co2Z hexaferrite-glass composite. Micro Opt Techn Let 53: 1222-1225. doi: 10.1002/mop.25982
    [20] Mattei J-L, Huitema L, Queffelec P, et al. (2011) Suitability of Ni-Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas. IEEE T Magn 47: 3720-3723. doi: 10.1109/TMAG.2011.2148109
    [21] Lee J, Hong YK, Lee W, et al. (2013) Role of small permeability in gigahertz ferrite antenna performance. IEEE Magn Lett 4: 5000104-5000104. doi: 10.1109/LMAG.2012.2237163
    [22] Canneva F, Ferrero F, Chevalier A, et al. (2013) Miniature reconfigurable antenna with magneto dielectric substrate for DVB-H band. Micro Opt Techn Let 55: 2007-2011. doi: 10.1002/mop.27793
    [23] Mattei JL, Le Guen E, Chevalier A (2015) Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies. J Appl Phys 117: 084904. doi: 10.1063/1.4913700
    [24] Trukhanov AV, Trukhanov SV, Kostishin VG, et al. (2017) Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys Solid State 59: 737-745. doi: 10.1134/S1063783417040308
    [25] Trukhanov SV, Trukhanov AV, Turchenko VA, et al. (2018) Polarization origin and iron positions in indium doped barium hexaferrites. Ceram Int 44: 290-300. doi: 10.1016/j.ceramint.2017.09.172
    [26] Adelskold V (1938) Crystal structure of lead dodecairon (III) oxide. Arkiv for Kemi, Mineralogi och Geologi A 12: 1-9.
    [27] Arkel A van, Verwey EJW, Bruggen MG (1936) Recueil Tray. chim. Pays-Bas 55: 331.
    [28] Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ γ ≤ 0.25). J Exp Theor Phys 100: 95-105.
    [29] Zdorovets MV, Arbuz A, Kozlovskiy AL (2020) Synthesis of LiBaZrOx ceramics with a core-shell structure. Ceram Inter 46: 6217-6221. doi: 10.1016/j.ceramint.2019.11.090
    [30] Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2003) Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x≤ 0.50) manganites. J Phys-Condense Mat 15: 1783. doi: 10.1088/0953-8984/15/10/324
    [31] Trukhanov SV, Troyanchuk IO, Trukhanov AV, et al. (2006) Concentration-dependent structural transition in the La0.70Sr0.30MnO3-δ system. JETP lett 84: 254-257.
    [32] Jonker GH, HP Wijn, PB Braun (1956) Ferroxplana, hexagonal ferromagnetic iron-oxide compounds for very high frequencies. Philips Tech Rev 18: 145.
    [33] Albanese G (1977) Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J Phys Colloq 38: C1-85.
    [34] Yu HF, Huang KC (2002) Preparation and characterization of ester-derived BaFe12O19 powder. J Mater Res 17: 199-203. doi: 10.1557/JMR.2002.0029
    [35] Jaswon MA (1965) An Introduction to Mathematical Crystallography, American: Elsevier.
    [36] Kaiser M (2009) Effect of nickel substitutions on some properties of Cu-Zn ferrites. J Alloy Compd 468: 15-21. doi: 10.1016/j.jallcom.2008.01.070
    [37] Song YY, Ordóñez-Romero CL, Wu M (2009) Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites. Appl Phys Lett 95: 142506. doi: 10.1063/1.3246170
    [38] Turchenko V, Trukhanov A, Trukhanov S, et al. (2019) Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J Magn Magn Mater 477: 9-16. doi: 10.1016/j.jmmm.2018.12.101
    [39] Turchenko V, Kostishyn VG, Trukhanov S, et al. (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions. J Alloy Compd 821: 153412. doi: 10.1016/j.jallcom.2019.153412
    [40] Braun PB (1957) The crystal structures of a new group of ferromagnetic compounds. Philips Res Rep 12: 491-548.
    [41] Singh VP, Jasrotia R, Kumar R, et al. (2018) A current review on the synthesis and magnetic properties of M-type hexaferrites material. WJCMP 8: 36. doi: 10.4236/wjcmp.2018.82004
    [42] Sugimoto M (1982) Properties of ferroxplana-type hexagonal ferrites, Handbook of Ferromagnetic Materials, Elsevier, 3: 393-440.
    [43] Novák P, Knížek K, Rusz J (2007) Magnetism in the magnetoelectric hexaferrite system (Ba1-xSrx)2Zn2Fe12O22. Phys Rev B 76: 024432. doi: 10.1103/PhysRevB.76.024432
    [44] Salunkhe MY, Kulkarni DK (2004) Structural, magnetic and microstructural study of Sr2Ni2Fe12O22. J Magn Magn Mater 279: 64-68. doi: 10.1016/j.jmmm.2004.01.046
    [45] Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52: 99-105. doi: 10.1111/j.1151-2916.1969.tb13350.x
    [46] Neckenburger E, Severin H, Vogel JK, et al. (1964) Ferrite hexagonaler Kristallstrustur mit hoher Grenzfrequenz. Z Angew Phys 18: 65.
    [47] Vinnik MA (1965) Phase relationships in the BaO-CoO-Fe2O3 system. Russ J Inorg Chem 10: 1164-1167.
    [48] Kuznetsova SI, Naiden EP, Stepanova TN (1988) Topotactic reaction kinetics in the formation of hexagonal ferrite Ba3Co2Fe24O41. Inorg Mater 24: 856-859.
    [49] Drobek J, Bigelow WC, Wells RG (1961) Electron microscopic studies of growth structures in hexagonal ferrites. J Am Ceram Soc 44: 262-264. doi: 10.1111/j.1151-2916.1961.tb15375.x
    [50] Almessiere MA, Trukhanov AV, Slimani Y, et al. (2019) Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9: 202. doi: 10.3390/nano9020202
    [51] Kozlovskiy A, Kenzhina I, Zdorovets M (2019) Synthesis, phase composition and magnetic properties of double perovskites of A (FeM)O4-x type (A = Ce; M = Ti). Ceram Inter 45: 8669-8676. doi: 10.1016/j.ceramint.2019.01.187
    [52] Ahmed MA, Okasha N, El-Dek SI (2008) Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19: 065603. doi: 10.1088/0957-4484/19/6/065603
    [53] Naiden EP, Itin VI, Terekhova OG (2003) Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets. Tech Phys Lett 29: 889-891. doi: 10.1134/1.1631354
    [54] Dufour J, López-Vidriero E, Negro C, et al. (1998) Improvement of ceramic method for synthesizing M-type hexaferrites. Chem Eng Commun 167: 227-244. doi: 10.1080/00986449808912702
    [55] Tenzer RK (1963) Influence of particle size on the coercive force of barium ferrite powders. J Appl Phys 34: 1267-1268. doi: 10.1063/1.1729465
    [56] Mee CD, Jeschke JC (1963) Single-domain properties in hexagonal ferrites. J Appl Phys 34: 1271-1272. doi: 10.1063/1.1729467
    [57] Roos W (1980) Formation of chemically coprecipitated barium ferrite. J Am Ceram Soc 63: 601-603. doi: 10.1111/j.1151-2916.1980.tb09843.x
    [58] Xiong G, Xu M, Mai Z (2001) Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method. Solid State Commun 118: 53-58. doi: 10.1016/S0038-1098(01)00031-X
    [59] Kour S, Sharma RK, Jasrotia R, et al. (2019) A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications. AIP Conference Proceedings, AIP Publishing, 090007.
    [60] Mishra SK, Pathak LC, Rao V (1997) Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process. Mater Lett 32: 137-141. doi: 10.1016/S0167-577X(97)00027-X
    [61] Hong YS, Ho CM, Hsu HY, et al. (2004) Synthesis of nanocrystalline Ba(MnTi)xFe12-2xO19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0). J Magn Magn Mater 279: 401-410. doi: 10.1016/j.jmmm.2004.02.008
    [62] Junliang L, Yanwei Z, Cuijing G, et al. (2010) One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol-gel auto-combustion. J Eur Ceram Soc 30: 993-997. doi: 10.1016/j.jeurceramsoc.2009.10.019
    [63] Lalegani Z, Nemati A (2017) Influence of synthesis variables on the properties of barium hexaferrite nanoparticles. J Mater Sci-Mater El 28: 4606-4612. doi: 10.1007/s10854-016-6098-5
    [64] Pillai V, Kumar P, Hou MJ, et al. (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interfac 55: 241-269. doi: 10.1016/0001-8686(94)00227-4
    [65] Jasrotia R, Singh VP, Kumar R, et al. (2019) Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mossbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys 12: 1933-1941. doi: 10.1016/j.rinp.2019.01.088
    [66] Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2005) Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J Phys-Condens Mat 17: 6495. doi: 10.1088/0953-8984/17/41/019
    [67] Jasrotia R, Singh VP, Kumar R, et al. (2020) Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials. Ceram Int 46: 618-621. doi: 10.1016/j.ceramint.2019.09.012
    [68] Bai Y, Zhou J, Gui Z, et al. (2006) Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol-gel auto-combustion method. Mater Chem Phys 98: 66-70. doi: 10.1016/j.matchemphys.2005.08.067
    [69] Iqbal MJ, Barkat-ul-Ain (2009) Synthesis and study of physical properties of Zr4+-Co2+ co-doped barium hexagonal ferrites. Materials Science and Engineering B 164: 6 -11. doi: 10.1016/j.mseb.2009.05.020
    [70] Iqbal MJ, Liaqat F (2010) Physical and electrical properties of nanosized Mn- and Cr-doped strontium Y-type hexagonal ferrites. J Am Ceram Soc 93: 474-480. doi: 10.1111/j.1551-2916.2009.03385.x
    [71] Badwaik V, Badwaik D, Nanoti V, et al. (2012) Study of some structural and magnetic properties of Sr2Me2Fe11(SnCo)0.5O22 nanoferrites. Int J Know Eng 3: 58-60.
    [72] Bierlich S, Töpfer J (2012) Zn- and Cu-substituted Co2Y hexagonal ferrites: sintering behavior and permeability. J Magn Magn Mater 324: 1804-1808. doi: 10.1016/j.jmmm.2012.01.006
    [73] Jotania RB, Virk HS (2012) Y-type Hexaferrites: structural, dielectric and magnetic properties, In: Virk HS, Kleemann W, Solid State Phenomena, Trans Tech Publications, 189: 209-232.
    [74] Elahi A, Ahmad M, Ali I, et al. (2013) Preparation and properties of sol-gel synthesized Mg-substituted Ni2Y hexagonal ferrites. Ceram Int 39: 983-990. doi: 10.1016/j.ceramint.2012.07.016
    [75] Irfan M, Islam MU, Ali I, et al. (2014) Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr Appl Phys 14: 112-117. doi: 10.1016/j.cap.2013.10.010
    [76] Ali I, Islam MU, Ashiq MN, et al. (2014) Effect of Eu-Ni substitution on electrical and dielectric properties of Co-Sr-Y-type hexagonal ferrite. Mater Res Bull 49: 338-344. doi: 10.1016/j.materresbull.2013.09.012
    [77] Aslam A, Islam MU, Ali I, et al. (2014) High frequency electrical transport properties of CoFe2O4 and Sr2NiMnFe12O22 composite ferrites. Ceram Int 40: 155-162. doi: 10.1016/j.ceramint.2013.05.116
    [78] Ali I, Shaheen N, Islam MU, et al. (2014) Study of electrical and dielectric behavior of Tb+ 3 substituted Y-type hexagonal ferrite. J Alloy Compd 617: 863-868. doi: 10.1016/j.jallcom.2014.08.055
    [79] Mahmood SH, Zaqsaw MD, Mohsen OE, et al. (2015) Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions, In: Jotania RB, Virk HS, Solid State Phenomena, Trans Tech Publications, 241: 93-125.
    [80] Nikzad A, Ghasemi A, Tehrani MK, et al. (2015) Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence. J Supercond Novel Magn 28: 3579-3586. doi: 10.1007/s10948-015-3194-3
    [81] Mirzaee O, Mohamady R, Ghasemi A, et al. (2015) Study of the magnetic and structural properties of Al-Cr codoped Y-type hexaferrite prepared via sol-gel auto-combustion method. Int J Mod Phys B 29: 1550090. doi: 10.1142/S0217979215500903
    [82] Behare AV, Kumar M, Salunkhe Y, Nandanwar AK (2016) Effect of Sol-gel preparation Technique on the properties of magnetically substituted Y-type hexaferrites. International Journal of Engineering Development & Research 4: 2321-9939.
    [83] Ahmad B, Ashiq MN, Mumtaz S, et al. (2018) Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application. J Magn Magn Mater 451: 787-792. doi: 10.1016/j.jmmm.2017.12.026
    [84] Shakeel H, Khan HM, Ali I, et al. (2019) Structural, magnetic and electrical study of rare earth doped Y-type hexaferrites. J Mater Sci-Mater El 30: 6708-6717. doi: 10.1007/s10854-019-00982-1
    [85] Trukhanov AV, Almessiere MA, Baykal A, et al. (2019) Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J Alloy Compd 788: 1193-1202. doi: 10.1016/j.jallcom.2019.02.303
    [86] Trukhanov AV, Astapovich KA, Almessiere MA, et al. (2020) Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x < 0.1) hexaferrites. J Alloy Compd 822: 153575. doi: 10.1016/j.jallcom.2019.153575
    [87] Ali I, Islam MU, Ashiq MN, et al. (2014) Role of Tb-Mn substitution on the magnetic properties of Y-type hexaferrites. J Alloy Compd 599: 131-138. doi: 10.1016/j.jallcom.2014.02.079
    [88] Song Y, Zheng J, Sun M, et al. (2016) The electromagnetic and microwave absorbing properties of polycrystalline Y-type Ba1.5Sr0.5CoZnFe12-xAlxO22 hexaferrites over the microwave range. J Mater Sci-Mater El 27: 4131-4138.
    [89] Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57: 1191-1334. doi: 10.1016/j.pmatsci.2012.04.001
    [90] Jasrotia R, Kumar G, Batoo KM, et al. (2019) Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications. Physica B 569: 1-7. doi: 10.1016/j.physb.2019.05.033
    [91] Jasrotia R, Singh VP, Kumar R, et al. (2019) Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Result Phys 15: 102544. doi: 10.1016/j.rinp.2019.102544
    [92] Bai Y, Zhou J, Gui ZL, et al. (2005) Preparation and magnetic properties of Y-type ferroxplana by sol-gel method, In: Pan W, Gong GH, Ge CC, et al., Key Engineering Materials, Trans Tech Publications, 477-480.
    [93] Ahmad M, Ahmad M, Ali I, et al. (2015) Temperature dependent structural and magnetic behavior of Y-type hexagonal ferrites synthesized by sol-gel autocombustion. J Alloy Compd 651: 749-755. doi: 10.1016/j.jallcom.2015.08.144
    [94] Farzin YA, Mirzaee O, Ghasemi A (2016) Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method. Mater Chem Phys 178: 149-159. doi: 10.1016/j.matchemphys.2016.04.082
    [95] Odeh I, El Ghanem HM, Mahmood SH, et al. (2016) Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method. Physica B 494: 33-40. doi: 10.1016/j.physb.2016.04.037
    [96] Know HJ, Shin JY, Oh JH (1994) The microwave absorbing and resonance phenomena of Y type hexagonal ferrite microwave absorber. J Appl Phys 75:6109. doi: 10.1063/1.355476
    [97] Xu F, Bai Y, Jiang K, et al. (2012) Characterization of a Y-type hexagonal ferrite-based frequency tunable microwave absorber. Int J Min Met Mater 19: 453-456. doi: 10.1007/s12613-012-0578-2
    [98] Xing L, Shun-kang P, Xing Z, et al. (2017) Microwave-absorbing properties of strontium ferrites prepared via sol-gel method. Cryst Res Technol 52: 1700057. doi: 10.1002/crat.201700057
    [99] Mohsen Q (2010) Barium hexaferrite synthesis by oxalate precursor route. J Alloy Compd 500: 125-128. doi: 10.1016/j.jallcom.2010.03.230
    [100] Dionne GF, Oates DE, Temme DH, et al. (1996) Ferrite-superconductor devices for advanced microwave applications. IEEE T Microw Theory 44: 1361-1368. doi: 10.1109/22.508241
    [101] SUZUKI T, ISSHIKI M, OGUCHI T, et al. (1991) Orientation and recording performance for Ba-ferrite tapes. J Magn Soc Jpn 15: S2_833-838.
    [102] Kong S, Zhang P, Wen X, et al. (2008) Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation. Particuology 6: 185-190. doi: 10.1016/j.partic.2008.03.004
    [103] Cannas C, Ardu A, Peddis D, et al. (2010) Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J Colloid Interf Sci 343: 415-422. doi: 10.1016/j.jcis.2009.12.007
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8528) PDF downloads(1087) Cited by(53)

Article outline

Figures and Tables

Figures(15)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog