Processing math: 100%
Review

A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials

  • In the present review paper, we have explained the structure of Y-type hexagonal ferrite and various synthesis techniques. This paper also includes structural, electrical, magnetic properties and applications of Y-type hexaferrites and focusses on their use in antenna applications and microwave absorbing characteristic materials. Ferromagnetic nature of hexaferrites cause the induction of magnetisation within the crystal structure, which divide them into two groups: First with easy axis of magnetisation is known as uniaxial hexaferrites and second is known as ferroxplana having easy plane of magnetisation. The excellent magnetic properties of Y-type ferrites make them useful in the devices operating at high frequency range. The persistence of high refractive index upto 1 GHz enables these hexagonal ferrites useful in UHF antenna designs with small dimensions. The doping in Y-type hexaferrites affect all the properties. Current developments in Y-type hexaferrites will be explained in detail in the review of literature related to Y-type hexaferrites for the last 25 years, i.e. from 1994 to 2019 in this review paper.

    Citation: Monika Chandel, Virender Pratap Singh, Rohit Jasrotia, Kirti Singha, Rajesh Kumar. A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials[J]. AIMS Materials Science, 2020, 7(3): 244-268. doi: 10.3934/matersci.2020.3.244

    Related Papers:

    [1] G. Nandini, M. Venkatachalam, Raúl M. Falcón . On the r-dynamic coloring of subdivision-edge coronas of a path. AIMS Mathematics, 2020, 5(5): 4546-4562. doi: 10.3934/math.2020292
    [2] Meiqin Jin, Ping Chen, Shuangliang Tian . Interval edge colorings of the generalized lexicographic product of some graphs. AIMS Mathematics, 2024, 9(11): 30597-30611. doi: 10.3934/math.20241477
    [3] T. Deepa, M. Venkatachalam, Raúl M. Falcón . On the r-dynamic coloring of the direct product of a path with either a path or a cycle. AIMS Mathematics, 2020, 5(6): 6496-6520. doi: 10.3934/math.2020419
    [4] Shuangliang Tian, Ping Chen . Edge-coloring of generalized lexicographic product of graphs. AIMS Mathematics, 2024, 9(6): 15988-15995. doi: 10.3934/math.2024774
    [5] Syed Ahtsham Ul Haq Bokhary, Zill-e-Shams, Abdul Ghaffar, Kottakkaran Sooppy Nisar . On the metric basis in wheels with consecutive missing spokes. AIMS Mathematics, 2020, 5(6): 6221-6232. doi: 10.3934/math.2020400
    [6] Gaixiang Cai, Fengru Xiao, Guidong Yu . The identification numbers of lollipop graphs. AIMS Mathematics, 2025, 10(4): 7813-7827. doi: 10.3934/math.2025358
    [7] Kiki A. Sugeng, Fery Firmansah, Wildan, Bevina D. Handari, Nora Hariadi, Muhammad Imran . Several properties of antiadjacency matrices of directed graphs. AIMS Mathematics, 2024, 9(10): 27834-27847. doi: 10.3934/math.20241351
    [8] Yanyi Li, Lily Chen . Injective edge coloring of generalized Petersen graphs. AIMS Mathematics, 2021, 6(8): 7929-7943. doi: 10.3934/math.2021460
    [9] Shahbaz Ali, Muhammad Khalid Mahmmod, Raúl M. Falcón . A paradigmatic approach to investigate restricted hyper totient graphs. AIMS Mathematics, 2021, 6(4): 3761-3771. doi: 10.3934/math.2021223
    [10] Hongyu Chen, Li Zhang . A smaller upper bound for the list injective chromatic number of planar graphs. AIMS Mathematics, 2025, 10(1): 289-310. doi: 10.3934/math.2025014
  • In the present review paper, we have explained the structure of Y-type hexagonal ferrite and various synthesis techniques. This paper also includes structural, electrical, magnetic properties and applications of Y-type hexaferrites and focusses on their use in antenna applications and microwave absorbing characteristic materials. Ferromagnetic nature of hexaferrites cause the induction of magnetisation within the crystal structure, which divide them into two groups: First with easy axis of magnetisation is known as uniaxial hexaferrites and second is known as ferroxplana having easy plane of magnetisation. The excellent magnetic properties of Y-type ferrites make them useful in the devices operating at high frequency range. The persistence of high refractive index upto 1 GHz enables these hexagonal ferrites useful in UHF antenna designs with small dimensions. The doping in Y-type hexaferrites affect all the properties. Current developments in Y-type hexaferrites will be explained in detail in the review of literature related to Y-type hexaferrites for the last 25 years, i.e. from 1994 to 2019 in this review paper.


    The number of studies and discussions in terms of sustainable supply chain management (SSCM) has been increasing rapidly in recent years. As a result, emerged concepts related to sustainability, such as sustainable production and sustainable development, have gradually become more popular globally under various industries [1,2]. Incredibly, although it is easier to focus on the manufacturers and assess their efforts towards sustainability by eco-friendly products, conducted sustainability standards [1,3]. It is nevertheless clear that the SSCM can only be obtained by the contributions of all stakeholders in the supply chain consist of suppliers or customers [4]. In recent years, managers' cognition has been changed in this regard. In general, all issues related to the natural environment, community, or financial benefits are carefully considered under global competitive conditions [5,6]. Consequently, several scholars believed that the top management should integrate sustainability philosophy into business strategies to solve the pressures from stakeholders [3,7]. The evolution of the sustainability philosophy has influenced the organizations' development strategy. Some recent studies documented that under different research contexts would identify various parameters as well as barriers [1,8]. Such as, Zimon et al. (2020) have highlighted various drivers and barriers for the SSCM through the conditions of seventeen Sustainable Development Goals (SDGs) of the United Nations [2]. Combination employing ISM and AHP approach to pointed out twenty most essential factors of the SSCM by the Indian engine sector [9]. In the Iranian mining industries, forty-one SSCM barriers have been identified [10]. Besides, the different research methods of the scholars will also present inconsistent findings related to the parameters' importance, such as Delphi technique [7,11]; ISM approach [3,12]; or conducting simultaneously two techniques to address research objectives [8,9]. Thus, it is clear that these diversities have suggested many promising future research gaps for other scholars to be concerned with the SSCM practice topic in identifying the prevailing parameters.

    In Taiwan, numerous sustainability initiatives have been discussed and widely adopted in the various supply chains [13]. However, most studies only focus on Taiwan's vital industries, such as semiconductor manufacturing or electronics assembly [13,14]. Lack of research about the SSCM of agriculture sectors; meanwhile, the agricultural industries have great significance to the households of indigenous people, especially in rural areas [15]. Besides, several sustainable development policies have been published to improve the livelihood of that community group [16]. Recently, Taiwan's fresh fruit export industry is seriously affected by import bans from the Chinese market, and the total expected export value will be reduced by twenty percent in 2021 [17]. Thereby, this problem has a significant impact on Taiwan's fruit supply chain, particularly affecting farmers' livelihoods. Besides, excessive dependence on one market has seriously affected the sustainability of this supply chain. Thus, forcing Taiwan's fruit supply chain to change to ensure sustainability. According to the existing literature on the sustainable supply chain management topic, the authors aim to identify which essential parameters are given the attention and effect on the SSCM of the industry. Therefore, the Taiwanese fresh-fruit sector has been chosen for practical research to examine which parameters must be considered. This article aims to solve research objectives as follows: RO1. Identification of critical parameters for SSCM under the Taiwanese fresh-fruit sector; RO2. Evaluation to identify the most significant SSCM parameters in this context.

    Concentrating on the discussion in parameters contribute to the Taiwanese sustainable fresh-fruit supply chain context as a unique research and promising. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is one of the multi-criteria decision-making methods and is an outstanding technique to widely conducted [4]. Its ability has an excellent quality to solve complex problems and evaluate the importance of parameters [4,18]. Thereby, to solve two research objectives that this manuscript would conduct the TOPSIS tool to present the most significant SSCM parameters by the empirical research in Taiwan. Hence, this study would reveal some new methodological insights that bridge academia and practice for SSCM regard. Importantly, the research findings will contribute several theoretical implications for the SSCM literature. Besides, it would suggest some suggestions for managers several practical implications in this regard.

    The existing literature recently revealed that the SSCM implementation topic had gained significant discussion in academics and practices thanks to the positive impact of sustainability in order to enhance business performance [2,19]. Although there are still controversial discussions about the definition of SSCM; however, most scholars agree that the SSCM implementation is in line with the economic, social, and environmental considerations to making business strategies [2,8]. Several recent studies indicated that under different research contexts would identify various parameters and barriers [1]. The examples can be Narimissa et al. (2020) suggested ten drivers and barrier to implement SSCM in the Iranian oil sector [7]. Consistent with that, Zimon et al. (2020) proposed the model for conducting SDGs in the SSCM [2]. After that, Pandey et al. (2021) employed the hybrid method to pointed out twenty most essential factors of the SSCM by the Indian engine sector [9]. Hence, these studies suggested promising future research gaps for other scholars to be concerned with the SSCM practice topic in identifying the prevailing parameters.

    Furthermore, to determine the research gaps and identify the critical variables for SSCM; hence, the authors collect all papers related to SSCM practices and relevant impact elements based on the WoS and SCOPUS database. Several keywords for searching include "sustainable"; "supply chain management"; "parameter"; "barriers"; "elements"; "critical factors". As a result, a total of thirty-one journal papers have been assembled. They are discussed in various contexts, such as nations, industries, and approaches. A systematic analysis of all previous studies on the SSCM implementation topic has been conducted (presented Figure 1). The research gaps are identified in the following points relying on the existing SSCM implementation studies.

    Figure 1.  Analysis of co-occurrence of author keywords.

    Firstly, the SSCM literature has witnessed the lack of empirical research in Taiwan, especially agriculture sector [13,14]; meanwhile, developing nations are the most preferred research context, for instance, India (n = 10) and China (n = 4). This is the first empirical research in Taiwanese food industry for the SSCM practices regard.

    Secondly, sustainability studies regarding supply chain management have focused mainly on manufacturing, while the agricultural sector has experienced no specific research. Moreover, Taiwan's economy was well-known by the semiconductor manufacturing industry [14]; thus, conducting the study for the fresh-fruit supply chain has a significant impact on Taiwan's sustainable development, notably would broaden the SSCM practices literature in various sectors.

    Thirdly, in terms of research method conducted, the majority of documents prioritize employed qualitative methods, such as ISM (n = 9) and Delphi (n = 6). However, the existing literature does not record any studies that have conducted the TOPSIS approach to consider this issue. Besides, some researchers proposed the TOPSIS as an outstanding technique, its ability is deemed good-quality to solve complex problems and enough to evaluate the importance of elements [4,18]. Hence, conducting the TOPSIS technique in this study would offer some new methodological insights that bridge academia and practice for SSCM regard.

    According to the existing sustainability literature about supply chain management, twelve critical parameters reported to contribute to SSCM practices are demonstrated in Table 1.

    Table 1.  Identification the Critical Parameters of SSCM.
    Coding Parameters Brief Description Sources
    P1 Planning & Implementation The optimal design of the fresh fruit supply chain is inevitable, and it requires proper planning and implementation. [4,7,20,21,22]
    P2 Knowledge & Training of fruit preservation The preservation of post-harvest products needs to apply the latest knowledge and disseminate it to the stakeholders of the chain, particularly in farms and micro corporates. [4,23,24,25]
    P3 Farming area/ farmer As the first stage of the food supply chain, the essential role of farms to provide fresh products to the wholesalers, factories, and end customers. [5,15,26,27,28]
    P4 Processing & Packaging Fresh products need to maintain optimum quality for the longest time. Therefore, standardization and synchronization of processing and packaging must be attention for all the stages. [4,20,29,30,31]
    P5 Warehouse/Storage Warehouse acts as a transit station in the middle of the food supply chain, the quality of products will be significantly affected by storage operation in warehouses. [18,24,30,32]
    P6 Distribution & Logistics service The smooth flow of goods in the food supply chain will depend heavily on distribution channels and logistics services. [5,18,33,34]
    P7 Product quality & Safety Fresh goods have stringent requirements for standard product quality and safety. It is the participation of the whole chain and must be guaranteed from the stage of planting and harvesting to the end stage. [4,35,36]
    P8 Contracting Offering a variety of contracts for choose to ensure the benefits of each counterpart in the food supply chain. Thereby, it helps to reduce risks and conflicts among members. [12,18,37,38]
    P9 Technology adoption Adopting the latest technology to the supply chain is part of the stakeholders' efforts to obtain sustainability, such as minimizing the impact on the natural environment, reducing costs. [39,40,41]
    P10 Customer As the end-stage in the supply chain and consume products, the perceptions and reactions of this group is the driver and will significantly impact the sustainability initiatives of other stakeholders. [20,34,42,43]
    P11 Organizational social responsibilities Conducting social programs for the local communities has been launched in the sustainable development goals. Forcing the various organization to perform. [1,21,44,45]
    P12 Collaboration Collaboration among supply chain members would reinforce sustainability and obtain better performance by reducing financial constraints and production scale. [5,6,31,46,47].

     | Show Table
    DownLoad: CSV

    Pointing out optimal solutions according to various parameter selections, these results can be a resource to refer to before decision-making in many different practice situations. The authors assemble data through surveying with ten professionals in the SSCM expertise. They would play the role of decision-makers relying on their experience and knowledge. Collecting data has been done based on twelve clarified SSCM parameters. Employing the TOPSIS approach analyzes the expert's response to solving the second research objective.

    The authors can rank all SSCM parameters to determine the most significant variables for the current Taiwanese fresh-fruit supply chain. In this study, ten experts in the Taiwanese fresh-fruit supply chain were asked to rate all criteria. The language terms will be defined from 1 to 10; in detail, "1" means "Extremely unimportant", and "10" means "Extremely important". Consequently, the TOPSIS algorithm could be conducted by the following process:

    Step one: Relying on m alternative and n criteria having a rating of ith decision-makers and jth criteria. A matrix format as [xij]mn can be expressed for a MCDM issues as below.

    {x11x12......x1nx21x22......x2n..xm1xm2......xmn}i=1,2,...,m;j=1,2,...,n

    Step two: The normalize decision matrix has been calculated in Eq 1, where i = 1, 2, ..., n; and j = 1, 2, ..., m. And then, obtaining the normalized decision matrix by calculate the value rij.

    rij=xijni=1x2ij (1)
    {r11r12......r1nr21r22......r2n..rm1rm2......rmn}

    Step three: The authors then construct the weighted normalized matrix by calculate vij.

    vij=wjrij (2)
    {v11v12......v1nv21v22......v2n..vm1vm2......vmn}

    In details, wj = weights of different attributes; (i = 1, 2, …, n; j = 1, 2, …, m)

    Step four: Identifying the ideal solution consist of positive ideal solution (A+) and negative ideal solution (A-), the distance of these ideal solutions has been revealed by maximum and minimize value as below.

    A+=(v+1,v+2,...,v+n)withvj+={maxxi.vij,mini.vij} (3)
    A=(v1,v2,...,vn)withvj={mini.vij,maxxi.vij} (4)

    Step five: Determining each alternative's distance by calculating the Euclidean distance from the positive and negative ideal solutions. Those solutions are calculated by two values as s+i and si, and can be shown in Eqs 5 and 6, respectively.

    s+i=j(v+ijv+j)2 (5)
    si=j(vijvj)2 (6)

    with i = 1, 2, ..., m and j = 1, 2, ..., n.

    Step six: The authors calculate the closeness coefficient values (CCi) of each alternative by the Eq 7:

    CCi=sisi+s+iwithi=1,2,...,m (7)

    Step seven: Determining the optimal solutions according to the CCi values range from 0 to 1 scale, the great solution according to the alternative value closest to 1 cutoff. Further, the authors also can determine exactly the rank of these alternatives thanks to these CCi values. These values will provide the key findings for the study to discuss.

    Integration sustainability initiatives into business strategies are widely conducted in almost all Taiwanese sectors, most of them concentrated on essential industries like semiconductor manufacturing or electronics assembly compared to agriculture industries [13,14,48]. However, the agriculture sector has a significant influence on the indigenous people's livelihood are struggling with different risks to obtain sustainable development goals [16]. For instance, in recent years observed that Taiwan's fresh fruit supply chain has been easily vulnerable to customer pressuring [17]. Thereby, this problem has a significant impact on social performance, particularly affecting farmers' livelihoods. Thus, forcing Taiwan's fruit supply chain to change to attain sustainability through identifying SSCM prevailing parameters.

    The authors assemble data for this study by interviewing ten experts regarding the Taiwanese fresh fruit supply chain. These respondents have a long experience along with their expertise in SSCM practices. Besides, they offer responses about twelve SSCM parameters. The respondents' personal information was also described in Table 2.

    Table 2.  Summary of respondent's demographic.
    Category Frequency Percentage
    Gender Male 7 70.0%
    Female 3 30.0%
    Age group 31-40 3 30.0%
    41-50 5 50.0%
    51-60 1 10.0%
    over 60 1 10.0%
    Degree Bachelor degree 4 40.0%
    Master degree 4 40.0%
    Ph.D. degree 2 20.0%
    Organizational Process Manufacturing 6 60.0%
    Service 4 40.0%
    Working Position Top Managers 3 30.0%
    Sales Department 3 30.0%
    Financial Management 1 10.0%
    Human Resource Management 2 20.0%
    Production Management 1 10.0%

     | Show Table
    DownLoad: CSV

    The second research objective requires determining the importance level of SSCM parameters. The Taiwanese fresh-fruit supply chain has been chosen for this empirical research to address this objective. The study assembles data for analysis relying on the excellent knowledge and experiences of ten experts (Es) in this regard. Following the sequence of seven steps in TOPSIS analysis, the findings would report the significance of all twelve SSCM parameters. Further, they are considered good suggestions for the top managers in the Taiwanese fresh-fruit supply chain toward sustainability.

    According to the years of experience of each respondent, that decides the weightage for each decision-maker (presented in Table 3). The normalized matrix of the respondents' answers has been conducted (follow Eq 1) to determine (xij) values.

    Table 3.  The weighted normalized matrix.
    Parameters E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
    Weight 0.13 0.10 0.18 0.12 0.11 0.11 0.06 0.05 0.05 0.09
    P1 0.0414 0.0319 0.0574 0.0489 0.0315 0.0160 0.0142 0.0177 0.0052 0.0276
    P2 0.0322 0.0283 0.0574 0.0381 0.0315 0.0279 0.0142 0.0132 0.0173 0.0221
    P3 0.0460 0.0212 0.0574 0.0272 0.0276 0.0359 0.0142 0.0132 0.0138 0.0166
    P4 0.0184 0.0319 0.0319 0.0272 0.0394 0.0279 0.0170 0.0155 0.0173 0.0276
    P5 0.0322 0.0177 0.0447 0.0326 0.0355 0.0319 0.0227 0.0132 0.0173 0.0276
    P6 0.0414 0.0319 0.0574 0.0272 0.0315 0.0359 0.0198 0.0110 0.0173 0.0276
    P7 0.0414 0.0354 0.0319 0.0326 0.0315 0.0359 0.0142 0.0110 0.0173 0.0276
    P8 0.0414 0.0354 0.0574 0.0272 0.0355 0.0319 0.0113 0.0132 0.0138 0.0276
    P9 0.0368 0.0248 0.0447 0.0326 0.0276 0.0359 0.0198 0.0177 0.0173 0.0276
    P10 0.0414 0.0319 0.0574 0.0381 0.0276 0.0319 0.0198 0.0132 0.0017 0.0221
    P11 0.0276 0.0212 0.0574 0.0326 0.0276 0.0279 0.0170 0.0199 0.0104 0.0276
    P12 0.0414 0.0283 0.0574 0.0435 0.0315 0.0359 0.0198 0.0110 0.0138 0.0276

     | Show Table
    DownLoad: CSV

    Then, conducting two Eqs 2 and 3 to explore (rij) and (vij) values, respectively. Table 3 demonstrate the weighted normalized decision matrix for this research.

    Thereby, the next step can be shown in Table 4, in detail, two essential values are pointed out includes positive (A+) and negative (A) ideal solutions.

    Table 4.  The ideal solutions.
    Ideal Solutions E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
    Positive (A+) 0.0460 0.0354 0.0574 0.0489 0.0394 0.0359 0.0227 0.0199 0.0173 0.0276
    Negative (A) 0.0184 0.0177 0.0319 0.0272 0.0276 0.0160 0.0113 0.0110 0.0017 0.0166

     | Show Table
    DownLoad: CSV

    The Euclidean distance would be considered in step five by conducting two Eqs as 5 and 6 for each SSCM parameter. As a result, Table 5 and Table 6 are illustrate the positive and negative ideal solution values, respectively.

    Table 5.  Distance from the positive ideal solution.
    Parameters E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
    P1 0.0046 0.0035 0 0 0.0079 0.0200 0.0085 0.0022 0.0121 0
    P2 0.0138 0.0071 0 0.0109 0.0079 0.0080 0.0085 0.0066 0 0.0055
    P3 0 0.0142 0 0.0218 0.0118 0 0.0085 0.0066 0.0035 0.0110
    P4 0.0276 0.0035 0.0255 0.0218 0 0.0080 0.0057 0.0044 0 0
    P5 0.0138 0.0177 0.0128 0.0163 0.0039 0.0040 0 0.0066 0 0
    P6 0.0046 0.0035 0 0.0218 0.0079 0 0.0028 0.0088 0 0
    P7 0.0046 0 0.0255 0.0163 0.0079 0 0.0085 0.0088 0 0
    P8 0.0046 0 0 0.0218 0.0039 0.0040 0.0113 0.0066 0.0035 0
    P9 0.0092 0.0106 0.0128 0.0163 0.0118 0 0.0028 0.0022 0 0
    P10 0.0046 0.0035 0 0.0109 0.0118 0.0040 0.0028 0.0066 0.0155 0.0055
    P11 0.0184 0.0142 0 0.0163 0.0118 0.0080 0.0057 0 0.0069 0
    P12 0.0046 0.0071 0 0.0054 0.0079 0 0.0028 0.0088 0.0035 0

     | Show Table
    DownLoad: CSV
    Table 6.  Distance from the negative ideal solution.
    Parameters E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
    P1 0.0230 0.0142 0.0255 0.0218 0.0039 0 0.0028 0.0066 0.0035 0.0110
    P2 0.0138 0.0106 0.0255 0.0109 0.0039 0.0120 0.0028 0.0022 0.0155 0.0055
    P3 0.0276 0.0035 0.0255 0 0 0.0200 0.0028 0.0022 0.0121 0
    P4 0 0.0142 0 0 0.0118 0.0120 0.0057 0.0044 0.0155 0.0110
    P5 0.0138 0 0.0128 0.0054 0.0079 0.0160 0.0113 0.0022 0.0155 0.0110
    P6 0.0230 0.0142 0.0255 0 0.0039 0.0200 0.0085 0 0.0155 0.0110
    P7 0.0230 0.0177 0 0.0054 0.0039 0.0200 0.0028 0 0.0155 0.0110
    P8 0.0230 0.0177 0.0255 0 0.0079 0.0160 0 0.0022 0.0121 0.0110
    P9 0.0184 0.0071 0.0128 0.0054 0 0.0200 0.0085 0.0066 0.0155 0.0110
    P10 0.0230 0.0142 0.0255 0.0109 0 0.0160 0.0085 0.0022 0 0.0055
    P11 0.0092 0.0035 0.0255 0.0054 0 0.0120 0.0057 0.0088 0.0086 0.0110
    P12 0.0230 0.0106 0.0255 0.0163 0.0039 0.0200 0.0085 0 0.0121 0.0110

     | Show Table
    DownLoad: CSV

    Finally, the authors calculate the closeness ratio (CCi) values for all essential SSCM parameters to determine the importance level by Eq 7. Table 7 reports the ranking of twelve SSCM parameters for the Taiwanese fresh fruit sector based on their CCi values. Consequently, the final rank of the SSCM parameters in terms of the Taiwanese fresh-fruit industry is P12 > P6 > P10 > P8 > P1 > P2 > P9 > P3 > P7 > P5 > P11 > P4. Additionally, Figure 2 is expressed the results of these findings analysis related to the comparison among the ranked key parameters of SSCM implementation on the basis of CCi values.

    Table 7.  The ranking of SSCM parameters of the Taiwanese fresh-fruit sector.
    Parameters s+i si CCi Ranking
    Collaboration (P12) 0.0162 0.0481 0.7485 1
    Distribution & Logistic service (P6) 0.0256 0.0472 0.6485 2
    Customer (P10) 0.0251 0.0431 0.6318 3
    Contracting (P8) 0.0266 0.0456 0.6313 4
    Planning & Implementation (P1) 0.0268 0.0453 0.6286 5
    Knowledge & Training of fruit preservation (P2) 0.0251 0.0389 0.6079 6
    Technology adoption (P9) 0.0279 0.0382 0.5777 7
    Farming area/ farmer (P3) 0.0326 0.0445 0.5772 8
    Product quality & Safety (P7) 0.0339 0.0407 0.5453 9
    Warehouse/Storage (P5) 0.0317 0.0346 0.5214 10
    Organizational social responsibilities (P11) 0.0330 0.0350 0.5151 11
    Processing & Packaging (P4) 0.0449 0.0300 0.4006 12

     | Show Table
    DownLoad: CSV
    Figure 2.  The SSCM parameters of the Taiwanese fresh-fruit sector.

    The experts' responses have documented that "Collaboration" has obtained the highest priority (CCi = 0.7485) among the SSCM parameters in the Taiwanese fresh-fruit sector. Meanwhile, the second importance level belongs to "Distribution & Logistics service" (CCi = 0.6485), and followed by "Customer" issues (CCi = 0.6318). On the contrary, the TOPSIS analysis reported that three parameters consist of "Warehouse/Storage" (CCi = 0.5214), "Organizational social responsibilities" (CCi = 0.5151), and "Processing & Packaging" (CCi = 0.4006) are located at the bottom of the ranking table. In the middle of the rankings are other variables; in detail, "Contracting" (CCi = 0.6313) and "Planning & Implementation" (CCi = 0.6286) have ranked fourth and fifth place, respectively. Meanwhile, other parameters consist of "Knowledge & Training of fruit preservation" (CCi = 0.6079), "Technology adoption" (CCi = 0.5777), "Farming area/ farmer" (CCi = 0.5772) and "Product quality and safety" (CCi = 0.5453) are the less critical level consecutively. These criteria have been recognized as critical parameters for the sustainability of the Taiwanese fresh-fruit supply chain, their importance level as the reference sources for this industry to consider and carry out. Particularly in the current competitive period, when even the most minor efforts are attention and could improve performance.

    In Taiwan's context, the agricultural industry has great significance to the livelihood of indigenous people, especially in remote areas [15]. Meanwhile, several sustainable development policies have been launched to enhance living conditions and improve the livelihood of the indigenous people [16]. Further, connecting sustainable agricultural development to other fields and therefore make a meaningful contribution towards sustainability [15]. Regarding the food supply chain, particularly in the fresh-fruit supply chain, which should face various risks from the production process to the end customers [1,34]. Thus, the Taiwanese fresh-fruit sector can refer to these twelve identified SSCM parameters as a reference resource in making decisions through these research findings. To contribute some managerial implications, based on ten experts' opinions, the data has been collected to analyze and discuss twelve identified parameters. The results analysis report that these variables have a different ranking from highest-priority to lowest. These findings indicate the importance level of various parameters for the SSCM of the Taiwanese fresh-fruit sector.

    In terms of the food supply chain, there is a presence and participation of many different stakeholders [5]. Thus, several solutions regarding collaboration have been discussed to promote and improve intimate cooperation among members in the food supply chain, besides targeting further obtaining supply chain sustainability [47]. Importantly, collaborating among suppliers will achieve better performance due to they could remove financial constraints and production scale, particularly suitable in the context of small and medium enterprises of agriculture industries [46]. Hence, in line with previous studies regarding the "Collaboration" variable [6,46,47], ten experts in this study believed that collaboration among members of the Taiwanese fresh-fruit supply chain is the most significance to obtain sustainability. In this research, "Distribution & Logistics service" variable obtained second place in the preoccupation of experts about SSCM practices. As the risk sector, the agriculture industry must determine the optimal time from the stage in collecting fresh products in various farms, distribution to the warehouses, then sending to the end customers [5]. Besides, avoiding damage to fresh fruit during transportation is very essential [33,34]. Dhaoui et al. (2020) explored the close relationship between the consumers' and distribution channels of these fresh products in Greece, such as fruit and vegetables. "Customer" parameter is rated higher than "Contracting" variable, two criteria are statistically significant at third and fourth positions, respectively. An interesting fact in the supply chain is that manufacturers that act as suppliers can also be customers of other suppliers [18]. The critical role of the customers variable in the food supply chain has been proven in other prior studies [34,42]. Thus, customers' expectations have become the targets of various suppliers [20,43]. To avoid risks from customers parameter, expanding the market scope to find more different customers has become a solution for suppliers in this area [31].

    Notably, considering "Contracting" as the supply chain parameters, Shen et al. [37] have divided into nine contracting clusters based on information. Besides, contracting with information updating among counterparts has been suggested to attain a sustainable supply chain. Surprisingly, these findings are consistent with the exploring of Chaudhuri et al. [12] and Xiao et al. [38], they have identified and particularly interested in contracting to reduce the risk for the food supply chain in India and China, respectively. Further, the study findings have contributed to the existing literature some promising ideas for the top managers when considering various proposed SSCM parameters. Although the remaining variables have lower CCi values; however, their significance for the food supply chain has been determined and verified once again by the fresh-fruit supply chain in Taiwan. Consequently, unfortunately, the analysis results witnessed the lowest values of some parameters, for instance, "Warehouse/Storage" [24,30,32], "Organizational social responsibilities" [1,44,45], and "Packaging & Processing" [4,20,30]. But the role of these criteria should not be underestimated or ignored. Ideally, to attain SSCM needs to conduct simultaneously different blueprints by the best efforts of all members.

    Sustainability target is an inevitable trend worldwide [23]. It forces all various industries and nations to adopt different solutions to obtain [1]. In fact, fresh agriculture products have great significance on the livelihoods of the Taiwanese indigenous communities [15,16]. Therefore, determining critical parameters for the fruits chain in Taiwan is the main contribution insight; as a result, twelve essential variables have been identified. Moreover, as a different approach insight, the authors employed the TOPSIS technique for this study to explore the importance level of all parameters. It is considered an excellent tool to address research objectives through comparison among closeness coefficients. Consequently, based on the experts' responses, this study successfully determined the role of these essential variables in the Taiwanese fresh-fruit chain. Analysis outcomes revealed that "Collaboration" at the peak of the list, "Distribution & Logistics service" obtained second place, and followed by "Customer" get the third position with their CCi values as 0.7485, 0.6485, 0.6318, respectively. On the contrary, at the bottom of the prioritized list is three essential parameters consisting of "Warehouse/Storage", "Organizational social responsibilities", and "Processing & Packaging" with their CCi values as 0.5214, 0.5151, 0.4006, respectively. Unsurprisingly, collaboration with the right partner toward obtain sustainability together is very emerging attention; for instance, Song et al. [49] reported that it is the most considerable risk factor in the telecommunications sector. Meanwhile, Pandey et al. [9] considered the collaboration parameter less essential in an engine manufacturing industry. The contradictory assessments compared to the findings of this study have presented in some previous studies, such as, Prasad et al. [50] believed that customer's influence ranks bottom among the twenty SSCM critical factors of the Indian steel industry. Hence, differences in the importance ranking of SSCM components in practices have been observed depending on various industries and countries' contexts, consistent with the suggestions of Panigrahi et al. [1] and Zimon et al. [2].

    As part of agricultural sustainability, the whole fruit supply chain members must carry out simultaneously these twelve identified critical parameters. Hence, these research results are a positive signal for senior managers to refer to making business decisions. This research is the first empirical research concentrating on the fresh-fruit supply chain in Taiwan to determine essential SSCM parameters, and provide the new theoretical insights to existing supply chain literature; unfortunately, this study cannot avoid certain limitations. Nevertheless, it can become promising suggestions to consider for others scholars to develop further. Firstly, this manuscript adopted the TOPSIS technique to analyze only ten professionals' responses. Therefore, the survey on a broader scale can be conducted to examine the impact of these variables on the SSCM performance in practices. Secondly, to broaden the concern of SSCM literature, particularly in the food supply chain, other scholars can suggest more parameters contribute to SSCM implementation. Thirdly, the Taiwanese fresh-fruit supply chain is considered as the case to examine the appropriateness of these SSCM parameters. Hence, the authors believe that these proposed SSCM criteria need to explore in another context, such as the national context, different supply chains of the agriculture sectors.

    The authors acknowledge the chief editor and the reviewers for their valuable comments to improve the manuscript.

    All authors declare no conflicts of interest in this paper.



    [1] Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites. AIP Conference Proceedings 2142: 140004. doi: 10.1063/1.5122517
    [2] Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites. AIP Conference Proceedings 2142: 090004. doi: 10.1063/1.5122448
    [3] Zhang H, Zhou J, Wang Y, et al. (2002) Microstructure and physical characteristics of novel Z-type hexaferrite with Cu modification. J Electroceram 9: 73-79.
    [4] Zhang H, Zhou J, Wang Y, et al. (2002) Investigation on physical characteristics of novel Z-type Ba3Co2(0.8-x)Cu0.40Zn2xFe24O41 hexaferrite. Mater Lett 56: 397-403.
    [5] Zhang H, Zhou J, Wang Y, et al. (2002) The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite. Ceram Int 28: 917-923. doi: 10.1016/S0272-8842(02)00074-3
    [6] Kračunovska S, Töpfer J (2009) Preparation, thermal stability and permeability behavior of substituted Z-type hexagonal ferrites for multilayer inductors. J Electroceram 22: 227-232. doi: 10.1007/s10832-007-9387-9
    [7] Bai Y, Zhou J, Gui Z, et al. (2002) An investigation of the magnetic properties of Co2Y hexaferrite. Mater Lett 57: 807-811. doi: 10.1016/S0167-577X(02)00877-7
    [8] Bai Y, Zhou J, Gui Z, et al. (2002) Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J Magn Magn Mater 246: 140-144. doi: 10.1016/S0304-8853(02)00040-9
    [9] Bai Y, Zhou J, Gui Z, et al. (2003) Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components. J Magn Magn Mater 264: 44-49. doi: 10.1016/S0304-8853(03)00134-3
    [10] Özgür Ü, Alivov Y, Morkoç H (2009) Microwave ferrites, part 1: fundamental properties. J Mater Sci-Mater El 20: 789-834. doi: 10.1007/s10854-009-9923-2
    [11] Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405: 54-61. doi: 10.1016/j.jmmm.2015.12.027
    [12] Trukhanov AV, Turchenko VO, Bobrikov IA, et al. (2015) Crystal structure and magnetic properties of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions. J Magn Magn Mater 393: 253-259.
    [13] Trukhanov AV, Kostishyn VG, Panina LV, et al. (2018) Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloy Compd 754: 247-256. doi: 10.1016/j.jallcom.2018.04.150
    [14] Jasrotia R, Singh VP, Sharma B, et al. (2020) Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications. J Alloy Compd 154687.
    [15] Trukhanov AV, Darwish MA, Panina LV, et al. (2019) Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J Alloy Compd 791: 522-529. doi: 10.1016/j.jallcom.2019.03.314
    [16] Vinnik DA, Zhivulin VE, Starikov AY, et al. (2020) Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12-xTixO19. J Magn Magn Mater 498: 166117. doi: 10.1016/j.jmmm.2019.166117
    [17] Karilainen AO, Ikonen PM, Simovski CR, et al. (2011) Experimental studies on antenna miniaturisation using magneto-dielectric and dielectric materials. IET Microw Antenna P 5: 495-502. doi: 10.1049/iet-map.2010.0212
    [18] Souriou D, Mattei JL, Chevalier A, et al. (2010) Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization. J Appl Phys 107: 09A518.
    [19] Lee J, Hong YK, Bae S, et al. (2011) Broadband bluetooth antenna based on Co2Z hexaferrite-glass composite. Micro Opt Techn Let 53: 1222-1225. doi: 10.1002/mop.25982
    [20] Mattei J-L, Huitema L, Queffelec P, et al. (2011) Suitability of Ni-Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas. IEEE T Magn 47: 3720-3723. doi: 10.1109/TMAG.2011.2148109
    [21] Lee J, Hong YK, Lee W, et al. (2013) Role of small permeability in gigahertz ferrite antenna performance. IEEE Magn Lett 4: 5000104-5000104. doi: 10.1109/LMAG.2012.2237163
    [22] Canneva F, Ferrero F, Chevalier A, et al. (2013) Miniature reconfigurable antenna with magneto dielectric substrate for DVB-H band. Micro Opt Techn Let 55: 2007-2011. doi: 10.1002/mop.27793
    [23] Mattei JL, Le Guen E, Chevalier A (2015) Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies. J Appl Phys 117: 084904. doi: 10.1063/1.4913700
    [24] Trukhanov AV, Trukhanov SV, Kostishin VG, et al. (2017) Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys Solid State 59: 737-745. doi: 10.1134/S1063783417040308
    [25] Trukhanov SV, Trukhanov AV, Turchenko VA, et al. (2018) Polarization origin and iron positions in indium doped barium hexaferrites. Ceram Int 44: 290-300. doi: 10.1016/j.ceramint.2017.09.172
    [26] Adelskold V (1938) Crystal structure of lead dodecairon (III) oxide. Arkiv for Kemi, Mineralogi och Geologi A 12: 1-9.
    [27] Arkel A van, Verwey EJW, Bruggen MG (1936) Recueil Tray. chim. Pays-Bas 55: 331.
    [28] Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ γ ≤ 0.25). J Exp Theor Phys 100: 95-105.
    [29] Zdorovets MV, Arbuz A, Kozlovskiy AL (2020) Synthesis of LiBaZrOx ceramics with a core-shell structure. Ceram Inter 46: 6217-6221. doi: 10.1016/j.ceramint.2019.11.090
    [30] Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2003) Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x≤ 0.50) manganites. J Phys-Condense Mat 15: 1783. doi: 10.1088/0953-8984/15/10/324
    [31] Trukhanov SV, Troyanchuk IO, Trukhanov AV, et al. (2006) Concentration-dependent structural transition in the La0.70Sr0.30MnO3-δ system. JETP lett 84: 254-257.
    [32] Jonker GH, HP Wijn, PB Braun (1956) Ferroxplana, hexagonal ferromagnetic iron-oxide compounds for very high frequencies. Philips Tech Rev 18: 145.
    [33] Albanese G (1977) Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J Phys Colloq 38: C1-85.
    [34] Yu HF, Huang KC (2002) Preparation and characterization of ester-derived BaFe12O19 powder. J Mater Res 17: 199-203. doi: 10.1557/JMR.2002.0029
    [35] Jaswon MA (1965) An Introduction to Mathematical Crystallography, American: Elsevier.
    [36] Kaiser M (2009) Effect of nickel substitutions on some properties of Cu-Zn ferrites. J Alloy Compd 468: 15-21. doi: 10.1016/j.jallcom.2008.01.070
    [37] Song YY, Ordóñez-Romero CL, Wu M (2009) Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites. Appl Phys Lett 95: 142506. doi: 10.1063/1.3246170
    [38] Turchenko V, Trukhanov A, Trukhanov S, et al. (2019) Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J Magn Magn Mater 477: 9-16. doi: 10.1016/j.jmmm.2018.12.101
    [39] Turchenko V, Kostishyn VG, Trukhanov S, et al. (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions. J Alloy Compd 821: 153412. doi: 10.1016/j.jallcom.2019.153412
    [40] Braun PB (1957) The crystal structures of a new group of ferromagnetic compounds. Philips Res Rep 12: 491-548.
    [41] Singh VP, Jasrotia R, Kumar R, et al. (2018) A current review on the synthesis and magnetic properties of M-type hexaferrites material. WJCMP 8: 36. doi: 10.4236/wjcmp.2018.82004
    [42] Sugimoto M (1982) Properties of ferroxplana-type hexagonal ferrites, Handbook of Ferromagnetic Materials, Elsevier, 3: 393-440.
    [43] Novák P, Knížek K, Rusz J (2007) Magnetism in the magnetoelectric hexaferrite system (Ba1-xSrx)2Zn2Fe12O22. Phys Rev B 76: 024432. doi: 10.1103/PhysRevB.76.024432
    [44] Salunkhe MY, Kulkarni DK (2004) Structural, magnetic and microstructural study of Sr2Ni2Fe12O22. J Magn Magn Mater 279: 64-68. doi: 10.1016/j.jmmm.2004.01.046
    [45] Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52: 99-105. doi: 10.1111/j.1151-2916.1969.tb13350.x
    [46] Neckenburger E, Severin H, Vogel JK, et al. (1964) Ferrite hexagonaler Kristallstrustur mit hoher Grenzfrequenz. Z Angew Phys 18: 65.
    [47] Vinnik MA (1965) Phase relationships in the BaO-CoO-Fe2O3 system. Russ J Inorg Chem 10: 1164-1167.
    [48] Kuznetsova SI, Naiden EP, Stepanova TN (1988) Topotactic reaction kinetics in the formation of hexagonal ferrite Ba3Co2Fe24O41. Inorg Mater 24: 856-859.
    [49] Drobek J, Bigelow WC, Wells RG (1961) Electron microscopic studies of growth structures in hexagonal ferrites. J Am Ceram Soc 44: 262-264. doi: 10.1111/j.1151-2916.1961.tb15375.x
    [50] Almessiere MA, Trukhanov AV, Slimani Y, et al. (2019) Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9: 202. doi: 10.3390/nano9020202
    [51] Kozlovskiy A, Kenzhina I, Zdorovets M (2019) Synthesis, phase composition and magnetic properties of double perovskites of A (FeM)O4-x type (A = Ce; M = Ti). Ceram Inter 45: 8669-8676. doi: 10.1016/j.ceramint.2019.01.187
    [52] Ahmed MA, Okasha N, El-Dek SI (2008) Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19: 065603. doi: 10.1088/0957-4484/19/6/065603
    [53] Naiden EP, Itin VI, Terekhova OG (2003) Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets. Tech Phys Lett 29: 889-891. doi: 10.1134/1.1631354
    [54] Dufour J, López-Vidriero E, Negro C, et al. (1998) Improvement of ceramic method for synthesizing M-type hexaferrites. Chem Eng Commun 167: 227-244. doi: 10.1080/00986449808912702
    [55] Tenzer RK (1963) Influence of particle size on the coercive force of barium ferrite powders. J Appl Phys 34: 1267-1268. doi: 10.1063/1.1729465
    [56] Mee CD, Jeschke JC (1963) Single-domain properties in hexagonal ferrites. J Appl Phys 34: 1271-1272. doi: 10.1063/1.1729467
    [57] Roos W (1980) Formation of chemically coprecipitated barium ferrite. J Am Ceram Soc 63: 601-603. doi: 10.1111/j.1151-2916.1980.tb09843.x
    [58] Xiong G, Xu M, Mai Z (2001) Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method. Solid State Commun 118: 53-58. doi: 10.1016/S0038-1098(01)00031-X
    [59] Kour S, Sharma RK, Jasrotia R, et al. (2019) A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications. AIP Conference Proceedings, AIP Publishing, 090007.
    [60] Mishra SK, Pathak LC, Rao V (1997) Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process. Mater Lett 32: 137-141. doi: 10.1016/S0167-577X(97)00027-X
    [61] Hong YS, Ho CM, Hsu HY, et al. (2004) Synthesis of nanocrystalline Ba(MnTi)xFe12-2xO19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0). J Magn Magn Mater 279: 401-410. doi: 10.1016/j.jmmm.2004.02.008
    [62] Junliang L, Yanwei Z, Cuijing G, et al. (2010) One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol-gel auto-combustion. J Eur Ceram Soc 30: 993-997. doi: 10.1016/j.jeurceramsoc.2009.10.019
    [63] Lalegani Z, Nemati A (2017) Influence of synthesis variables on the properties of barium hexaferrite nanoparticles. J Mater Sci-Mater El 28: 4606-4612. doi: 10.1007/s10854-016-6098-5
    [64] Pillai V, Kumar P, Hou MJ, et al. (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interfac 55: 241-269. doi: 10.1016/0001-8686(94)00227-4
    [65] Jasrotia R, Singh VP, Kumar R, et al. (2019) Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mossbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys 12: 1933-1941. doi: 10.1016/j.rinp.2019.01.088
    [66] Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2005) Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J Phys-Condens Mat 17: 6495. doi: 10.1088/0953-8984/17/41/019
    [67] Jasrotia R, Singh VP, Kumar R, et al. (2020) Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials. Ceram Int 46: 618-621. doi: 10.1016/j.ceramint.2019.09.012
    [68] Bai Y, Zhou J, Gui Z, et al. (2006) Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol-gel auto-combustion method. Mater Chem Phys 98: 66-70. doi: 10.1016/j.matchemphys.2005.08.067
    [69] Iqbal MJ, Barkat-ul-Ain (2009) Synthesis and study of physical properties of Zr4+-Co2+ co-doped barium hexagonal ferrites. Materials Science and Engineering B 164: 6 -11. doi: 10.1016/j.mseb.2009.05.020
    [70] Iqbal MJ, Liaqat F (2010) Physical and electrical properties of nanosized Mn- and Cr-doped strontium Y-type hexagonal ferrites. J Am Ceram Soc 93: 474-480. doi: 10.1111/j.1551-2916.2009.03385.x
    [71] Badwaik V, Badwaik D, Nanoti V, et al. (2012) Study of some structural and magnetic properties of Sr2Me2Fe11(SnCo)0.5O22 nanoferrites. Int J Know Eng 3: 58-60.
    [72] Bierlich S, Töpfer J (2012) Zn- and Cu-substituted Co2Y hexagonal ferrites: sintering behavior and permeability. J Magn Magn Mater 324: 1804-1808. doi: 10.1016/j.jmmm.2012.01.006
    [73] Jotania RB, Virk HS (2012) Y-type Hexaferrites: structural, dielectric and magnetic properties, In: Virk HS, Kleemann W, Solid State Phenomena, Trans Tech Publications, 189: 209-232.
    [74] Elahi A, Ahmad M, Ali I, et al. (2013) Preparation and properties of sol-gel synthesized Mg-substituted Ni2Y hexagonal ferrites. Ceram Int 39: 983-990. doi: 10.1016/j.ceramint.2012.07.016
    [75] Irfan M, Islam MU, Ali I, et al. (2014) Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr Appl Phys 14: 112-117. doi: 10.1016/j.cap.2013.10.010
    [76] Ali I, Islam MU, Ashiq MN, et al. (2014) Effect of Eu-Ni substitution on electrical and dielectric properties of Co-Sr-Y-type hexagonal ferrite. Mater Res Bull 49: 338-344. doi: 10.1016/j.materresbull.2013.09.012
    [77] Aslam A, Islam MU, Ali I, et al. (2014) High frequency electrical transport properties of CoFe2O4 and Sr2NiMnFe12O22 composite ferrites. Ceram Int 40: 155-162. doi: 10.1016/j.ceramint.2013.05.116
    [78] Ali I, Shaheen N, Islam MU, et al. (2014) Study of electrical and dielectric behavior of Tb+ 3 substituted Y-type hexagonal ferrite. J Alloy Compd 617: 863-868. doi: 10.1016/j.jallcom.2014.08.055
    [79] Mahmood SH, Zaqsaw MD, Mohsen OE, et al. (2015) Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions, In: Jotania RB, Virk HS, Solid State Phenomena, Trans Tech Publications, 241: 93-125.
    [80] Nikzad A, Ghasemi A, Tehrani MK, et al. (2015) Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence. J Supercond Novel Magn 28: 3579-3586. doi: 10.1007/s10948-015-3194-3
    [81] Mirzaee O, Mohamady R, Ghasemi A, et al. (2015) Study of the magnetic and structural properties of Al-Cr codoped Y-type hexaferrite prepared via sol-gel auto-combustion method. Int J Mod Phys B 29: 1550090. doi: 10.1142/S0217979215500903
    [82] Behare AV, Kumar M, Salunkhe Y, Nandanwar AK (2016) Effect of Sol-gel preparation Technique on the properties of magnetically substituted Y-type hexaferrites. International Journal of Engineering Development & Research 4: 2321-9939.
    [83] Ahmad B, Ashiq MN, Mumtaz S, et al. (2018) Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application. J Magn Magn Mater 451: 787-792. doi: 10.1016/j.jmmm.2017.12.026
    [84] Shakeel H, Khan HM, Ali I, et al. (2019) Structural, magnetic and electrical study of rare earth doped Y-type hexaferrites. J Mater Sci-Mater El 30: 6708-6717. doi: 10.1007/s10854-019-00982-1
    [85] Trukhanov AV, Almessiere MA, Baykal A, et al. (2019) Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J Alloy Compd 788: 1193-1202. doi: 10.1016/j.jallcom.2019.02.303
    [86] Trukhanov AV, Astapovich KA, Almessiere MA, et al. (2020) Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x < 0.1) hexaferrites. J Alloy Compd 822: 153575. doi: 10.1016/j.jallcom.2019.153575
    [87] Ali I, Islam MU, Ashiq MN, et al. (2014) Role of Tb-Mn substitution on the magnetic properties of Y-type hexaferrites. J Alloy Compd 599: 131-138. doi: 10.1016/j.jallcom.2014.02.079
    [88] Song Y, Zheng J, Sun M, et al. (2016) The electromagnetic and microwave absorbing properties of polycrystalline Y-type Ba1.5Sr0.5CoZnFe12-xAlxO22 hexaferrites over the microwave range. J Mater Sci-Mater El 27: 4131-4138.
    [89] Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57: 1191-1334. doi: 10.1016/j.pmatsci.2012.04.001
    [90] Jasrotia R, Kumar G, Batoo KM, et al. (2019) Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications. Physica B 569: 1-7. doi: 10.1016/j.physb.2019.05.033
    [91] Jasrotia R, Singh VP, Kumar R, et al. (2019) Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Result Phys 15: 102544. doi: 10.1016/j.rinp.2019.102544
    [92] Bai Y, Zhou J, Gui ZL, et al. (2005) Preparation and magnetic properties of Y-type ferroxplana by sol-gel method, In: Pan W, Gong GH, Ge CC, et al., Key Engineering Materials, Trans Tech Publications, 477-480.
    [93] Ahmad M, Ahmad M, Ali I, et al. (2015) Temperature dependent structural and magnetic behavior of Y-type hexagonal ferrites synthesized by sol-gel autocombustion. J Alloy Compd 651: 749-755. doi: 10.1016/j.jallcom.2015.08.144
    [94] Farzin YA, Mirzaee O, Ghasemi A (2016) Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method. Mater Chem Phys 178: 149-159. doi: 10.1016/j.matchemphys.2016.04.082
    [95] Odeh I, El Ghanem HM, Mahmood SH, et al. (2016) Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method. Physica B 494: 33-40. doi: 10.1016/j.physb.2016.04.037
    [96] Know HJ, Shin JY, Oh JH (1994) The microwave absorbing and resonance phenomena of Y type hexagonal ferrite microwave absorber. J Appl Phys 75:6109. doi: 10.1063/1.355476
    [97] Xu F, Bai Y, Jiang K, et al. (2012) Characterization of a Y-type hexagonal ferrite-based frequency tunable microwave absorber. Int J Min Met Mater 19: 453-456. doi: 10.1007/s12613-012-0578-2
    [98] Xing L, Shun-kang P, Xing Z, et al. (2017) Microwave-absorbing properties of strontium ferrites prepared via sol-gel method. Cryst Res Technol 52: 1700057. doi: 10.1002/crat.201700057
    [99] Mohsen Q (2010) Barium hexaferrite synthesis by oxalate precursor route. J Alloy Compd 500: 125-128. doi: 10.1016/j.jallcom.2010.03.230
    [100] Dionne GF, Oates DE, Temme DH, et al. (1996) Ferrite-superconductor devices for advanced microwave applications. IEEE T Microw Theory 44: 1361-1368. doi: 10.1109/22.508241
    [101] SUZUKI T, ISSHIKI M, OGUCHI T, et al. (1991) Orientation and recording performance for Ba-ferrite tapes. J Magn Soc Jpn 15: S2_833-838.
    [102] Kong S, Zhang P, Wen X, et al. (2008) Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation. Particuology 6: 185-190. doi: 10.1016/j.partic.2008.03.004
    [103] Cannas C, Ardu A, Peddis D, et al. (2010) Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J Colloid Interf Sci 343: 415-422. doi: 10.1016/j.jcis.2009.12.007
  • This article has been cited by:

    1. Abbott Po Shun Chen, Yung-Fu Huang, Manh-Hoang Do, Exploring the Challenges to Adopt Green Initiatives to Supply Chain Management for Manufacturing Industries, 2022, 14, 2071-1050, 13516, 10.3390/su142013516
    2. Nahiyah Jaidi, Jane Liu, Zahrotush Sholikhah, Mega Murti Andhini, Ambidexterity Behavior of Creative SMEs for Disruptive Flows of Innovation: A Comparative Study of Indonesia and Taiwan, 2022, 8, 2199-8531, 141, 10.3390/joitmc8030141
    3. Vu-Dung-Van Phan, Yung-Fu Huang, Thi-Them Hoang, Manh-Hoang Do, Evaluating Barriers to Supply Chain Resilience in Vietnamese SMEs: The Fuzzy VIKOR Approach, 2023, 11, 2079-8954, 121, 10.3390/systems11030121
    4. Yung-Fu Huang, Abbott Po-Shun Chen, Manh-Hoang Do, Jen-Chieh Chung, Assessing the Barriers of Green Innovation Implementation: Evidence from the Vietnamese Manufacturing Sector, 2022, 14, 2071-1050, 4662, 10.3390/su14084662
    5. Manh-Hoang Do, Yung-Fu Huang, Barriers to university social responsibility implementation in the Vietnamese higher education, 2023, 0951-354X, 10.1108/IJEM-11-2021-0432
    6. Manh-Hoang Do, Yung-Fu Huang, Vu-Dung-Van Phan, Analyzing the barriers to green supply chain management implementation: a case study of the Vietnamese agriculture sector, 2023, 1741-0398, 10.1108/JEIM-10-2021-0459
    7. Muhamad Rusliyadi, Yu Hua Chen, 2025, chapter 8, 9798369353509, 133, 10.4018/979-8-3693-5350-9.ch008
    8. Imadeddine Oubrahim, 2025, Chapter 18, 978-3-031-81377-1, 204, 10.1007/978-3-031-81378-8_18
    9. Damian Dubisz, Arkadiusz Kawa, Correlation Between Key Parameters of Wood Biomass Reverse Supply Chains and Their Impact on Total Biomass Acquisition Levels, 2023, 66, 2956-9141, 1, 10.12841/wood.1644-3985.449.06
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9713) PDF downloads(1138) Cited by(54)

Figures and Tables

Figures(15)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog