Citation: Jie Wang, Xin Pang, Hamid Jahed. Surface protection of Mg alloys in automotive applications: A review[J]. AIMS Materials Science, 2019, 6(4): 567-600. doi: 10.3934/matersci.2019.4.567
[1] | Kumar DS, Sasanka CT, Ravindra K, et al. (2015) Magnesium and its alloys in automotive applications-a review. Am J Mater Sci Technol 4: 12–30. |
[2] | Narayanan TS, Park IS, Lee MH (2015) Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges, In: Surface Modification of Magnesium and its Alloys for Biomedical Applications, Woodhead Publishing, 29–87. |
[3] | Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energ 32: 1121–1140. doi: 10.1016/j.ijhydene.2006.11.022 |
[4] | Huie MM, Bock DC, Takeuchi ES, et al. (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coordin Chem Rev 287: 15–27. doi: 10.1016/j.ccr.2014.11.005 |
[5] | Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Tech 39: 851–865. doi: 10.1007/s00170-007-1279-2 |
[6] | Asian Metal, Magnesium uses, 2018. Available from: http://metalpedia.asianmetal.com/metal/magnesium/application.shtml. |
[7] | Brady MP, Joost WJ, David Warren C (2016) Insights from a recent meeting: current status and future directions in magnesium corrosion research. Corrosion 73: 452–462. |
[8] | Merdian, Magnesium Alloys in the Automotive Market, 2015. Available from: https://www.amm.com/events/download.ashx/document/speaker/7981/a0ID000000X0kJUMAZ/Presentation. |
[9] | Du CP, Xu DF (2013) Application of energy-saving magnesium alloy in automotive industry. Adv Mater Res 734: 2244–2247. |
[10] | Blawert C, Hort N, Kainer KU (2004) Automotive applications of magnesium and its alloys. Trans Indian Inst Met 57: 397–408. |
[11] | Luo AA (2002) Magnesium: current and potential automotive applications. JOM 54: 42–48. |
[12] | Hussein RO, Northwood DO (2014) Improving the performance of magnesium alloys for automotive applications. WIT T Built Environ 137: 531–544. |
[13] | Beecham M, Magnesium in car production-a weighting game, Bromsgrove (UK): Arop Ltd, 2017. Available from: https://www.just-auto.com/analysis/magnesium-in-car-production-a-weighting game_id176723.aspx. |
[14] | Carpenter JA, Jackman J, Li NY, et al. (2007) Automotive Mg research and development in North America. Mater Sci Forum 546: 11–24. |
[15] | Friedrich H, Schumann S (2001) Research for a "new age of magnesium" in the automotive industry. J Mater Process Tech 117: 276–281. doi: 10.1016/S0924-0136(01)00780-4 |
[16] | Brownell B, How Dangerous Are Magnesium Body Panels? 2016. Available from: http://www.thedrive.com/flat-six-society/6302/how-dangerous-are-magnesium-body-panels. |
[17] | Luo AA (2013) Magnesium casting technology for structural applications. J Magnesium Alloy 1: 2–22. doi: 10.1016/j.jma.2013.02.002 |
[18] | Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scripta Mater 128: 107–112. doi: 10.1016/j.scriptamat.2016.07.035 |
[19] | Cole GS (2013) Magnesium (Mg) corrosion protection techniques in the automotive industry, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 489–508. |
[20] | Esmaily M, Svensson JE, Fajardo S, et al. (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89: 92–193. doi: 10.1016/j.pmatsci.2017.04.011 |
[21] | Song G, Atrens A (2003) Understanding magnesium corrosion-a framework for improved alloy performance. Adv Eng Mater 5: 837–858. doi: 10.1002/adem.200310405 |
[22] | Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7: 563–586. doi: 10.1002/adem.200500013 |
[23] | Atrens A, Song GL, Cao F, et al. (2013) Advances in Mg corrosion and research suggestions. J Magnesium Alloy 1: 177–200. doi: 10.1016/j.jma.2013.09.003 |
[24] | Nowak P, Mosiałek M, Nawrat G (2015) Corrosion of magnesium and its alloys: new observations and ideas. Ochrona przed Korozją 11: 371–377. |
[25] | Skar JI, Albright D (2016) Emerging trends in corrosion protection of magnesium die-castings, In: Essential Readings in Magnesium Technology, Springer, Cham, 585–591. |
[26] | Gray J, Luan B (2002) Protective coatings on magnesium and its alloys-a critical review. J Alloy Compd 336: 88–113. doi: 10.1016/S0925-8388(01)01899-0 |
[27] | Abela S (2011) Protective coatings for magnesium alloys, In: Magnesium Alloys-Corrosion and Surface Treatments, InTech. |
[28] | Chen XB, Birbilis N, Abbott TB (2011) Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion 67: 035005-1. |
[29] | Blawert C, Dietzel W, Ghali E, et al. (2006) Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv Eng Mater 8: 511–533. doi: 10.1002/adem.200500257 |
[30] | Gadow R, Gammel FJ, Lehnert F, et al. (2000) Coating system for magnesium diecastings in class A surface quality. Magnesium Alloy Appl 492–498. |
[31] | Höche D, Nowak A, John-Schillings T (2013) Surface cleaning and pre-conditioning surface treatments to improve the corrosion resistance of magnesium (Mg) alloys, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 87–109. |
[32] | Wu CY, Zhang J (2011) State-of-art on corrosion and protection of magnesium alloys based on patent literatures. T Nonferr Metal Soc 21: 892–902. doi: 10.1016/S1003-6326(11)60799-1 |
[33] | Ke C, Song MS, Zeng RC, et al. (2019) Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg-3Al-4.3Ca-0.1Mn. Corros Sci 151: 143–153. doi: 10.1016/j.corsci.2019.02.024 |
[34] | Lehr IL, Saidman SB (2018) Corrosion protection of AZ91D magnesium alloy by a cerium-molybdenum coating-The effect of citric acid as an additive. J Magnesium Alloy 6: 356–365. doi: 10.1016/j.jma.2018.10.002 |
[35] | Zeng R, Lan Z, Kong L, et al. (2011) Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surf Coat Tech 205: 3347–3355. doi: 10.1016/j.surfcoat.2010.11.027 |
[36] | Pommiers S, Frayret J, Castetbon A, et al. (2014) Alternative conversion coatings to chromate for the protection of magnesium alloys. Corros Sci 84: 135–146. doi: 10.1016/j.corsci.2014.03.021 |
[37] | Van Phuong N, Lee K, Chang D, et al. (2013) Zinc phosphate conversion coatings on magnesium alloys: a review. Met Mater Int 19: 273–281. doi: 10.1007/s12540-013-2023-0 |
[38] | Jian SY, Chu YR, Lin CS (2015) Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corros Sci 93: 301–309. doi: 10.1016/j.corsci.2015.01.040 |
[39] | Zeng RC, Zhang F, Lan ZD, et al. (2014) Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminum alloys. Corros Sci 88: 452–459. doi: 10.1016/j.corsci.2014.08.007 |
[40] | Lin CS, Lin HC, Lin KM, et al. (2006) Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corros Sci 48: 93–109. doi: 10.1016/j.corsci.2004.11.023 |
[41] | Greene JA, Vonk DR (2004) Conversion coatings including alkaline earth metal fluoride complexes. U.S. Patent No. 6,749,694. 2014-6-15. |
[42] | Morris WC (1942) Process for coating metal surfaces. U.S. Patent No. 2,294,760. 1942-9-1. |
[43] | Guerci G, Mus C, Stewart K (2000) Surface treatments for large automotive magnesium components. Magnesium Alloy Appl 484–491. |
[44] | Rudd AL, Breslin CB, Mansfeld F (2000) The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros Sci 42: 275–288. doi: 10.1016/S0010-938X(99)00076-1 |
[45] | Takenaka T, Ono T, Narazaki Y, et al. (2007) Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochim Acta 53: 117–121. doi: 10.1016/j.electacta.2007.03.027 |
[46] | Doerre M, Hibbitts L, Patrick G, et al. (2018) Advances in Automotive Conversion Coatings during Pretreatment of the Body Structure: A Review. Coatings 8: 405. doi: 10.3390/coatings8110405 |
[47] | Milošev I, Frankel GS (2018) Review-Conversion Coatings Based on Zirconium and/or Titanium. J Electrochem Soc 165: C127–C144. doi: 10.1149/2.0371803jes |
[48] | Giles TR, Goodreau BH, Fristad WE, et al. (2009) An update of new conversion coating for the automotive industry. SAE Int J Mater Manuf 1: 575–581. |
[49] | Brady MP, Leonard DN, Meyer III HM, et al. (2016) Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A. Surf Coat Tech 294: 164–176. doi: 10.1016/j.surfcoat.2016.03.066 |
[50] | Li N, Chen X, Hubbert T, et al. (2005) 2005 Ford GT Magnesium Instrument Panel Cross Car Beam. SAE Technical Paper 2005-01-0341. |
[51] | Environmental Friendly Conversion Coating on Mg Alloy. Institute of Metal Research Chinese Academy of Sciences, 2018. Available from: http://english.imr.cas.cn/news/newsrelease/201408/t20140829_126968.html. |
[52] | Chiu KY, Wong MH, Cheng FT, et al. (2007) Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Tech 202: 590–598. doi: 10.1016/j.surfcoat.2007.06.035 |
[53] | Chen XB, Yang HY, Abbott TB, et al. (2014) Corrosion protection of magnesium and its alloys by metal phosphate conversion coatings. Surf Eng 30: 871–879. doi: 10.1179/1743294413Y.0000000235 |
[54] | Dolan SE (1995) Composition and process for treating metals. U.S. Patent No. 5,449,415. 1995-9-12. |
[55] | Walter M, Kurze P (2004) MAGPASS-COAT® as a Chrome-free Pre-treatment for Paint Layers and an Adhesive Primer for Subsequent Bonding. SAE Technical Paper 2004-01-0134. |
[56] | Kainer KU (2007) Magnesium: proceedings of the 7th International Conference on Magnesium Alloys and their Applications, John Wiley & Sons. |
[57] | Chemetall. Oxsilan® . Chemetall GmbH, 2018. Available from: http://www.chemetall.com/Products/Trademarks/Oxsilan/index.jsp. |
[58] | CHEMEON TCP-HF. NALTIC Industrials, LLC, 2018. Available from: http://naltic.com/chemeon-tcp-hf.html. |
[59] | SurTec. SurTec 650: Chromium (VI)-Free Passivation for Aluminium for the Electronics,-Automotive and Aerospace Industry. SurTec, 2018. Available from: https://www.surtec.com/en/products/product-highlights/628/. |
[60] | ATOTECH. Interlox® 5707: Phosphate-free paint pretreatment for multimetal applocations. ATOTECH, 2018. Available from: https://www.atotech.com/paint-support-technologies/interlox-5707/. |
[61] | PPG Industrial Coatings. ZIRCOBOND® and X-BONDTM: Zirconium-Based Thin-Film Pretreatment System. PPG Industrial Coatings, 2018. Available from: http://www.ppgindustrialcoatings.com/getmedia/591ca2e3-ec3d-4f60-9315-5bd2b9e37159/Zircobond-X-Bond-Sell-Sheet_v2-02-06-16LowRes.pdf.aspx. |
[62] | Cui LY, Zeng RC, Guan SK, et al. (2017) Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity. J Alloy Compd 695: 2464–2476. doi: 10.1016/j.jallcom.2016.11.146 |
[63] | Ding ZY, Cui LY, Chen XB, et al. (2018) In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy-The influence of intermetallic compound Mg2Ca. J Alloy Compd 764: 250–260. doi: 10.1016/j.jallcom.2018.06.073 |
[64] | Cui LY, Liu HP, Zhang WL, et al. (2017) Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy. J Mater Sci Technol 33: 1263–1271. doi: 10.1016/j.jmst.2017.10.010 |
[65] | Cui LY, Gao SD, Li PP, et al. (2017) Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros Sci 118: 84–95. doi: 10.1016/j.corsci.2017.01.025 |
[66] | Xue Y, Pang X, Jiang B, et al. (2018) Corrosion performances of micro-arc oxidation coatings on Az31B, Az80 and Zk60 cast Mg alloys. CSME Conference Proceedings. |
[67] | Xue Y, Pang X, Jiang B, et al. (2018) Influence of micro-arc oxidation coatings on corrosion performances of AZ80 cast alloy. Int J Electrochem Sc 13: 7265–7281. |
[68] | Song GL, Shi Z (2013) Anodization and corrosion of magnesium (Mg) alloys, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 232–281. |
[69] | Jiang BL, Ge YF (2013) Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 163–196. |
[70] | Shapiro J. Alodine EC2 Prevents Corrosion on Volvo Penta's Lighter Greener Pleasure Craft. MachineDesign, 2010. Available from: https://www.machinedesign.com/news/alodine-ec2-prevents-corrosion-volvo-penta-s-lighter-greener-pleasure-craft. |
[71] | Coating Applications. Technology Applications Group, 2018. Available from: http://www.tagnite.com/applications/#?201,115. |
[72] | Azumi K, Elsentriecy HH, Tang J (2013) Plating techniques to protect magnesium (Mg) alloys from corrosion, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 347–369. |
[73] | Chen XB, Easton MA, Birbilis N, et al. (2013) Corrosion-resistant electrochemical plating of magnesium (Mg) alloys, In: Corrosion Prevention of Magnesium Alloys, Woodhead Publishing, 315–346. |
[74] | El Mahallawy N (2008) Surface Treatment of Magnesium Alloys by Electroless Ni–P Plating Technique with Emphasis on Zinc Pre-treatment: a Review. Key Eng Mater 384: 241–262. doi: 10.4028/www.scientific.net/KEM.384.241 |
[75] | Lei XP, Yu G, Zhu YP, et al. (2010) Successful cyanide free plating protocols on magnesium alloys. T IMF 88: 75–80. doi: 10.1179/174591910X12646055765330 |
[76] | Hu RG, Zhang S, Bu JF, et al. (2012) Recent progress in corrosion protection of magnesium alloys by organic coatings. Prog Org Coat 73: 129–141. doi: 10.1016/j.porgcoat.2011.10.011 |
[77] | Wang GG, Stewart K, Berkmortel R, et al. (2001) Corrosion prevention for external magnesium automotive components. SAE Technical Paper 2001-01-0421. |
[78] | Magnesium Coatings Suppliers. Thomas, 2018. Available from: https://www.thomasnet.com/products/magnesium-coatings-15800535-1.html. |
[79] | High pressure: magnesium diecasting from STIHL. STIHL team, 2017. Available from: http://blog.stihl.com/products-/2017/11/stihl-magnesium-diecasting-plant/. |
[80] | Guo L, Wu W, Zhou Y, et al. (2018) Layered double hydroxide coatings on magnesium alloys: A review. J Mater Sci Technol 34: 1455–1466. doi: 10.1016/j.jmst.2018.03.003 |
[81] | Zhang G, Wu L, Tang A, et al. (2017) A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg‐Al alloy. Adv Mater Interfaces 4: 1700163. doi: 10.1002/admi.201700163 |
[82] | Wu L, Zhang G, Tang A, et al. (2017) Communication-fabrication of protective layered double hydroxide films by conversion of anodic films on magnesium alloy. J Electrochem Soc 164: C339–C341. doi: 10.1149/2.0921707jes |
[83] | Wu L, Yang D, Zhang G, et al. (2018) Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31. Appl Surf Sci 431: 177–186. doi: 10.1016/j.apsusc.2017.06.244 |
[84] | Zeng RC, Liu ZG, Zhang F, et al. (2014) Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. J Mater Chem A 2: 13049–13057. doi: 10.1039/C4TA01341G |
[85] | Adsul SH, Raju KRCS, Sarada BV, et al. (2018) Evaluation of self-healing properties of inhibitor loaded nanoclay-based anticorrosive coatings on magnesium alloy AZ91D. J Magnesium Alloy 6: 299–308. doi: 10.1016/j.jma.2018.05.003 |
[86] | Bala N, Singh H, Karthikeyan J, et al. (2014) Cold spray coating process for corrosion protection: a review. Surf Eng 30: 414–421. doi: 10.1179/1743294413Y.0000000148 |
[87] | Hassani-Gangaraj SM, Moridi A, Guagliano M (2015) Critical review of corrosion protection by cold spray coatings. Surf Eng 31: 803–815. doi: 10.1179/1743294415Y.0000000018 |
[88] | Spencer K, Fabijanic DM, Zhang MX (2009) The use of Al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf Coat Tech 204: 336–344. doi: 10.1016/j.surfcoat.2009.07.032 |
[89] | Wang Q, Spencer K, Birbilis N, et al. (2010) The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surf Coat Tech 205: 50–56. doi: 10.1016/j.surfcoat.2010.06.008 |
[90] | DeForce BS, Eden TJ, Potter JK (2011) Cold spray Al-5% Mg coatings for the corrosion protection of magnesium alloys. J Therm Spray Techn 20: 1352–1358. doi: 10.1007/s11666-011-9675-4 |
[91] | Bu H, Yandouzi M, Lu C, et al. (2012) Cold spray blended Al + Mg17Al12 coating for corrosion protection of AZ91D magnesium alloy. Surf Coat Tech 207: 155–162. doi: 10.1016/j.surfcoat.2012.06.050 |
[92] | Zhan W, Tian F, Ou-Yang G, et al. (2018) Effects of Nickel Additive on Micro-Arc Oxidation Coating of AZ63B Magnesium Alloy. Int J Precis Eng Man 19: 1081–1087. doi: 10.1007/s12541-018-0128-6 |
[93] | Tomozawa M, Hiromoto S (2011) Microstructure of hydroxyapatite-and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values. Acta Mater 59: 355–363. doi: 10.1016/j.actamat.2010.09.041 |
[94] | Cui X, Liu C, Yang R, et al. (2013) Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism. Corros Sci 76: 474–485. doi: 10.1016/j.corsci.2013.07.024 |
[95] | Lee YL, Chu YR, Li WC, et al. (2013) Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corros Sci 70: 74–81. doi: 10.1016/j.corsci.2013.01.014 |
[96] | Zhao M, Wu S, Luo JR, et al. (2006) A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution. Surf Coat Tech 200: 5407–5412. doi: 10.1016/j.surfcoat.2005.07.064 |
[97] | Cui X, Liu C, Yang R, et al. (2012) Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance. T Nonferr Metal Soc 22: 2713–2718. doi: 10.1016/S1003-6326(11)61522-7 |
[98] | Li L, Qu Q, Fang Z, et al. (2012) Enhanced corrosion resistance of AZ31B magnesium alloy by cooperation of rare earth cerium and stannate conversion coating. Int J Electrochem Sci 7: 12690–12705. |
[99] | Zeng R, Yan HU, Zhang F, et al. (2016) Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy. T Nonferr Metal Soc 26: 472–483. doi: 10.1016/S1003-6326(16)64102-X |
[100] | Ba Z, Dong Q, Zhang X, et al. (2017) Cerium-based modification treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy assisted with alternating electric field. J Alloy Compd 695: 106–113. doi: 10.1016/j.jallcom.2016.10.139 |
[101] | Ardelean H, Frateur I, Marcus P (2008) Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings. Corros Sci 50: 1907–1918. doi: 10.1016/j.corsci.2008.03.015 |
[102] | Zhao M, Wu S, An P, et al. (2006) Microstructure and corrosion resistance of a chromium-free multi-elements complex coating on AZ91D magnesium alloy. Mater Chem Phys 99: 54–60. doi: 10.1016/j.matchemphys.2005.08.078 |
[103] | Jiang X, Guo R, Jiang S (2015) Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy. Appl Surf Sci 341: 166–174. doi: 10.1016/j.apsusc.2015.02.195 |
[104] | Zhao M, Li J, He G, et al. (2013) Nano Al2O3/phosphate composite conversion coating formed on magnesium alloy for enhancing corrosion resistance. J Electrochem Soc 160: C553–C559. doi: 10.1149/2.059311jes |
[105] | Li K, Liu J, Lei T, et al. (2015) Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy. Appl Surf Sci 353: 811–819. doi: 10.1016/j.apsusc.2015.07.052 |
[106] | Cheng Y, Wu H, Chen Z, et al. (2006) Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings. T Nonferr Metal Soc 16: 1086–1091. doi: 10.1016/S1003-6326(06)60382-8 |
[107] | Amini R, Sarabi AA (2011) The corrosion properties of phosphate coating on AZ31 magnesium alloy: the effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent. Appl Surf Sci 257: 7134–7139. doi: 10.1016/j.apsusc.2011.03.072 |
[108] | Wang C, Zhu S, Jiang F, et al. (2009) Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance. Corros Sci 51: 2916–2923. doi: 10.1016/j.corsci.2009.08.003 |
[109] | Hsiao HY, Tsai WT (2005) Characterization of anodic films formed on AZ91D magnesium alloy. Surf Coat Tech 190: 299–308. doi: 10.1016/j.surfcoat.2004.03.010 |
[110] | Zhang Y, Yan C, Wang F, et al. (2002) Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surf Coat Tech 161: 36–43. doi: 10.1016/S0257-8972(02)00342-0 |
[111] | Wu H, Cheng Y, Li L, et al. (2007) The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films. Appl Surf Sci 253: 9387–9394. doi: 10.1016/j.apsusc.2007.05.085 |
[112] | Su Y, Li G, Lian J (2012) A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behaviour. Int J Electrochem Sci 7: 11497–11511. |
[113] | Guo X, Du K, Wang Y, et al. (2012) A new nanoparticle penetrant used for plasma electrolytic oxidation film coated on AZ31 Mg alloy in service environment. Surf Coat Tech 206: 4833–4839. doi: 10.1016/j.surfcoat.2012.05.063 |
[114] | Sun RX, Wang PF, Zhao DD, et al. (2015) An environment‐friendly calcium phosphate conversion coating on AZ91D alloy and its corrosion resistance. Mater Corros 66: 383–386. doi: 10.1002/maco.201307424 |
[115] | Mu S, Du J, Jiang H, et al. (2014) Composition analysis and corrosion performance of a Mo–Ce conversion coating on AZ91 magnesium alloy. Surf Coat Tech 254: 364–370. doi: 10.1016/j.surfcoat.2014.06.044 |
[116] | Hu J, Li Q, Zhong X, et al. (2009) Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol–gel coatings. Prog Org Coat 66: 199–205. doi: 10.1016/j.porgcoat.2009.07.003 |
[117] | Seifzadeh D, Rajabalizadeh Z (2013) Environmentally-friendly method for electroless Ni–P plating on magnesium alloy. Surf Coat Tech 218: 119–126. doi: 10.1016/j.surfcoat.2012.12.039 |
[118] | Wang L, Zhang K, Sun W, et al. (2013) Hydrothermal synthesis of corrosion resistant hydrotalcite conversion coating on AZ91D alloy. Mater Lett 106: 111–114. doi: 10.1016/j.matlet.2013.05.018 |
[119] | Gao HF, Tan HQ, Li J, et al. (2012) Synergistic effect of cerium conversion coating and phytic acid conversion coating on AZ31B magnesium alloy. Surf Coat Tech 212: 32–36. doi: 10.1016/j.surfcoat.2012.09.008 |
[120] | Sun J, Wang G (2014) Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by a cathodic electrochemical treatment. Surf Coat Tech 254: 42–48. doi: 10.1016/j.surfcoat.2014.05.054 |
[121] | Sun J, Wang G (2015) Preparation and characterization of a cerium conversion film on magnesium alloy. Anti-Corros Method M 62: 253–258. doi: 10.1108/ACMM-12-2013-1336 |
[122] | Pan SJ, Tsai WT, Kuo JC, et al. (2013) Material characteristics and corrosion performance of heat-treated Al-Zn coatings electrodeposited on AZ91D magnesium alloy from an ionic liquid. J Electrochem Soc 160: D320–D325. doi: 10.1149/2.100308jes |
[123] | Tao Y, Xiong T, Sun C, et al. (2010) Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy. Corros Sci 52: 3191–3197. doi: 10.1016/j.corsci.2010.05.023 |
[124] | Krishna LR, Poshal G, Jyothirmayi A, et al. (2013) Compositionally modulated CGDS + MAO duplex coatings for corrosion protection of AZ91 magnesium alloy. J Alloy Compd 578: 355–361. doi: 10.1016/j.jallcom.2013.06.036 |
[125] | Tao Y, Xiong T, Sun C, et al. (2009) Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy. Appl Surf Sci 256: 261–266. doi: 10.1016/j.apsusc.2009.08.012 |
[126] | Lei XP, Yu G, Zhu YP, et al. (2010) Successful cyanide free plating protocols on magnesium alloys. T IMF 88: 75–80. doi: 10.1179/174591910X12646055765330 |
[127] | Chen F, Zhou H, Yao B, et al. (2007) Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf Coat Tech 201: 4905–4908. doi: 10.1016/j.surfcoat.2006.07.079 |
[128] | Zhao H, Huang Z, Cui J (2007) A new method for electroless Ni–P plating on AZ31 magnesium alloy. Surf Coat Tech 202: 133–139. doi: 10.1016/j.surfcoat.2007.05.001 |
[129] | Liu Q, Chen D, Kang Z (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Inter 7: 1859–1867. doi: 10.1021/am507586u |
[130] | Zhang J, Wu C (2010) Corrosion and Protection of Magnesium Alloys-A Review of the Patent Literature. Recent Pat Corros Sci 2: 55–68. doi: 10.2174/1877610801002010055 |
[131] | Forsmark JH, Li M, Su X, et al. (2014) The USAMP Magnesium Front End Research and Development Project-Results of the Magnesium "Demonstration" Structure, In: Magnesium Technology, Springer, Cham, 517–524. |
[132] | Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Tech 258: 17–37. doi: 10.1016/j.surfcoat.2014.06.031 |
[133] | Jiang C, Cao Y, Xiao G, et al. (2017) A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. RSC Adv 7: 7531–7539. doi: 10.1039/C6RA25841G |
[134] | Unigovski Y, Eliezer A, Abramov E, et al. (2003) Corrosion fatigue of extruded magnesium alloys. Mat Sci Eng A-Struct 360: 132–139. doi: 10.1016/S0921-5093(03)00409-X |
[135] | Nan ZY, Ishihara S, Goshima T (2008) Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. Int J Fatigue 30: 1181–1188. doi: 10.1016/j.ijfatigue.2007.09.005 |
[136] | Bhuiyan MS, Mutoh Y, Murai T, et al. (2010) Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5% NaCl environment. Eng Fract Mech 77: 1567–1576. doi: 10.1016/j.engfracmech.2010.03.032 |
[137] | Chamos AN, Pantelakis SG, Spiliadis V (2010) Fatigue behavior of bare and pre-corroded magnesium alloy AZ31. Mater Design 31: 4130–4137. doi: 10.1016/j.matdes.2010.04.031 |
[138] | He XL, Wei YH, Hou LF, et al. (2014) Investigation on corrosion fatigue property of epoxy coated AZ31 magnesium alloy in sodium sulfate solution. Theor Appl Fract Mec 70: 39–48. doi: 10.1016/j.tafmec.2014.03.002 |
[139] | He XL, Wei YH, Hou LF, et al. (2014) Corrosion fatigue behavior of epoxy-coated Mg–3Al–1Zn alloy in NaCl solution. Rare Metals 33: 276–286. doi: 10.1007/s12598-014-0278-3 |
[140] | He XL, Wei YH, Hou LF, et al. (2014) Corrosion fatigue behavior of epoxy-coated Mg–3Al–1Zn alloy in gear oil. T Nonferr Metal Soc 24: 3429–3440. doi: 10.1016/S1003-6326(14)63486-5 |
[141] | Uematsu Y, Kakiuchi T, Teratani T, et al. (2011) Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings. Surf Coat Tech 205: 2778–2784. doi: 10.1016/j.surfcoat.2010.10.040 |
[142] | Dayani SB, Shaha SK, Ghelichi R, et al. (2018) The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy. Surf Coat Tech 337: 150–158. doi: 10.1016/j.surfcoat.2018.01.008 |
[143] | Borhan Dayani S (2017) Improvement of fatigue and corrosion-fatigue resistance of AZ31B cast alloy by cold spray coating and top coating [Master thesis]. University of Waterloo. |
[144] | Ishihara S, Masuda K, Namito T, et al. (2014) On corrosion fatigue strength of the anodized and painted Mg alloy. Int J Fatigue 66: 252–258. doi: 10.1016/j.ijfatigue.2014.03.007 |
[145] | Khan SA, Miyashita Y, Mutoh Y, et al. (2008) Fatigue behavior of anodized AM60 magnesium alloy under humid environment. Mat Sci Eng A-Struct 498: 377–383. doi: 10.1016/j.msea.2008.08.015 |
[146] | Khan SA, Miyashita Y, Mutoh Y (2015) Corrosion fatigue behavior of AM60 magnesium alloy with anodizing layer and chemical‐conversion‐coating layer. Mater Corros 66: 940–948. doi: 10.1002/maco.201407946 |
[147] | Bhuiyan MS, Mutoh Y (2011) Corrosion fatigue behavior of conversion coated and painted AZ61 magnesium alloy. Int J Fatigue 33: 1548–1556. doi: 10.1016/j.ijfatigue.2011.06.011 |
[148] | Ishihara S, Notoya H, Namito T (2011) Improvement in Corrosion Fatigue Resistance of Mg Alloy due to Plating, In: Magnesium Alloys-Corrosion and Surface Treatments, IntechOpen. |
[149] | Yerokhin AL, Shatrov A, Samsonov V, et al. (2004) Fatigue properties of Keronite® coatings on a magnesium alloy. Surf Coat Tech 182: 78–84. |
[150] | Bhuiyan MS, Ostuka Y, Mutoh Y, et al. (2010) Corrosion fatigue behavior of conversion coated AZ61 magnesium alloy. Mat Sci Eng A-Struct 527: 4978–4984. doi: 10.1016/j.msea.2010.04.059 |
[151] | Khan SA, Bhuiyan MS, Miyashita Y, et al. (2011) Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy. Mat Sci Eng A-Struct 528: 1961–1966. doi: 10.1016/j.msea.2010.11.033 |
[152] | Shaha SK, Dayani SB, Jahed H (2018) Influence of Cold Spray on the Enhancement of Corrosion Fatigue of the AZ31B Cast Mg Alloy, In: TMS Annual Meeting & Exhibition, Springer, Cham, 541–550. |
[153] | Diab M, Pang X, Jahed H (2017) The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion. Surf Coat Tech 309: 423–435. doi: 10.1016/j.surfcoat.2016.11.014 |
[154] | Němcová A, Skeldon P, Thompson GE, et al. (2014) Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corros Sci 82: 58–66. doi: 10.1016/j.corsci.2013.12.019 |
[155] | Klein M, Lu X, Blawert C, et al. (2017) Influence of plasma electrolytic oxidation coatings on fatigue performance of AZ31 Mg alloy. Mater Corros 68: 50–57. doi: 10.1002/maco.201609088 |
[156] | Okada H, Uematsu Y, Tokaji K (2010) Fatigue behaviour in AZ80A magnesium alloy with DLC/thermally splayed WC-12Co hybrid coating. Procedia Eng 2: 283–290. doi: 10.1016/j.proeng.2010.03.031 |
[157] | Ceschini L, Morri A, Angelini V, et al. (2017) Fatigue behavior of the rare earth rich EV31A Mg alloy: influence of plasma electrolytic oxidation. Metals 7: 212. doi: 10.3390/met7060212 |
[158] | Huang CA, Chuang CH, Yeh YH, et al. (2016) Low-cycle fatigue fracture behavior of a Mg alloy (AZ61) after alkaline Cu, alkaline followed by acidic Cu, Ni/Cu, and Cr-C/Cu electroplating. Mat Sci Eng A-Struct 662: 111–119. doi: 10.1016/j.msea.2016.03.064 |
[159] | Chen YL, Zhang Y, Li Y, et al. (2011) Influences of micro-arc oxidation on pre-corroded fatigue property of magnesium alloy AZ91D. Adv Mater Res 152: 51–57. |
[160] | Wang BJ, Wang SD, Xu DK, et al. (2017) Recent progress in fatigue behavior of Mg alloys in air and aqueous media: A review. J Mater Sci Technol 33: 1075–1086. doi: 10.1016/j.jmst.2017.07.017 |
[161] | LeBozec N, Blandin N, Thierry D (2008) Accelerated corrosion tests in the automotive industry: a comparison of the performance towards cosmetic corrosion. Mater Corros 59: 889–894. doi: 10.1002/maco.200804168 |
[162] | ASTM B117 (1997) Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International. |
[163] | ASTM D870 (2009) Standard Practice for Testing Water Resistance of Coatings Using Water Immersion. ASTM International. |
[164] | ASTM D (2002) Standard practice for testing water resistance of coatings in 100% relative humidity. |
[165] | Liu M, Uggowitzer PJ, Nagasekhar AV, et al. (2009) Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys. Corros Sci 51: 602–619. doi: 10.1016/j.corsci.2008.12.015 |
[166] | VDA 233-102 Cyclic corrosion testing of materials and components in automotive construction. ascot, 2018. Available from: http://www.vda233-102.com/. |
[167] | Townsend HE, McCune DC (1997) Round-Robin Evaluation of a New Standard Laboratory Test for Cosmetic Corrosion. SAE Trans 106: 1249–1262. |
[168] | Bovard FS, Smith KA, Courval GJ, et al. (2010) Cosmetic Corrosion Test for Aluminum Autobody Panels. SAE Intl J Passeng Cars-Mech Syst 3: 544–553. doi: 10.4271/2010-01-0726 |
[169] | Weiler JP, Wang G, Berkmortel R (2018) Assessment of OEM Corrosion Test Protocols for Magnesium Substrates. SAE Technical Paper 2018-01-0103. |
[170] | Standard Corrosion Tests, 2018. Available from: https://www.ascott-analytical.com/test_standard/. |
[171] | LeBozec N, Blandin N, Thierry D (2008) Accelerated corrosion tests in the automotive industry: a comparison of the performance towards cosmetic corrosion. Mater Corros 59: 889–894. doi: 10.1002/maco.200804168 |
[172] | SAE J2334 (2003) Laboratory Cyclic Corrosion Test. |
[173] | Cyclic Corrosion Test. Quebec (CA): Micom Laboratories Inc., 2018. Available from: https://www.micomlab.com/micom-testing/cyclic-corrosion-testing/. |
[174] | Micone N, De Waele W (2017) Evaluation of Methodologies to Accelerate Corrosion Assisted Fatigue Experiments. Exp Mech 57: 547–557. doi: 10.1007/s11340-016-0241-3 |
[175] | LeBozec N, Thierry D (2015) A new device for simultaneous corrosion fatigue testing of joined materials in accelerated corrosion tests. Mater Corros 66: 893–898. doi: 10.1002/maco.201407984 |