Citation: Corey A. Palmer, Katherine P. Markstein, Lawrence H. Tanner. Experimental test of temperature and moisture controls on the rate of microbial decomposition of soil organic matter: preliminary results[J]. AIMS Geosciences, 2019, 5(4): 886-898. doi: 10.3934/geosci.2019.4.886
[1] |
Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10: 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
![]() |
[2] |
Rustad LE, Hungtington TG, Boone RD (2000) Controls on soil respiration: implications for climate change. Biogeochem 48: 1-6. doi: 10.1023/A:1006255431298
![]() |
[3] |
Balesdent J, Basile-Doelsch I, Chadoeuf J, et al. (2018) Atmosphere-soil carbon transfer as a function of soil depth. Nature 559: 599-602. doi: 10.1038/s41586-018-0328-3
![]() |
[4] |
Malik AA, Puissant J, Buckeridge KM, et al. (2018) Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun 9: 3591. doi: 10.1038/s41467-018-05980-1
![]() |
[5] |
Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393-396. doi: 10.1126/science.272.5260.393
![]() |
[6] |
Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249-252. doi: 10.1038/30460
![]() |
[7] |
Knorr W, Prentice IC, House JI, et al. (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298-301. doi: 10.1038/nature03226
![]() |
[8] |
Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173. doi: 10.1038/nature04514
![]() |
[9] |
Crowther TW, Todd-Brown KEO, Rowe CW, et al. (2016) Quantifying global soil carbon losses in response to warming. Nature 540: 104-108. doi: 10.1038/nature20150
![]() |
[10] |
Teramoto M, Liang N, Takagi M, et al. (2016) Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan. Sci Rep 6: 35563. doi: 10.1038/srep35563
![]() |
[11] |
Hicks Pries CE, Castanha C, Porras RC, et al. (2017) The whole-soil carbon flux in response to warming. Science 355: 1420-1423. doi: 10.1126/science.aal1319
![]() |
[12] |
Melillo JM, Frey SD, DeAngelis KM, et al. (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358: 101-105. doi: 10.1126/science.aan2874
![]() |
[13] | Nottingham AT, Whitaker J, Ostle NJ, et al. (2019) Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol Lett. |
[14] |
Conant RT, Ryan MJ, Ågren GI, et al. (2011) Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Glob Change Biol 17: 3392-3404. doi: 10.1111/j.1365-2486.2011.02496.x
![]() |
[15] |
Cox PM, Betts RA, Jones CD, et al. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. doi: 10.1038/35041539
![]() |
[16] |
Hanson PJ, Edwards NT, Garten CT, et al. (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48: 115-146. doi: 10.1023/A:1006244819642
![]() |
[17] |
O'Connell CS, Ruan L, Silver WL (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Comm 9: 1348. doi: 10.1038/s41467-018-03352-3
![]() |
[18] |
Subke JA, Bahn M (2010) On the 'temperature sensitivity' of soil respiration: can we use the immeasurable to predict the unknown? Soil Biol Biochem 42: 1653-1656. doi: 10.1016/j.soilbio.2010.05.026
![]() |
[19] |
Shi Z, Crowell S, Luo Y, et al. (2018) Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nat Comm 9: 2171. doi: 10.1038/s41467-018-04526-9
![]() |
[20] | Potts M (1994) Desiccation tolerance for prokaryotes. Microbiol Mol Biol Rev 58: 755-805. |
[21] |
Doetterl S, Stevens A, Six J, et al. (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8: 780-783. doi: 10.1038/ngeo2516
![]() |
[22] |
Doetterl S, Behre AA, Arnold C, et al. (2018) Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat Geosci 11: 589-593. doi: 10.1038/s41561-018-0168-7
![]() |
[23] |
Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42: 1363-1371. doi: 10.1016/j.soilbio.2010.04.003
![]() |
[24] |
Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32: 1485-1498. doi: 10.1016/S0038-0717(00)00084-5
![]() |
[25] |
Liang J, Zhou Z, Huo C, et al. (2018) More replenishment than priming loss of soil organic carbon with additional carbon input. Nat Comm 9: 3175. doi: 10.1038/s41467-018-05667-7
![]() |
[26] |
Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen. Plant Soil 10: 9-31. doi: 10.1007/BF01343734
![]() |
[27] |
Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386-1394. doi: 10.1890/06-0219
![]() |
[28] |
Wang L, Manzoni S, Ravi S, et al. (2015) Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere 6: 133. doi: 10.1890/ES15-00122.1
![]() |
[29] |
Waring BG, Powers JS (2016) Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests. Environ Res Lett 11: 105005. doi: 10.1088/1748-9326/11/10/105005
![]() |
[30] |
Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Nat Acad Sci 109: 10931-10936. doi: 10.1073/pnas.1204306109
![]() |
[31] |
Gabriel C, Kellman L (2014) Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil. Soil Biol Biochem 68: 373-384. doi: 10.1016/j.soilbio.2013.10.009
![]() |
[32] |
Lu H, Liu S, Wang H, et al. (2017) Experimental throughfall reduction barely affects soil carbon dynamics in a warm-temperate oak forest, central China. Sci Rep 7: 15099. doi: 10.1038/s41598-017-15157-3
![]() |
[33] |
Bond-Lamberty B, Bailey VL, Chen M, et al. (2018) Globally rising soil heterotrophic respiration over recent decades. Nature 560: 80-83. doi: 10.1038/s41586-018-0358-x
![]() |
[34] |
Moyano FE, Vasilyeva NA, Bouckaert L, et al. (2012) The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences 9: 1173-1182. doi: 10.5194/bg-9-1173-2012
![]() |
[35] |
Wang Q, He T, Liu J (2016) Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils. Sci Rep 6: 33814. doi: 10.1038/srep33814
![]() |
[36] |
Jung M, Reichstein M, Schwalm CR, et al. (2017) Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541: 516-520. doi: 10.1038/nature20780
![]() |
[37] |
Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3: 854-857. doi: 10.1038/ngeo1009
![]() |
[38] |
Schmidt MWI, Torn MS, Abiven S, et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature 478: 49-56. doi: 10.1038/nature10386
![]() |
[39] |
Barré P, Fernandez-Ugalde O, Virto I, et al. (2014) Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects. Geoderma 235-236: 382-395. doi: 10.1016/j.geoderma.2014.07.029
![]() |