Research article Special Issues

Organic compounds associated with microplastic pollutants in New Jersey, U.S.A. surface waters

  • Extensive manufacturing and ubiquitous use in every sector of today’s society has resulted in plastics being detected in all terrestrial and aquatic environments examined to date. However, the pervasiveness of small, potentially invisible, microplastics, their associated chemical additives, and organic compounds that absorb to plastic substrates are the topics of recent investigations. These micro- to nano- size plastic particles that are deliberately manufactured or were fragmented from larger plastic products are now ending up in food webs and worldwide environmental systems. Using a pyrolysis GC-MS method, plastic polymer composition was determined in samples obtained from freshwaters in urban New Jersey. Three polymers dominated the samples: polyethylene (43%), polypropylene (33%), and polystyrene (13%). The dominant polymers differed in each river. To identify Persistent Organic Pollutants sorbed to microplastic particles, headspace solid phase micro extraction coupled with gas chromatography/ion trap mass spectrometry was employed. In the majority of upriver sampling locations, Tentatively Identified Compounds were associated with both the microplastic and the water column fractions in roughly equal proportions. However, in the tidal portion of the Passaic River and in samples from Newark and Raritan Bays, the majority of organic compounds were associated with the microplastic fraction only. Based on a search of chemical databases, the possible source/use of 180 of the 223 compounds identified, whose total mass was 1 ng or more, was determined. Forty one percent of the identified compounds were natural substances, thirty five percent were identified as laboratory/research chemicals and seven percent were pharmaceutical or biomedical compounds. Twelve identified compounds are used for industrial purposes, including a plasticizer and an insecticide. Six compounds are used as cosmetic additives. The findings of this study illustrate the diversity of organic compounds associated with the presence of microplastics in aquatic media.

    Citation: B. Ravit, K. Cooper, B. Buckley, I. Yang, A. Deshpande. Organic compounds associated with microplastic pollutants in New Jersey, U.S.A. surface waters[J]. AIMS Environmental Science, 2019, 6(6): 445-459. doi: 10.3934/environsci.2019.6.445

    Related Papers:

    [1] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
    [2] Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875
    [3] Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438
    [4] Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015
    [5] Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010
    [6] Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359
    [7] Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217
    [8] Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216
    [9] H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268
    [10] Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303
  • Extensive manufacturing and ubiquitous use in every sector of today’s society has resulted in plastics being detected in all terrestrial and aquatic environments examined to date. However, the pervasiveness of small, potentially invisible, microplastics, their associated chemical additives, and organic compounds that absorb to plastic substrates are the topics of recent investigations. These micro- to nano- size plastic particles that are deliberately manufactured or were fragmented from larger plastic products are now ending up in food webs and worldwide environmental systems. Using a pyrolysis GC-MS method, plastic polymer composition was determined in samples obtained from freshwaters in urban New Jersey. Three polymers dominated the samples: polyethylene (43%), polypropylene (33%), and polystyrene (13%). The dominant polymers differed in each river. To identify Persistent Organic Pollutants sorbed to microplastic particles, headspace solid phase micro extraction coupled with gas chromatography/ion trap mass spectrometry was employed. In the majority of upriver sampling locations, Tentatively Identified Compounds were associated with both the microplastic and the water column fractions in roughly equal proportions. However, in the tidal portion of the Passaic River and in samples from Newark and Raritan Bays, the majority of organic compounds were associated with the microplastic fraction only. Based on a search of chemical databases, the possible source/use of 180 of the 223 compounds identified, whose total mass was 1 ng or more, was determined. Forty one percent of the identified compounds were natural substances, thirty five percent were identified as laboratory/research chemicals and seven percent were pharmaceutical or biomedical compounds. Twelve identified compounds are used for industrial purposes, including a plasticizer and an insecticide. Six compounds are used as cosmetic additives. The findings of this study illustrate the diversity of organic compounds associated with the presence of microplastics in aquatic media.


    Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].

    One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.

    Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.

    The fractional derivative of Caputo-Fabrizio for the function x(t) is defined as [33]

    CFDα0x(t)=B(α)1αt0dds(x(s)) eα1α(ts)ds, (1.1)

    and its corresponding fractional integral is

    CFIαx(t)=1αB(α)x(t)+αB(α)t0x (s)ds,    0<α<1, (1.2)

    where x(t) be continuous and differentiable on [0, T]. Also, in the above definition, the function B(α)>0 is a normalized function which satisfy the condition B(0)=B(1)=0. The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by

    (CFIα0)(CFDα0f(t))=f(t)f(a). (1.3)

    In this section, we will introduce a multidimentional FDE subject to the initial condition. Let α(0,1], 0<α1<α2<...,αm<1, and m is integer real number,

    CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, (2.1)

    where x=x(t),tJ=[0,T],TR+,xC(J).

    To facilitate the equation and make it easy for the calculation, we let x(t)=c0+X(t) so Eq (2.1) can be witten as

    CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. (2.2)

    the algorithm depends on converting the initial condition from a constant c0 to 0.

    Let CFDαX=y(t) then X=CFIαy, so we have

    CFDαiX= CFIααi CFDαX= CFIααiy,  i=1,2,...,m. (2.3)

    Substituting in Eq (2.2) we obtain

    y=f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy). (2.4)

    Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,

    |f(t,y0,y1,...,ym)||f(t,z0,z1,...,zm)|Lmi=0|yizi|, (2.5)

    which implies

    |f(t,c0+CFIαy,CFIαα1y,..,CFIααmy)f(t,c0+CFIαz,CFIαα1z,..,CFIααmz)|Lmi=0| CFIααiy CFIααiz|. (2.6)

    The solution algorithm of Eq (2.4) using ADM is,

    y0(t)=a(t)yn+1(t)=An(t), j0. (2.7)

    where a(t) pocesses all free terms in Eq (2.4) and An are the Adomian polynomials of the nonlinear term which takes the form [34]

    An=f(Sn)n1i=0Ai, (2.8)

    where f(Sn)=ni=0Ai. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,

    y(t)=i=0yi(t). (2.9)

    lastly, the solution of the Eq (2.4) takes the form

    x(t)=c0+X(t)=c0+ CFIαy(t). (2.10)

    At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of the original Eq (2.1).

    Define a mapping F:EE where E=(C[J],) is a Banach space of all continuous functions on J with the norm x= maxtϵJx(t).

    Theorem 3.1. Equation (2.4) has a unique solution whenever 0<ϕ<1 where ϕ=L(mi=0[(ααi)(T1)]+1B(ααi)).

    Proof. First, we define the mapping F:EE as

    Fy=f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy).

    Let y and zE are two different solutions of Eq (2.4). Then

    FyFz=f(t,c0+CFIαy,CFIαα1y,..,CFIααmy)f(t,c0+CFIαz,CFIαα1z,...,CFIααmz)

    which implies that

    |FyFz|=|f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy)f(t,c0+ CFIαz, CFIαα1z,..., CFIααmz)|Lmi=0| CFIααiy CFIααiz|Lmi=0|1(ααi)B(ααi)(yz)+ααiB(ααi)t0(yz)ds|FyFzLmi=01(ααi)B(ααi)maxtϵJ|yz|+ααiB(ααi)maxtϵJ|yz|t0dsLmi=01(ααi)B(ααi)yz+ααiB(ααi)yzTLyz(mi=01(ααi)B(ααi)+ααiB(ααi)T)Lyz(mi=0[(ααi)(T1)]+1B(ααi))ϕyz.

    under the condition 0<ϕ<1, the mapping F is contraction and hence there exists a unique solution yC[J] for the problem Eq (2.4) and this completes the proof.

    Theorem 3.2. The series solution of the problem Eq (2.4)converges if |y1(t)|<c and c isfinite.

    Proof. Define a sequence {Sp} such that Sp=pi=0yi(t) is the sequence of partial sums from the series solution i=0yi(t), we have

    f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy)=i=0Ai,

    So

    f(t,c0+ CFIαSp, CFIαα1Sp,..., CFIααmSp)=pi=0Ai,

    From Eq (2.7) we have

    i=0yi(t)=a(t)+i=0Ai1

    let Sp,Sq be two arbitrary sums with pq. Now, we are going to prove that {Sp} is a Caushy sequence in this Banach space. We have

    Sp=pi=0yi(t)=a(t)+pi=0Ai1,Sq=qi=0yi(t)=a(t)+qi=0Ai1.
    SpSq=pi=0Ai1qi=0Ai1=pi=q+1Ai1=p1i=qAi1=f(t,c0+ CFIαSp1, CFIαα1Sp1,..., CFIααmSp1)f(t,c0+ CFIαSq1, CFIαα1Sq1,..., CFIααmSq1)
    |SpSq|=|f(t,c0+ CFIαSp1, CFIαα1Sp1,..., CFIααmSp1)f(t,c0+ CFIαSq1, CFIαα1Sq1,..., CFIααmSq1)|Lmi=0| CFIααiSp1 CFIααiSq1|Lmi=0|1(ααi)B(ααi)(Sp1Sq1)+ααiB(ααi)t0(Sp1Sq1)ds|Lmi=01(ααi)B(ααi)|Sp1Sq1|+ααiB(ααi)t0|Sp1Sq1|ds
    SpSqLmi=01(ααi)B(ααi)maxtϵJ|Sp1Sq1|+ααiB(ααi)maxtϵJ|Sp1Sq1|t0dsLSpSqmi=0(1(ααi)B(ααi)+ααiB(ααi)T)LSpSq(mi=0[(ααi)(T1)]+1B(ααi))ϕSpSq

    let p=q+1 then,

    Sq+1SqϕSqSq1ϕ2Sq1Sq2...ϕqS1S0

    From the triangle inequality we have

    SpSqSq+1Sq+Sq+2Sq+1+...SpSp1[ϕq+ϕq+1+...+ϕp1]S1S0ϕq[1+ϕ+...+ϕpq+1]S1S0ϕq[1ϕpq1ϕ]y1(t)

    Since 0<ϕ<1,pq then (1ϕpq)1. Consequently

    SpSqϕq1ϕy1(t)ϕq1ϕmaxtϵJ|y1(t)| (3.1)

    but |y1(t)|< and as q then, SpSq0 and hence, {Sp} is a Caushy sequence in this Banach space then the proof is complete.

    Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be maxtϵJ|y(t)qi=0yi(t)|ϕq1ϕmaxtϵJ|y1(t)|

    Proof. From the convergence theorm inequality (Eq 3.1) we have

    SpSqϕq1ϕmaxtϵJ|y1(t)|

    but, Sp=pi=0yi(t) as p then, Spy(t) so,

    y(t)Sqϕq1ϕmaxtϵJ|y1(t)|

    so, the maximum absolute truncated error in the interval J is,

    maxtϵJ|y(t)qi=0yi(t)|ϕq1ϕmaxtϵJ|y1(t)| (3.2)

    and this completes the proof.

    In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.

    Example 4.1. Application of linear FDE

    CFDx(t)+2aCFD1/2x(t)+bx(t)=0,       x(0)=1. (4.1)

    A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]

    Set

    X(t)=x(t)1

    Equation (4.1) will be

    CFDX(t)+2aCFD1/2X(t)+bX(t)=0,       X(0)=0. (4.2)

    Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,

    y=122I1/2y12I y (4.3)

    Appling ADM to Eq (4.3), we find the solution algorithm become

    y0(t)=12,yi(t)=2 CFI1/2yi112 CFI yi1,     i1. (4.4)

    Appling Picard solution to Eq (4.2), we find the solution algorithm become

    y0(t)=12,yi(t)=122 CFI1/2yi112 CFI yi1,     i1. (4.5)

    From Eq (4.4), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.5), the solution using Picard technique is given by y(t)=Limiyi(t). Lately, the solution of the original problem Eq (4.2), is

    x(t)=1+ CFI y(t).

    One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.

    Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.

    Figure 1.  ADM and Picard solution of Ex. 4.1.

    Example 4.2. Consider the following nonlinear FDE [35]

    CFD1/2x=8t3/23πt7/44Γ(114)t44+18 CFD1/4x+14x2, x(0)=0. (4.6)

    Appling Eq (2.3) to Eq (4.6), and using initial condition,

    y=8t3/23πt7/44Γ(114)t44+18 CFI1/4y+14(CFI1/2y)2. (4.7)

    Appling ADM to Eq (4.7), we find the solution algorithm will be become

    y0(t)=8t3/23πt7/44Γ(114)t44,yi(t)=18 CFI1/4yi1+14(Ai1),     i1. (4.8)

    at which Ai are Adomian polynomial of the nonliner term (CFI1/2y)2.

    Appling Picard solution to Eq (4.7), we find the the solution algorithm become

    y0(t)=8t3/23πt7/44Γ(114)t44,yi(t)=y0(t)+18 CFI1/4yi1+14(CFI1/2yi1)2,     i1. (4.9)

    From Eq (4.8), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.9), the solution using Picard technique is given by y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.7), is.

    x(t)= CFI1/2y.

    One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.

    Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):

    Table 1.  Max. absolute error.
    q max. absolute error
    2 0.114548
    5 0.099186
    10 0.004363

     | Show Table
    DownLoad: CSV

    Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.

    Figure 2.  ADM and Picard solution of Ex. 4.2.

    Example 4.3. Consider the following nonlinear FDE [35]

    CFDαx=3t2128125πt5+110(CFD1/2x)2,x(0)=0. (4.10)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    y=3t2128125πt5+110(CFI1/2y)2 (4.11)

    Appling ADM to Eq (4.11), we find the solution algorithm become

    y0(t)=3t2128125πt5,yi(t)=110(Ai1),     i1 (4.12)

    at which Ai are Adomian polynomial of the nonliner term (CFI1/2y)2.

    Then appling Picard solution to Eq (4.11), we find the solution algorithm become

    y0(t)=3t2128125πt5,yi(t)=y0(t)+110(CFI1/2yi1)2,     i1. (4.13)

    From Eq (4.12), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.13), the solution is y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.11), is

    x(t)=CFIy(t).

    One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.

    Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):

    Table 2.  Max. absolute error.
    q max. absolute error
    2 0.00222433
    5 0.0000326908
    10 2.88273*108

     | Show Table
    DownLoad: CSV

    Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with α=1.

    Figure 3.  ADM and Picard solution where of Ex. 4.3.

    Example 4.4. Consider the following nonlinear FDE [35]

    CFDαx=t2+12 CFDα1x+14 CFDα2x+16 CFDα3x+18x4,x(0)=0. (4.14)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    y=t2+12(CFIαα1y)+14(CFIαα2y)+16(CFIαα3y)+18(CFIαy)4, (4.15)

    Appling ADM to Eq (4.15), we find the solution algorithm become

    y0(t)=t2,yi(t)=12(CFIαα1y)+14(CFIαα2y)+16(CFIαα3y)+18Ai1,  i1 (4.16)

    where Ai are Adomian polynomial of the nonliner term (CFIαy)4.

    Then appling Picard solution to Eq (4.15), we find the solution algorithm become

    y0(t)=t2,yi(t)=t2+12(CFIαα1yi1)+14(CFIαα2yi1)+16(CFIαα3yi1)+18(CFIαyi1)4     i1. (4.17)

    From Eq (4.16), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.17), the solution using Picard technique is y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.14), is

    x(t)=CFIαy(t).

    One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 atα=0.7,α1=0.1,α2=0.3,α3=0.5.

    Figure 4.  ADM and Picard solution where of Ex. 4.4.

    The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.

    The authors declare there is no conflict of interest.



    [1] Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ Int 102: 165-176. doi: 10.1016/j.envint.2017.02.013
    [2] Horton AA, Walton A, Spurgeon DJ, et al. (2017) Review: Microplastics in freshwater and terrestrial systems: Evaluating the current understanding to identify knowledge gaps and future research priorities. Sci Total Environ 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
    [3] Eerkes-Medrano D, Thomson RC, Aldridge DC (2015) Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Res 75: 63-82. doi: 10.1016/j.watres.2015.02.012
    [4] Estahbanati S, Fahrenfeld NL (2016) Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 162: 277-284. doi: 10.1016/j.chemosphere.2016.07.083
    [5] Mason SA, Garneau D, Sutton R, et al. (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218: 1045-1054. doi: 10.1016/j.envpol.2016.08.056
    [6] Ravit B, Cooper K, Moreno G, et al. (2017) Microplastics in urban New Jersey freshwaters: distribution, chemical identification, and biological effects. AIMS Environ Sci 4: 809-826. doi: 10.3934/environsci.2017.6.809
    [7] Carr SA (2017) Sources and dispersive modes of micro-fibers in the environment. Int Environ Assess Manage 13: 466-469. doi: 10.1002/ieam.1916
    [8] Dris R, Gasperi J, Rocher V, et al. (2015) Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 12: 592-599. doi: 10.1071/EN14167
    [9] Rochman CM, Kross SM, Armstrong JB, et al. (2015) Scientific evidence supports a ban on microbeads. Environ Sci Technol 49: 10759-10761. doi: 10.1021/acs.est.5b03909
    [10] Rochman CM (2018) Microplastics research - from sink to source. Science 360: 28-29. doi: 10.1126/science.aar7734
    [11] Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177: 1-3.
    [12] Lusher AL, McHugh M, Tompson RC (2013) Occurrence of microplastics in the gastrointestinal track of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67: 94-99. doi: 10.1016/j.marpolbul.2012.11.028
    [13] Sanchez W, Bender C, Porcher JM (2014) Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environ Res 128: 98-100. doi: 10.1016/j.envres.2013.11.004
    [14] Browne MA, Dissanayake Galloway TS, Lowe DM, et al. (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol 42: 5026-5031. doi: 10.1021/es800249a
    [15] Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193: 65-70. doi: 10.1016/j.envpol.2014.06.010
    [16] Leslie HA, Brandsma SH, van Velzen MJM, et al. (2017) Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int 101: 133-142. doi: 10.1016/j.envint.2017.01.018
    [17] Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut138: 201-211.
    [18] McCormick A, Hoellein TJ, Mason SA, et al. (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48: 11863-11871. doi: 10.1021/es503610r
    [19] Focazio MJ, Kolpin DW, Barnes KK, et al. (2008). A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources. Sci Total Environ 402: 201-216. doi: 10.1016/j.scitotenv.2008.02.021
    [20] Rochman CM, Hoh E, Hentschel BT, et al. (2013). Long-term field measurements of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol 47: 1646-1654.
    [21] Bakir A, Rowland SJ, Thompson RC (2014). Transport of persistent organic pollutants by microplastics in estuarine conditions. Est Coast Shelf Sci 140: 14-21. doi: 10.1016/j.ecss.2014.01.004
    [22] Buckley B, Stiles R (2005) Analytical determination of tentatively identified compounds in drinking water supplies to correspond with the USGS pharmaceutical work. Report to the New Jersey Department of Environmental Protection.
    [23] Murphy E, Buckley B, Lippencott L, et al. (2003) The characterization of tentatively identified compounds in water samples collected from public water systems in New Jersey. Environ Assess 2003: 1-37.
    [24] Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: A review. Environ Pollut 178: 483-492. doi: 10.1016/j.envpol.2013.02.031
    [25] Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62: 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
    [26] Baldwin AK, Corsi SR, De Cicco LA, et al. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity. Sci Total Environ 554: 42-52.
  • This article has been cited by:

    1. Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894
    2. H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630
    3. Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006
    4. A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064
    5. Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6057) PDF downloads(827) Cited by(15)

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog