Citation: Ming Yang, Dunren Che, Wen Liu, Zhao Kang, Chong Peng, Mingqing Xiao, Qiang Cheng. On identifiability of 3-tensors of multilinear rank (1; Lr; Lr)[J]. Big Data and Information Analytics, 2016, 1(4): 391-401. doi: 10.3934/bdia.2016017
[1] | [ L. Chiantini and C. Ciliberto, Weakly defective varieties, Transactions of the American Mathematical Society, 354(2002), 151-178. |
[2] | [ L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM Journal on Matrix Analysis and Applications, 33(2012), 1018-1037. |
[3] | [ L. Chiantini, G. Ottaviani and N. Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis and Applications, 35(2014), 1265-1287. |
[4] | [ A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa and H. Phan, Tensor decompositions for signal processing applications:From two-way to multiway component analysis, Signal Processing Magazine, IEEE, 32(2015), 145-163. |
[5] | [ P. Comon, Tensor decompositions, State of the art and applications, J. G. McWhirter and I. K. Proudler. Mathematics in Signal Processing V, Clarendon Press, Oxford, 71(2002), 1-24. |
[6] | [ L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part I:Lemmas for partitioned matrices, SIAM Journal on Matrix Analysis and Applications, 30(2008), 1022-1032. |
[7] | [ L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part Ⅱ:Definitions and uniqueness, SIAM Journal on Matrix Analysis and Applications, 30(2008), 1033-1066. |
[8] | [ L. DeLathauwer and D. Nion, Decompositions of a higher-order tensor in block terms-part Ⅲ:Alternating least squares algorithms, SIAM Journal on Matrix Analysis and Applications, 30(2008), 1067-1083. |
[9] | [ I. Domanov and L. DeLathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE Journal of Selected Topics in Signal Processing, 10(2016), 701-711. |
[10] | [ I. Domanov and L. De Lathauwer, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM Journal on Matrix Analysis and Applications, 36(2015), 1567-1589. |
[11] | [ J. Draisma and J. Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Mathematical Journal, 163(2014), 35-63. |
[12] | [ J. D. Hauenstein and A. J. Sommese, Witness sets of projections, Applied Mathematics and Computation, Elsevier, 217(2010), 3349-3354. |
[13] | [ J. D. Hauenstein and A. J. Sommese, Membership tests for images of algebraic sets by linear projections, Applied Mathematics and Computation, Elsevier, 219(2013), 6809-6818. |
[14] | [ R. Ke, W. Li and M. Xiao, Characterization of extreme points of multi-stochastic tensors, Computational Methods in Applied Mathematics, 16(2016), 459-474. |
[15] | [ T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51(2009), 455-500. |
[16] | [ J. M. Landsberg, Tensors:Geometry and Applications, AMS, Providence, Rhode Island, USA, 2012. |
[17] | [ M. W. Mahoney, L.-H. Lim and G. E. Carlsson, Algorithmic and statistical challenges in modern largescale data analysis are the focus of MMDS 2008, ACM SIGKDD Explorations Newsletter, 10(2008), 57-60. |
[18] | [ F. Malgouyres and J. Landsberg, Stable recovery of the factors from a deep matrix product and application to convolutional network, preprint, arXiv:1703.08044. |
[19] | [ Y. Matsushima (E. Kobayashi, translator), Differentiable Manifolds, Marcel Dekker, Inc., North-Holland Publishing Co., North Miami Beach, FL, U.S.A., 1972. |
[20] | [ E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion:Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology (TIST), 8(2017), 1-44. |