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Abstract. In this paper, we study a specific big data model via multilinear

rank tensor decompositions. The model approximates to a given tensor by the

sum of multilinear rank (1, Lr, Lr) terms. And we characterize the identifia-
bility property of this model from a geometric point of view. Our main results

consists of exact identifiability and generic identifiability. The arguments of

generic identifiability relies on the exact identifiability, which is in particular
closely related to the well-known “trisecant lemma” in the context of algebraic

geometry (see Proposition 2.6 in [1]). This connection discussed in this paper
demonstrates a clear geometric picture of this model.

1. Introduction.

1.1. Content of the paper. The importance and usefulness of tensors that are
characterized by multiway arrays for big data sets, has been increasingly recognized
in the last decades, as testified by a number of surveys [15, 20, 14, 5, 17] and among
others. Identifiability property (see [3, 10, 2, 9]), including both exact and generic
identifiability, is critical for tensor models in various applications, and widely used
in many areas, such as signal processing, statistics, computer science, and so on. For
instance, in signal processing, the tensor encodes data from received signals and one
needs to decompose the tensor to obtain the transmitted signals. If the uniqueness
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does not hold, one may not recover the transmitted signals. Therefore, to establish
the uniqueness property of appropriate tensor decomposition is not only mathe-
matically interest but also necessary in various real applications. Extensive studies
under the framework of algebraic geometry have provided various characteristics
involving tensor rank and dimensions to ensure generic identifiability.

In this paper, we consider the model of low multilinear rank tensor decomposition
(LRD). The initial idea was proposed by De Lathauwer [6, 7, 8], where the rank-1
tensors in CP decomposition is replaced by tensors in multilinear rank (1, Lr, Lr)
terms. Such approach allows us to model more complex phenomena and to an-
alyze big data sets with complex structures, especially for the cases that tensor
components cannot be represented as rank-1 tensors. We extend the theoretical
frameworks by establishing the uniqueness conditions of LRD, which are critical
for the applications of tensor-based approaches in handling big data sets. More
specifically, if a tensor can be written in a unique manner as a sum of tensors of low
multilinear rank, then this decomposition may reveal (meaningful) characteristics
that are more general than the components extracted from CP decomposition. The
uniqueness property of LRD can be theoretically guaranteed with mild conditions
under our framework, and we provide the new uniqueness criterion of multilinear-
rank tensor decomposition that closely relates to the applications of LRD in blind
source separation in signal processing. The theoretical contributions of establishing
the explicit uniqueness criterion of LRD may play significant role in the application
domains of tensor-based methods for big data analysis [4].

1.2. Definitions.

Definition 1.1. (see Chapter III in [19]) Let K be a field C or R and let A1, . . . , An
be K-vector spaces. The tensor product space A1⊗ · · · ⊗An is the quotient module
K(A1, . . . , An)/R where K(A1, . . . , An) is the free module generated by all n-tuples
(a1, . . . , an) ∈ A1 × · · · × An and R is the submodule of K(A1, . . . , An) generated
by elements of the form

(a1, . . . , αak + βa′k, . . . , an)− α(a1, . . . , ak, . . . , an)− β(a1, . . . , a
′
k, . . . , an)

for all ak, a
′
k ∈ Ak, α, β ∈ K, and k ∈ {1, . . . , n}. We write a1 ⊗ · · · ⊗ an for the

element (a1, . . . , an) +R in the quotient space K/R.
An element of A1 ⊗ · · · ⊗ An that can be expressed in the form a1 ⊗ · · · ⊗ an

is called decomposable. The symbol ⊗ is called the tensor product when applied to
vectors from abstract vector spaces.

The elements of A1 ⊗ · · · ⊗ An are called order-n tensors and Ik = dimAk,
k = 1, . . . , n are the dimensions of the tensors.

If U ∼= Kl, V ∼= Km,W ∼= Kn, we may identify

Kl ⊗Km ⊗Kn = Kl×m×n

through the interpretation of the tensor product of vectors as a tensor via the Segre
outer product,

[u1, . . . , ul]
T ⊗ [v1, . . . , vm]T ⊗ [w1, . . . , wn]T = [uivjwk]l,m,ni,j,k=1.

Definition 1.2. The Khatria-Rao Product is the “matching columnwise” Segre
outer product. Given matrices A = [a1, . . . , aK ] ∈ KI×K and B = [b1, . . . , bK ] ∈
KJ×K , their Khatria-Rao product is denoted by A � B. The result is a matrix of
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size (IJ)×K defined by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ].

If a and b are vectors, then the Khatria-Rao and Segre outer products are identical,
i.e., a⊗ b = a� b.

Given standard orthnormal bases e
(k)
1 , . . . , e

(k)
Ik

for Ak ∼= KIk , k = 1, . . . , N , any

tensor X in A1 ⊗ · · · ⊗AN ∼= KI1×···×IN , can be expressed as a linear combination

X =

I1,...,IN∑
i1,...,iN=1

ti1···iN e
(1)
i1
⊗ · · · ⊗ e(N)

iN
.

In older literature, the ti1···iN ’s are often called the components of X . X has rank one
or rank-1 if there exist non-zero a(i) ∈ Ai, i = 1, . . . , N , so that X = a(1)⊗· · ·⊗a(N)

and a(1) ⊗ · · · ⊗ a(N) is the Segre outer product.
The rank of X is defined to be the smallest r such that it may be written as a

sum of r rank-1 tensors, i.e.,

rank(X ) = min

{
r : X =

r∑
p=1

a(1)p ⊗ · · · ⊗ a(N)
p

}
.

Definition 1.3. The n-th flattening map on any tensor X = [ti1...iN ]I1,...,INi1,...,iN=1 ∈
KI1×···×IN is the function (see Section 2 of [11])

[n : KI1×···×IN → KIn×(I1...În...IN )

defined by

([n(X ))ij = (X )sn(i,j),

where sn(i, j) is the j-th element in lexicographic order in the subset of 〈I1〉× · · ·×
〈IN 〉 consisting of elements that have n-th coordinate equal to i, and by convention
a caret over any entry of a N -tuple means that the respective entry is omitted.

For a tensor X = [tijk] ∈ Kl×m×n,

r1 = dim spanK{X1••, . . . ,Xl••},
r2 = dim spanK{X•1•, . . . ,X•m•},
r3 = dim spanK{X••1, . . . ,X••n}.

Here

Xi•• = [tijk]m,nj,k=1 ∈ Km×n,

X•j• = [tijk]l,ni,k=1 ∈ Kl×n,

X••k = [tijk]l,mi,j=1 ∈ Kl×m.

The multilinear rank of X ∈ Kl×m×n is (r1, r2, r3), with r1, r2, r3 defined above.

Definition 1.4. (see Definition 11 in [4]) A decomposition of a tensor X ∈ KI×J×K
in a sum of rank-(1, Lr, Lr) terms, 1 ≤ r ≤ R, is a decomposition of X of the form

X =

R∑
r=1

ar ⊗Xr,

in which the (J ×K) matrix Xr is rank-Lr, 1 ≤ r ≤ R, and no two of X ′rs are
collinear.
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It is clear that in X =
∑R
r=1 ar ⊗ Xr one can arbitrarily permute the different

rank-(1, Lr, Lr) terms ar⊗Xr. Also, one can scale Xr, provided that ar is counter
scaled. We call this decomposition to be essentially unique when it is only subject
to these trivial indeterminacies.

Definition 1.5. Let µK be the Lebegue measure on KI×R ×KJ×K×R. Then X =∑R
r=1 ar ⊗Xr in Definition 1.4 is generically unique if µK = 0, where µK is defined

by

µK{
(
KI×R ×KJ×K×R

)
: X =

R∑
r=1

ar ⊗Xr is not unique for ar ∈ KI , Xr ∈ KJ×K}.

Note that in Definition 1.4, we could require {ai, 1 ≤ i ≤ R} to be an orthogonal
frame:

Definition 1.6. A decomposition of a tensor X ∈ KI×J×K in an orthogonal frame
in a sum of rank-(1, Lr, Lr) terms, 1 ≤ r ≤ R, is a decomposition of X of the form

X =

R∑
r=1

ar ⊗Xr.

As in Definition 1.4, Xr has rank-Lr, 1 ≤ r ≤ R, but we need {ai, 1 ≤ i ≤ R} to
be an orthogonal frame.

1.3. Main results. The main results of the paper are the following, and their
proofs will be given in the following sections:

Theorem 1.7. Assume I ≥ R, X =
∑R
r=1 ar ⊗Xr in Definition 1.4 is essentially

unique if and only if

spanK{Xj1 , . . . , Xjs} ∩ Σ≤Ljt (K
J×K) ⊂ {Xj1 , . . . , Xjs}, 1 ≤ t ≤ s,

where Σ≤L(KJ×K) = {M ∈ KJ×K |rank M ≤ L}.

Remark 1. In reasonably small cases, one can use tools from numerical algebraic
geometry such as those described in [18, 12, 13].

Remark 2. A generic b × b pencil is diagonalizable (as the conditions to have re-
peated eigenvalues or bounded rank are closed conditions) and thus of rank b. Thus
for most (more precisely, a Zariski open subset of) pencils that are not diagonaliz-
able, a perturbation by a general rank one matrix will make it diagonalizable. And
there is a normal form for a general point p of Σ≤L(KJ×K) (L is smaller than J
and K), which is

p = b′1 ⊗ c′1 + · · ·+ b′L ⊗ c′L,

where {b′1, . . . , b′L}, {c′1, . . . , c′L} are linear independent.

We now establish a simpler condition related to the uniqueness of X =
∑R
r=1 ar⊗

Xr in Definition 1.4. More precisely, there is a set of tensors X of measure 0
such that for any X outside this set, the conditions are sufficient to guarantee

the uniqueness of X =
∑R
r=1 ar ⊗ Xr. Notice that these conditions are not truly

sufficient, since it fails to provide the conclusion on a set of problems of measure 0.
It, however, illustrates very well the situations in which uniqueness should hold.
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Theorem 1.8. X = a1 ⊗ X1 + a2 ⊗ X2 in Definition 1.4 is generically unique if
and only if

I ≥ 2, J = K 6= one of

{
2L1 + L2

2
,

2L2 + L1

2
, L1, L2

}
.

Theorem 1.9. X =
∑R
r=1 ar ⊗Xr in Definition 1.4 is generically unique if

I ≥ R, K ≥
R∑
r=1

Lr, J ≥ 2 max{Li},
(

J

max{Li}

)
≥ R,Li + Lj > Lk

for all 1 ≤ i, j, k ≤ R.

For low multilinear rank decomposition in orthogonal frame, we have the follow-
ing theorem.

Theorem 1.10. A tensor decomposition of X ∈ KI×J×K ,

X =

R∑
r=1

ar ⊗Xr,

as in Definition 1.6 is essentially unique if and only if for any non-identity special
orthogonal matrix E = [εij ]1≤i,j≤R, there exists k, 1 ≤ k ≤ R such that

rank (εk1X1 + · · ·+ εkRXR) 6= L1, . . . , LR.

1.4. Outline of the paper. In this paper, we first provide some known and pre-
liminary results related to the tensor decompositions of multilinear rank (1, Lr, Lr)
terms that we are considering. Then we establish simple geometric necessary and
sufficient conditions which guarantee the uniqueness of tensor decompositions of
multilinear rank (1, Lr, Lr) terms (see Theorem 1.7). The conditions are then re-
laxed to obtain simpler sufficient conditions Theorem 1.8 and Theorem 1.9. Finally,
we discuss the uniqueness of tensor decompositions of multilinear rank (1, Lr, Lr)
terms in an orthogonal frame that provides better structures.

2. Algebraic criteria of uniqueness.

Definition 2.1. For a vector space V , V ∗ denotes the dual space of linear func-
tionals of V , which is the vector space whose elements are linear maps from V to
K: {α : V 7→ K|α is linear}. If one is working in bases and represents elements of
V by column vectors, then elements of V ∗ are naturally represented by row vectors
and the map V 7→ 〈α, v〉 is just row-column matrix multiplication. Given a basis
v1, . . . , vv of V , it determines a basis α1, . . . , αv of V ∗ by 〈αj , vi〉 = δij , called the
dual basis. Now we define V ⊥ = {α ∈ V ∗|〈α, v〉 = 0, ∀v ∈ V }.

2.1. Proof of Theorem 1.7.

Proof. ⇐ Assume the contrary that X =
∑R
r=1 a

′
r ⊗ X ′r is different from X =∑R

r=1 ar ⊗Xr. Since a1, . . . , aR are independent, we claim that

a′r ∈ spanK{a1, . . . , aR}.
Since if not, we have

a
′∗
r ∈ span⊥K{a1, . . . , aR}.

This implies

〈X , a
′∗
r 〉 = 0 = X ′r,
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which is a contradiction. Therefore, we have a′r =
∑R
j=1 α

r
jaj , where αrj are not all

zero. From

X =

R∑
r=1

a′r ⊗X ′r =

R∑
r=1

 R∑
j=1

αrjar ⊗X ′j

 ,

we know that Xr =
∑R
j=1 α

r
jX
′
j . Taking the inverse of the nonsingular R×R matrix

[αrj ], we have X ′r =
∑R
j=1 α̃

r
jXj . Consequently, there exist r, j1, j2 ∈ {1, . . . , R} such

that j1 6= j2 and α̃rj1 · α̃
r
j2
6= 0. Therefore, we obtain

X ′r ∈ spanK{Xj1 , . . . , Xjs} ∩ Σ≤Lr
(
KJ×K

)
.

But X ′r does not belong to {Xj1 , . . . , Xjs}, which is a contradiction.
⇒ If there exists X ′jt ∈ spanK{Xj1 , . . . , Xjs} ∩ Σ≤Ljt

(
KK×J

)
such that X ′jt /∈

{Xj1 , . . . , Xjs}, Without loss of generality, we assume that X ′jt = X1 +χ2X2 + · · ·+
χRXR. Now

a1 ⊗X1 + · · ·+ aR ⊗XR

= a1 ⊗X ′jt − χ2a1 ⊗X2 − · · · − χRa1 ⊗XR + a2 ⊗X2 + · · ·+ aR ⊗XR

= a1 ⊗X ′jt + (a2 − χ2a1)⊗X2 + · · ·+ (aR − χRa1)⊗XR

= a1 ⊗X ′jt + a′2 ⊗X2 + · · ·+ a′R ⊗XR.

So X =
∑R
r=1 ar ⊗Xr is not unique.

Example 1. A tensor decomposition of X ∈ KI×J×K ,

X =

R∑
r=1

ar ⊗Xr,

as in Definition 1.4 is essentially unique if the singular vectors of X1, . . . , XR are
linear independent.

Proof. Assume the contrary that X =
∑R
r=1 a

′
r⊗X ′r is different from X =

∑R
r=1 ar⊗

Xr, then we have

X ′r = χ1X1 + · · ·+ χRXR.

Let

Ur =

 | | |
ur1 ur2 · · · urJ
| | |


Vr =

 | | |
vr1 vr2 · · · vrK
| | |


and urj , 1 ≤ r ≤ R, 1 ≤ j ≤ J , vrk, 1 ≤ r ≤ R, 1 ≤ k ≤ K, are linear independent,
and let

Xr = σr1u
r
1 ⊗ vr1 + · · ·+ σrLru

r
Lr ⊗ v

r
Lr ,

then we can see the rank of χ1X1 + · · · + χRXR should be bigger or equal to
Li, 1 ≤ i ≤ R and equality holds only if X ′r is one of {X1, . . . , XR}. And the
uniqueness follows from Theorem 1.7.
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2.2. Proof of Theorem 1.8.

Proof. It is sufficient to prove the case min{L1, L2} ≤ J = K < L1 +L2. Let B and
C denote vector spaces of dimensions J,K respectively. Split B = B1 ⊕ B0 ⊕ B2

and C = C1⊕C0⊕C2, where B1, B0, B2, C1, C0, and C2 are of dimensions L1− lb,
lb, L2 − lb, L1 − lc, lc, L2 − lc.

Consider

X1 = b1,1 ⊗ c1,1 + · · ·+ b1,L1−lb ⊗ c1,L1−lb + b0,1 ⊗ c1,L1−lb+1 + · · ·+ b0,lb ⊗ c0,lc
∈ (B1 ⊕B0)⊗ (C1 ⊕ C0) ∼= KL1 ⊗KL1 ,

X2 = b2,1 ⊗ c2,1 + · · ·+ b2,L1−lb ⊗ c2,L1−lb + b0,1 ⊗ c2,L1−lb+1 + · · ·+ b0,lb ⊗ c0,lc
∈ (B2 ⊕B0)⊗ (C2 ⊕ C0) ∼= KL2 ⊗KL2 ,

where

{b0,1, . . . , b0,lb},
{b1,1, . . . , b1,L1−lb},
{b2,1, . . . , b2,L2−lb},
{c0,1, . . . , c0,lc},
{c1,1, . . . , c1,L1−lc},
{c2,1, . . . , c2,L2−lc},

are bases for B0, B1, B2, C0, C1 and C2, respectively, J + lb = L1 + L2, and
K + lc = L1 + L2.

Suppose χ1, χ2 are both nonzero, the matrix pencil χ1X1 + χ2X2

χ1

. . .

χ1

χ1 + χ2

. . .

χ1 + χ2

χ2

. . .

χ2


has rank J when χ1 6= −χ2, and L1 + L2 − 2lb when χ1 = −χ2. By simple
computation, we know

rank (χ1X1 + χ2X2) 6= L1 or L2

if and only if

J,K 6= one of

{
2L1 + L2

2
,

2L2 + L1

2
, L1, L2

}
.

Then Theorem 1.8 follows from Theorem 1.7.

Example 2. For X ∈ K2×3×3, considering the decomposition in a sum of multilin-
ear rank (1, 2, 2), we have

X = a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b2 ⊗ c2 + b3 ⊗ c3)

= a1 ⊗ (b1 ⊗ c1 − b3 ⊗ c3) + (a1 + a2)⊗ (b2 ⊗ c2 + b3 ⊗ c3) ,
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where {b1, b2, b3}, {c1, c2, c3}, {a1, a2} are bases for K3,K3,K2. So this is not unique.

Example 3. For X ∈ K2×4×2, considering the decomposition in a sum of multilin-
ear rank (1, 2, 2), we have

X = a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b3 ⊗ c1 + b4 ⊗ c2)

= a1 ⊗ ((b1 + b3)⊗ c1 + (b2 + b4)⊗ c2) + (a2 − a1)⊗ (b3 ⊗ c1 + b4 ⊗ c2) ,

where {b1, b2, b3, b4}, {c1, c2}, {a1, a2} are basis for K4,K2,K2. So this is not unique.

Example 4. There are explicit Weierstrass canonical forms (see Chapter 10 in [16])
of tensors in K2×L×L. Each of those can be decomposed in a sum of rank-(1, L, L)
terms as follows:

a1 ⊗ (b1 ⊗ c1 + · · ·+ bL ⊗ cL) + a2 ⊗ (λ1b1 ⊗ c1 + · · ·+ λLbL ⊗ cL),

but it is obviously not unique.

2.3. Proof of Theorem 1.9.

Proof. It is sufficient to prove the case I = R, K =
∑R
r=1 Lr. Let B and C

denote vector spaces of dimensions J, K respectively. Choose the splitting of C as
C =

⊕
1≤r≤R Cr, and fix a basis {b1, . . . , bJ} for B.

Without loss of generality, for 1 ≤ p ≤ R, we can assume

Ejp = bjp,1 ⊗ cjp,1 + bjp,2 ⊗ cjp,2 + · · ·+ bjp,Ljp ⊗ cjp,Ljp ∈ Bjp ⊗ Cjp ,

where {bjp,1, . . . , bjp,Ljp} ⊂ {b1, . . . , bJ} (since J ≥ 2 max{Li},
(

J
max{Li}

)
≥ R),

{cjp,1, . . . , cjp,Ljp } are bases for Bjp , Cjp , respectively. Further, let

E′jt = b′1 ⊗ c′1 + · · ·+ b′Ljt ⊗ c
′
Ljt

be a general point of Σ≤Ljt (K
J×K) and set

E′jt =
∑

1≤p≤s

χpEjp =
∑

1≤p≤s

χp

(
bjp,1 ⊗ cjp,1 + bjp,2 ⊗ cjp,2 + · · ·+ bjp,Ljp ⊗ cjp,Ljp

)
.

If there exist χµ, χν , which are both nonzero, the pencil

xµ
. . .

xµ
xµ + xν

. . .

xµ + xν
xν

. . .

xν


has rank at least Ljµ + Ljν , which is bigger than Ljt . This implies that E′jt is not

a matrix in Σ≤Ljt (K
J×K). Therefore, we prove that E′jt ∈ {Ej1 , . . . , Ejs}. The

uniqueness follows from Theorem 1.7.

The following Remark can be easily obtained using elementary combinatorics.
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Remark 3. When

I ≥ R, J, K ≥
R∑
r=1

Lr, Li + Lj > Lk ∀1 ≤ i, j, k ≤ R,

a low multilinear rank tensor decomposition of X as in Definition 1.4 has a unique
expression

X =

R∑
r=1

ar ⊗

 ∑r
u=1 Lu∑

r′=1+
∑r−1
u=1 Lu

br′ ⊗ cr′

 .
3. Proof of Theorem 1.10.

Proof. ⇒ Assume the contrary that X =
∑R
r=1 a

′
r ⊗ X ′r is different from X =∑R

r=1 ar⊗Xr. Let us assume the transformation matrix between the frames {e′r, 1 ≤
r ≤ R} and {er, 1 ≤ r ≤ R} is Q, which is a R×R special orthogonal matrix [εir].
Then we have

[X1 · · · XR]�

e1...
eR

 = [X ′1 · · · X ′R]�

e
′
1
...
e′R

 = [X ′1 · · · X ′R]�Q

e1...
eR

 .
Since {er, 1 ≤ r ≤ R} is orthogonal, taking inner product of X with er, we have

X ′r = εr1X1 + · · ·+ εrRXR, 1 ≤ r ≤ R.
However

rank X ′r = rank (εr1X1 + · · ·+ εrRXR) 6= L1, . . . , LR,

which is a contradiction. Therefore X =
∑R
r=1 ar ⊗ Xr as in Definition 1.6 is

essentially unique.
⇐ Assume for a special orthogonal matrix Q = [εir]R×R, εi1X1 + · · · + εiRXR

has rank Li for any 1 ≤ i ≤ R. Let

X ′i = εi1X1 + · · ·+ εiRXR, 1 ≤ i ≤ R,

we then have X =
∑R
r=1 ar ⊗Xr. So it is not unique.

Remark 4. Since the rotation matrix in the plane is(
cos θ − sin θ
sin θ + cos θ

)
,

a tensor decomposition of X ∈ KI×J×K in orthogonal frame, X = a1⊗X1+a2⊗X2

as in Definition 1.6 is essentially unique if and only if for any θ, 0 < θ < π,

rank (cos θ X1 + sin θ X2) 6= L1 or L2,

and same for rank (− sin θ X1 + cos θ X2).

4. Conclusion. Different from most current approach in the analysis of big data
sets, in this paper, some uniqueness characteristics of low multilinear rank tensor
decomposition LRD are given under the framework of algebraic geometry. The
proposed framework leads to a new approach for the study of identifiability proper-
ties in terms of block tensor decomposition that can be used to handle the big data
sets. Several explicit uniqueness criteria for tensor decomposition of low multilinear
rank terms are given.
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