Citation: Mohammad Zahirul Islam, Young-Tack Lee, Mahmuda Akter Mele, In-Lee Choi, Ho-Min Kang. Effect of fruit size on fruit quality, shelf life and microbial activity in cherry tomatoes[J]. AIMS Agriculture and Food, 2019, 4(2): 340-348. doi: 10.3934/agrfood.2019.2.340
[1] | Kitinoja L, Gorny JR (1999) Postharvest technology for small-scale produce marketers: Economic opportunities, quality and food safety. UX Postharvest Technology Research and Information Center, Series, 21, April, Davis, USA. |
[2] | Kitinoja L, Kader AA (2002) Small-scale postharvest handling practices: A manual for horticultural crops, In: Postharvest Horticulture Series No. 8E, 4th Eds., Postharvest Technology Research and Information Center, University of California, Davis, USA. |
[3] | Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Plant Sci 24: 227–247. doi: 10.1080/07352680591008628 |
[4] | Kader AA, Rolle RS (2004) The role of post-harvest management in assuring the quality and safety of horticultural produce. FAO Agricultural Services Bulletin 152, Publishing Management Service, Information Division, FAO, Rome, Italy. |
[5] | Islam MZ, Mele MA, Choi KY, et al. (2018) Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system. Bragantia 77: 385–393. doi: 10.1590/1678-4499.2017185 |
[6] | Mele MA, Islam MZ, Kang HM, et al. (2018) Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir J Food Agric 30: 592–603. |
[7] | Figàs MR, Prohens J, Raigón MD, et al. (2015) Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem 187: 517–524. doi: 10.1016/j.foodchem.2015.04.083 |
[8] | Grandillo S, Ku H, Tanksley S (1999) Identifying the loci responsible for natural variation in fruit size. Theor Appl Genet 99: 978–987. doi: 10.1007/s001220051405 |
[9] | Banerjee MK, Kalloo G (1989) The inheritance of earliness and fruit weight in crosses between cultivated tomatoes and two species of Lycopersicon. Plant Breed 102: 148–152. doi: 10.1111/j.1439-0523.1989.tb00328.x |
[10] | Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size. Plant Cell 16: S181–S189. doi: 10.1105/tpc.018119 |
[11] | Islam MZ, Mele MA, Choi KY, et al. (2018) The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirbyste 105: 159–164. doi: 10.13080/z-a.2018.105.020 |
[12] | Mele MA, Islam MZ, Baek JP, et al. (2017) Quality, storability, and essential oil content of Ligularia fischeri during modified atmosphere packaging storage. J Food Sci Technol 54: 743–750. doi: 10.1007/s13197-017-2514-y |
[13] | Islam MZ, Mele MA, Kang HM (2018) Gaseous, physicochemical and microbial performances of silicon foliar spraying techniques on cherry tomatoes. J Agr Sci 40: 185–192. |
[14] | Islam MZ, Mele MA, Baek JP, et al. (2016) Cherry tomato qualities affected by foliar spraying with boron and calcium. Hortic Environ Biotechnol 57: 46–52. doi: 10.1007/s13580-016-0097-6 |
[15] | Islam MZ, Mele MA, Baek JP, et al. (2018) Iron, iodine and selenium effects on quality, shelf life and microbial activity of cherry tomatoes. Not Bot Horti Agrobo 46: 388–392. doi: 10.15835/nbha46211012 |
[16] | Kays JS, Paull RE (2004) Postharvest Biology. Exon Press, Athens. |
[17] | Brown BI, Wills RBH (1983) Post-harvest changes in guava fruit of different maturity. Sci Hort 19: 237–243. doi: 10.1016/0304-4238(83)90069-9 |
[18] | Dìaz-Pèrez JC, Muy-Rangel MD, Mascorro AG (2007) Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). J Sci Food Agric 87: 68–73. doi: 10.1002/jsfa.2672 |
[19] | El-Ramady HR, Domokos-Szabolcsy E, Abdalla M, et al. (2015) Postharvest management of fruits and vegetables storage. Sustain Agr Rev 15: 65–152. doi: 10.1007/978-3-319-09132-7_2 |
[20] | Dorais M, Papadopoulos AP, Gosselin A (2001) Greenhouse tomato fruit quality. Hortic Rev 26: 239–27. |
[21] | Argenta LC, Krammes JG, Megguer CA, et al. (2003) Ripening and quality of 'Laetitia' plums following harvest and cold storage as affected by inhibition of ethylene action. Pesq Agropec Bras 38: 1139–1148. doi: 10.1590/S0100-204X2003001000002 |
[22] | Islam MZ, Lee YT, Mele MA, et al. (2018) Effect of pre-harvest potassium foliar spray and postharvest storage methods on quality and shelf life of cherry tomatoes. Res J Biotechnol 13: 49–54. |
[23] | Islam MZ, Mele MA, Choi K, et al. (2018) Salicylic acid in nutrient solution influence the fruit quality and shelf life of cherry tomato grown in hydroponics. Sains Malaysiana 47: 537–542. doi: 10.17576/jsm-2018-4703-14 |
[24] | Brandt S, Pek Z, Barna E, et al. (2006) Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J Sci Food Agr 86: 568–572. doi: 10.1002/jsfa.2390 |
[25] | Weingart H, Ullrich H, Geider K, et al. (2001) The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology 91: 511–518. doi: 10.1094/PHYTO.2001.91.5.511 |