Mini review Topical Sections

Microbial mobilization of rare earth elements (REE) from mineral solids—A mini review

  • Received: 04 May 2016 Accepted: 05 June 2016 Published: 06 June 2016
  • In the light of an expected supply shortage of rare earth elements (REE) measures have to be undertaken for an efficient use in all kinds of technical, medical, and agricultural applications as well as—in particular—in REE recycling from post-use goods and waste materials. Biologically- based methods might offer an alternative and supplement to physico-chemical techniques for REE recovery and recycling. A wide variety of physiologically distinct microbial groups have the potential to be applied for REE bioleaching form solid matrices. This source is largely untapped until today. Depending of the type of organism, the technical process (including a series of influencing factors), the solid to be treated, and the target element, leaching efficiencies of 80 to 90% can be achieved. Bioleaching of REEs can help in reducing the supply risk and market dependency. Additionally, the application of bioleaching techniques for the treatment of solid wastes might contribute to the conversion towards a more sustainable and environmental friendly economy.

    Citation: Fabienne Barmettler, Claudio Castelberg, Carlotta Fabbri, Helmut Brandl. Microbial mobilization of rare earth elements (REE) from mineral solids—A mini review[J]. AIMS Microbiology, 2016, 2(2): 190-204. doi: 10.3934/microbiol.2016.2.190

    Related Papers:

  • In the light of an expected supply shortage of rare earth elements (REE) measures have to be undertaken for an efficient use in all kinds of technical, medical, and agricultural applications as well as—in particular—in REE recycling from post-use goods and waste materials. Biologically- based methods might offer an alternative and supplement to physico-chemical techniques for REE recovery and recycling. A wide variety of physiologically distinct microbial groups have the potential to be applied for REE bioleaching form solid matrices. This source is largely untapped until today. Depending of the type of organism, the technical process (including a series of influencing factors), the solid to be treated, and the target element, leaching efficiencies of 80 to 90% can be achieved. Bioleaching of REEs can help in reducing the supply risk and market dependency. Additionally, the application of bioleaching techniques for the treatment of solid wastes might contribute to the conversion towards a more sustainable and environmental friendly economy.


    加载中
    [1] Nuwer R (2014) What is the world’s scarcest material? BBC, London. Available from: www.bbc.com/future/story/20140314-the-worlds-scarcest-material.
    [2] Zepf V, Simmons J, Reller A, et al. (2014) Materials critical to the energy sector - An introduction. 2nd ed. BP p.l.c., London.
    [3] Gibson M, Parkinson I (2011) CIBC report: A rare earth element industry overview. Toronto, Canada. Available from http://de.slideshare.net/RareEarthsRareMetals/cibc-report.
    [4] Matlin SA, Mehta G, Hopf H, et al. (2015) The role of chemistry in inventing a sustainable future. Nature Chem 7: 941–943. doi: 10.1038/nchem.2389
    [5] Castor SB, Hedrick JB (2001) Rare earth elements. J Environ Radioactiv 102: 769–792.
    [6] Kingsnorth DJ (2014) Der globale Markt der Seltenen Erden - Ein Balanceakt. In: Kausch P, Bertau M, Gutzmer J, Matschullat J. (eds.) Strategische Rohstoffe - Risikovorsorge. Springer, Berlin, Heidelberg, 97–121 [in German].
    [7] Glombitza F, Reichel S (2014) Metal-containing residues from industry and in the environment: Geobiotechnological urban mining. Adv Biochem Eng Biotechnol 141: 49–107.
    [8] Hennebel T, Boon B, Maes S, et al. (2015) Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnol 32: 121–127. doi: 10.1016/j.nbt.2013.08.004
    [9] Graedel TE, Allwood J, Birat JP, et al. (2011) Recycling rates of metals – A status report. UNEP, Nairobi, Kenya.
    [10] Binnemans K, Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths 32: 195–200. doi: 10.1016/S1002-0721(14)60051-X
    [11] Hatje V, Bruland KW, Flegal AR (2016) Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ Sci Technol 50: 4159–4168. doi: 10.1021/acs.est.5b04322
    [12] Ozaki T, Gillow J, Francis A, et al. (2002) Association of Eu (III) and Cm (III) with Bacillus subtilis and Halobacterium salinarum. J Nucl Sci Technol 39(sup 3): 950–953.
    [13] Ozaki T, Suzuki Y, Nankawa T, et al. (2006) Interactions of rare earth elements with bacteria and organic ligands. J Alloys Compd 408-412: 1334–1338. doi: 10.1016/j.jallcom.2005.04.142
    [14] Horiike T, Yamashita M (2015) A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol 81: 3062–3068.
    [15] Bonificio WD, Clarke DR (2016) Rare-earth separation using bacteria. Environ Sci Technol Lett 3: 180–184. doi: 10.1021/acs.estlett.6b00064
    [16] Moriwaki H, Yamamoto H (2013) Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol 97: 1–8. doi: 10.1007/s00253-012-4519-9
    [17] Das N, Das D (2013) Recovery of rare earth metals through biosorption: An overview. J Rare Earths 31: 933–943. doi: 10.1016/S1002-0721(13)60009-5
    [18] Ilyas S, Lee JC (2014) Biometallurgical recovery of metals from waste electrical and electronical equipment: a review. ChemBioEng Rev 1: 148–169. doi: 10.1002/cben.201400001
    [19] Nancharaiah YV, Venkata Mohan S, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce elements. Trends Biotechnol 34: 137–155. doi: 10.1016/j.tibtech.2015.11.003
    [20] Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol 4:93–97.
    [21] Brandl H (2001) Microbial leaching of metals. In: Rehm HJ (ed.) Biotechnology, Vol. 10. Wiley- VCH, Weinheim, 191–224.
    [22] Pol A, Barends TRM, Dietl A, et al. (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16: 255–264. doi: 10.1111/1462-2920.12249
    [23] Skovran E, Martinez-Gomez NC (2015) Just add lanthanides. Science 348: 862–863. doi: 10.1126/science.aaa9091
    [24] Hibi Y, Asai K, Arafuka H, et al. (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng 111: 547–549. doi: 10.1016/j.jbiosc.2010.12.017
    [25] Nakagawa T, Mitsui R, Tani A, et al. (2012) A catalytic role of xoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLOS ONE 7: e50480
    [26] Vu HN, Subuyuj GA, Vijayakumar S, et al. (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 198: 1250–1259. doi: 10.1128/JB.00937-15
    [27] Fitriyanto NA, Nakamura M, Muto S, et al. (2011) Ce3+-induced exopolysaccharide production by Bradyrhizobium sp. MAFF211645. J Biosci Bioeng 111: 146–152. doi: 10.1016/j.jbiosc.2010.09.008
    [28] Zhuang WQ, Fitts JP, Ajo-Franklin CM, et al. (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 33: 327–335. doi: 10.1016/j.copbio.2015.03.019
    [29] Beolchini F, Fonti V, Dell’Anno A, et al. (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manage 32: 949–956. doi: 10.1016/j.wasman.2011.10.014
    [30] Bossard PP, Bachofen R, Brandl H. (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30: 3066–3070. doi: 10.1021/es960151v
    [31] Becker S, Bullmann M, Dietze HJ, et al. (1986) Mass spectrographic determination of selected chemical elements by microbial leaching of zircon. Fresenius Z Anal Chem 324:37-42 [in German]. doi: 10.1007/BF00469631
    [32] Dudeney AWL, Sbai ML (1993) Bioleaching of rare-earth-bearing phosphogypsum. In: Torma AE, Wey JE, Lakshmanan VL (eds.) Biohydrometallurgical Technologies. The Minerals, Metals, & Materials Society. Jackson Hole, 39–47.
    [33] Glombitza F, Iske U, Bullmann M, et al. (1988) Bacterial leaching of zircon mineral for obtaining trace and Rare Earth Elements (REE). In: Norris PR, Kelly DP (eds.) Biohydrometallurgy. Proceedings of the International Symposium Warwick 1987. Science and Technology Letters, Kew Surrey, UK, 407–418.
    [34] Iske U, Bullmann M, Glombitza F (1987) Organoheterotrophic leaching of resistant materials. Acta Biotechnol 7: 401–407 [in German].
    [35] Ibrahim HA, El-Sheikh EM (2011) Bioleaching treatment of Abu Zeneima uraniferous gibbsite ore material for recovering U, REEs, Al and Zn. Res J Chem Sci 1: 55–66.
    [36] Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136: 16–23. doi: 10.1016/j.biortech.2013.03.070
    [37] Hewedy MA, Rushdy AA, Kamal NM (2013) Bioleaching of rare earth elements and uranium from Sinai soil, Egypt using actinomycetes. Egypt J Hosp Med 53: 909–917. doi: 10.12816/0001653
    [38] Muravyov MI, Bulaev AG, Melamud VS, et al. (2015) Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Mikrobiologiya 84: 216–224.
    [39] Muehe EM, Schmidt C, He J, et al. (2015) Microbially supported recovery of precious metals and rare earth elements from urban household waste incineration slag. Adv Mat Res 1130: 652–655.
    [40] Amin MM, El-Aassy IE, El-Feky MG, et al. (2014) Fungal leaching of rare earth elements from lower carboniferous shales, southwestern Sinai, Egypt. Roman J Biophys 24: 25–41.
    [41] Brisson VL, Zhuang WQ, Alvarez-Cohen L (2015) Bioleaching of rare earths elements from monazite sands. Biotechnol Bioeng 113: 339–348.
    [42] Tsaplina IA, Panyushkina AE, Grigoreva NV, et al. (2015) Growth of acidophilic chemolithotrophic microbial communities and sulfur oxidation in the presence of coal ashes. Microbiology 84: 177–189. doi: 10.1134/S0026261715020174
    [43] Hassanien WAG, Desouky OAN, Hussien SSA (2014) Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol 11: 809–823.
    [44] Desouky OA, El-Mougith AA, Hassanien WA, et al. (2011) Extraction of some strategic elements from thorium-uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arab J Chem [in press].
    [45] Sapsford DJ, Bowell RJ, Geroni JN, et al. (2012) Factors influencing the release rate of uranium, thorium, yttrium, and rare earth elements from low grade ore. Miner Eng 39: 165–172 doi: 10.1016/j.mineng.2012.08.002
    [46] Peelman S, Sun ZHI, Sietsma J, et al. (2014) Leaching of rare earth elements: Past and present. Proceedings of the 1st ERES 2014 – International Conference on European Rare Earth Resources (ERES 2014), Milos, Greece, Sept 4–7, 446–456.
    [47] Mey S, Kutschke S, Pollmann K (2015) Microbial leaching of rare earth elements from fluorescent phosphor. Abstracts of the VAAM-Jahrestagung 2014, Dresden, Germany, Oct 5–8, 2014, 78–79.
    [48] Hopfe S, Kutschke S, Möckel R, et al. (2015a) Bioleaching of rare earth elements from fluorescent phosphor with the tea fungus Kombucha. Goldschmidt Abstracts 2015:1307.
    [49] Hopfe S, Kutschke S, Pollmann K, et al. (2015b) Screening of different microorganisms for the biological leaching of rare earth elements from fluorescent phosphor. Proceedings of the World Congress on New Technologies (Newtech 2015), Barcelona, Spain, July 15–17, 2015, 120-1 to 120-2.
    [50] European Commission (2013) Reducing the EU's dependency on raw materials: European Innovation Partnership launched. Press Release Database, Brussels, Belgium. Available from: http://europa.eu/rapid/press-release_MEMO-13-92_en.htm.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9896) PDF downloads(1881) Cited by(41)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog