Citation: Payal A. Shah, John Goldberg. Novel Approaches to Pediatric Cancer: Immunotherapy[J]. AIMS Medical Science, 2015, 2(2): 104-117. doi: 10.3934/medsci.2015.2.104
[1] | Herbst RS, Soria JC, Kowanetz M, et al. (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515: 563-567. doi: 10.1038/nature14011 |
[2] | Tumeh PC, Harview CL, Yearley JH, et al. (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515: 568-571. doi: 10.1038/nature13954 |
[3] | Ansell SM, Lesokhin AM, Borrello I, et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372: 311-319. doi: 10.1056/NEJMoa1411087 |
[4] | Coley WB (1907) Sarcoma of the Long Bones: The Diagnosis, Treatment and Prognosis, with a Report of Sixty-Nine Cases. Ann Surg 45: 321-368. |
[5] | Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29: 4828-4836. doi: 10.1200/JCO.2011.38.0899 |
[6] | Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13: 5. |
[7] | Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12: 252-264. doi: 10.1038/nrc3239 |
[8] | de Pasquale MD, Castellano A, de Sio L, et al. (2011) Bevacizumab in pediatric patients: how safe is it? Anticancer Res 31: 3953-3957. |
[9] | Okada K, Yamasaki K, Tanaka C, et al. (2013) Phase I study of bevacizumab plus irinotecan in pediatric patients with recurrent/refractory solid tumors. Jpn J Clin Oncol 43: 1073-1079. doi: 10.1093/jjco/hyt124 |
[10] | Ebb D, Meyers P, Grier H, et al. (2012) Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J Clin Oncol 30: 2545-2551. doi: 10.1200/JCO.2011.37.4546 |
[11] | Fry TJ, Lankester AC (2010) Cancer immunotherapy: will expanding knowledge lead to success in pediatric oncology? Hematol Oncol Clin North Am 24: 109-127. doi: 10.1016/j.hoc.2009.11.010 |
[12] | Dalziel M, Crispin M, Scanlan CN, et al. (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343: 1235681. doi: 10.1126/science.1235681 |
[13] | Kanda Y, Yamada T, Mori K, et al. (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17: 104-118. |
[14] | Morris MJ, Divgi CR, Pandit-Taskar N, et al. (2005) Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin Cancer Res 11: 7454-7461. doi: 10.1158/1078-0432.CCR-05-0826 |
[15] | Linden O, Hindorf C, Cavallin-Stahl E, et al. (2005) Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res 11: 5215-5222. doi: 10.1158/1078-0432.CCR-05-0172 |
[16] | Sharkey RM, Brenner A, Burton J, et al. (2003) Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med 44: 2000-2018. |
[17] | Boerman OC, Koppe MJ, Postema EJ, et al. (2007) Radionuclide therapy of cancer with radiolabeled antibodies. Anticancer Agents Med Chem 7: 335-343. doi: 10.2174/187152007780618126 |
[18] | Spigel DR, Ervin TJ, Ramlau RA, et al. (2013) Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31: 4105-4114. doi: 10.1200/JCO.2012.47.4189 |
[19] | Kim ES, Neubauer M, Cohn A, et al. (2013) Docetaxel or pemetrexed with or without cetuximab in recurrent or progressive non-small-cell lung cancer after platinum-based therapy: a phase 3, open-label, randomised trial. Lancet Oncol 14: 1326-1336. doi: 10.1016/S1470-2045(13)70473-X |
[20] | Attias D, Weitzman S (2008) The efficacy of rituximab in high-grade pediatric B-cell lymphoma/leukemia: a review of available evidence. Curr Opin Pediatr 20: 17-22. doi: 10.1097/MOP.0b013e3282f424b0 |
[21] | Barth MJ, Goldman S, Smith L, et al. (2013) Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a Children's Oncology Group report. Br J Haematol 162: 678-683. doi: 10.1111/bjh.12434 |
[22] | Moreno L, Vaidya SJ, Pinkerton CR, et al. (2013) Long-term follow-up of children with high-risk neuroblastoma: the ENSG5 trial experience. Pediatr Blood Cancer 60: 1135-1140. doi: 10.1002/pbc.24452 |
[23] | Yalcin B, Kremer LC, Caron HN, et al. (2013) High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma. Cochrane Database Syst Rev 8: CD006301. |
[24] | Yu AL, Gilman AL, Ozkaynak MF, et al. (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363: 1324-1334. doi: 10.1056/NEJMoa0911123 |
[25] | Ozkaynak MF, Sondel PM, Krailo MD, et al.(2000) Phase I study of chimeric human/murine anti-ganglioside G(D2) monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children's Cancer Group Study. J clin oncol 18: 4077-4085. |
[26] | Chen X, Soma LA, Fromm JR (2013) Targeted therapy for Hodgkin lymphoma and systemic anaplastic large cell lymphoma: focus on brentuximab vedotin. Onco Targets Ther 7: 45-56. |
[27] | Brotelle T, Lemal R, Molucon-Chabrot C, et al. (2014) [Gemtuzumab ozogamicin for treatment of acute myeloid leukemia]. Bull Cancer 101: 211-218. |
[28] | Daver N, O'Brien S (2013) Novel therapeutic strategies in adult acute lymphoblastic leukemia--a focus on emerging monoclonal antibodies. Curr Hematol Malig Rep 8: 123-131. doi: 10.1007/s11899-013-0160-7 |
[29] | Kreitman RJ, Pastan I (2011) Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 17: 6398-6405. doi: 10.1158/1078-0432.CCR-11-0487 |
[30] | Mussai F, Campana D, Bhojwani D, et al. (2010) Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol 150: 352-358. doi: 10.1111/j.1365-2141.2010.08251.x |
[31] | Thomas X (2014) Blinatumomab: a new era of treatment for adult ALL? Lancet Oncol 16: 6-7 |
[32] | Topp MS, Kufer P, Gokbuget N, et al. (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29: 2493-2498. doi: 10.1200/JCO.2010.32.7270 |
[33] | Shah AH, Bregy A, Heros DO, et al. (2013) Dendritic cell vaccine for recurrent high-grade gliomas in pediatric and adult subjects: clinical trial protocol. Neurosurgery 73: 863-867. doi: 10.1227/NEU.0000000000000107 |
[34] | Ciocca DR, Cayado-Gutierrez N, Maccioni M, et al. (2012) Heat shock proteins (HSPs) based anti-cancer vaccines. Curr Mol Med 12: 1183-1197. doi: 10.2174/156652412803306684 |
[35] | Yang I, Fang S, Parsa AT (2010) Heat shock proteins in glioblastomas. Neurosurg Clin N Am 21: 111-123. doi: 10.1016/j.nec.2009.09.002 |
[36] | Graner MW, Bigner DD (2006) Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology. Expert Rev Anticancer Ther 6: 679-695. doi: 10.1586/14737140.6.5.679 |
[37] | Hodi FS, O'Day SJ, McDermott DF, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711-723. doi: 10.1056/NEJMoa1003466 |
[38] | Kantoff PW, Schuetz TJ, Blumenstein BA, et al. (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28: 1099-1105. doi: 10.1200/JCO.2009.25.0597 |
[39] | Heimberger AB, Sampson JH (2009) The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther 9: 1087-1098. doi: 10.1517/14712590903124346 |
[40] | Fest S, Huebener N, Bleeke M, et al. (2009) Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer 125: 104-114. doi: 10.1002/ijc.24291 |
[41] | Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117: 1195-1203. doi: 10.1172/JCI31205 |
[42] | Napolitani G, Rinaldi A, Bertoni F, et al. (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6: 769-776. doi: 10.1038/ni1223 |
[43] | Shen L, Evel-Kabler K, Strube R, et al. (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat biotechnol 22: 1546-1553. doi: 10.1038/nbt1035 |
[44] | Gilboa E (2004) Knocking the SOCS1 off dendritic cells. Nature biotechnology 22: 1521-1522. doi: 10.1038/nbt1204-1521 |
[45] | Cohen N, Mouly E, Hamdi H, et al. (2006) GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 107: 2037-2044. doi: 10.1182/blood-2005-07-2760 |
[46] | Konkankit VV, Kim W, Koya RC, et al. (2011) Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway. J Transl Med 9: 192. doi: 10.1186/1479-5876-9-192 |
[47] | Chou J, Voong LN, Mortales CL, et al. (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35: 131-141. doi: 10.1097/CJI.0b013e31824300c7 |
[48] | Chang CN, Huang YC, Yang DM, et al. (2011) A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci 18: 1048-1054. doi: 10.1016/j.jocn.2010.11.034 |
[49] | Cho DY, Yang WK, Lee HC, et al. (2012) Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 77: 736-744. doi: 10.1016/j.wneu.2011.08.020 |
[50] | Liau LM, Prins RM, Kiertscher SM, et al. (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11: 5515-5525. doi: 10.1158/1078-0432.CCR-05-0464 |
[51] | Phuphanich S, Wheeler CJ, Rudnick JD, et al. (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62: 125-135. doi: 10.1007/s00262-012-1319-0 |
[52] | Wheeler CJ, Black KL, Liu G, et al. (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68: 5955-5964. doi: 10.1158/0008-5472.CAN-07-5973 |
[53] | Yu JS, Wheeler CJ, Zeltzer PM, et al. (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61: 842-847. |
[54] | Dannull J, Haley NR, Archer G, et al. (2013) Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest 123: 3135-3145. |
[55] | Slingluff CL, Jr., Lee S, Zhao F, et al. (2013) A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res 19: 4228-4238. doi: 10.1158/1078-0432.CCR-13-0002 |
[56] | Dillman R, Barth N, Selvan S, et al. (2004) Phase I/II trial of autologous tumor cell line-derived vaccines for recurrent or metastatic sarcomas. Cancer Biother Radiopharm 19: 581-588. doi: 10.1089/1084978042484812 |
[57] | Perroud MW, Jr., Honma HN, Barbeiro AS, et al. (2011) Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study. J Exp Clin Cancer Res 30: 65. doi: 10.1186/1756-9966-30-65 |
[58] | Navada SC, Steinmann J, Lubbert M, et al. (2014) Clinical development of demethylating agents in hematology. J Clin Invest 124: 40-46. doi: 10.1172/JCI69739 |
[59] | Burdach S, van Kaick B, Laws HJ, et al. (2000) Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol 11: 1451-1462. |
[60] | Wu R, Forget MA, Chacon J, et al. (2012) Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 18: 160-175. doi: 10.1097/PPO.0b013e31824d4465 |
[61] | Bridgeman JS, Hawkins RE, Hombach AA, et al. (2010) Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 10: 77-90. doi: 10.2174/156652310791111001 |
[62] | Grupp SA, Prak EL, Boyer J, et al. (2012) Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clin Cancer Res 18: 6732-6741. doi: 10.1158/1078-0432.CCR-12-1432 |
[63] | Peres E, Wood GW, Poulik J, et al. (2008) High-dose chemotherapy and adoptive immunotherapy in the treatment of recurrent pediatric brain tumors. Neuropediatrics 39: 151-156. doi: 10.1055/s-0028-1093333 |
[64] | Bao L, Cowan MJ, Dunham K, et al. (2012) Adoptive immunotherapy with CMV-specific cytotoxic T lymphocytes for stem cell transplant patients with refractory CMV infections. J Immunother 35: 293-298. doi: 10.1097/CJI.0b013e31824300a2 |
[65] | Park JR, Digiusto DL, Slovak M, et al. (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15: 825-833. |
[66] | Ramos CA, Savoldo B, Dotti G (2014) CD19-CAR Trials. Cancer J 20: 112-118. doi: 10.1097/PPO.0000000000000031 |
[67] | Maude SL, Frey N, Shaw PA, et al. (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371: 1507-1517. doi: 10.1056/NEJMoa1407222 |
[68] | Tasian SK, Pollard JA, Aplenc R (2014) Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Front Oncol 4: 55. |
[69] | Hoffman LM, Gore L (2014) Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE((R)) Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. Front Oncol 4: 63. |
[70] | Hamanishi J, Mandai M, Iwasaki M, et al. (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104: 3360-3365. doi: 10.1073/pnas.0611533104 |
[71] | Dong H, Zhu G, Tamada K, et al. (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5: 1365-1369. doi: 10.1038/70932 |
[72] | Toomer KH, Chen Z (2014) Autoimmunity as a Double Agent in Tumor Killing and Cancer Promotion. Front Immunol 5: 116. |
[73] | Wolchok JD, Chan TA (2014) Cancer: Antitumour immunity gets a boost. Nature 515: 496-498. doi: 10.1038/515496a |
[74] | Parsa AT, Waldron JS, Panner A, et al. (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13: 84-88. doi: 10.1038/nm1517 |
[75] | Shen JK, Cote GM, Choy E, et al. (2014) Programmed cell death ligand 1 expression in osteosarcoma. Cancer Immunol Res 2: 690-698. doi: 10.1158/2326-6066.CIR-13-0224 |
[76] | Gilboa E, McNamara J, 2nd, Pastor F (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res 19: 1054-1062. doi: 10.1158/1078-0432.CCR-12-2067 |
[77] | Chatterton Z, Burke D, Emslie KR, et al. (2014) Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic leukemia. Clin Chem 60: 995-1003. doi: 10.1373/clinchem.2013.219956 |
[78] | Ahsan S, Raabe EH, Haffner MC, et al. (2014) Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma. Acta Neuropathol Commun 2: 59. doi: 10.1186/2051-5960-2-59 |