
Citation: Neha Sinha, Mark A. Seeley, Daniel S. Horwitz, Hemil Maniar, Andrea H. Seeley. Pediatric Orthogenomics: The Latest Trends and Controversies[J]. AIMS Medical Science, 2017, 4(2): 192-216. doi: 10.3934/medsci.2017.2.192
[1] | Sara S. Alzaid, Pawan Kumar Shaw, Sunil Kumar . A numerical study of fractional population growth and nuclear decay model. AIMS Mathematics, 2022, 7(6): 11417-11442. doi: 10.3934/math.2022637 |
[2] | Muhamad Deni Johansyah, Asep K. Supriatna, Endang Rusyaman, Jumadil Saputra . Application of fractional differential equation in economic growth model: A systematic review approach. AIMS Mathematics, 2021, 6(9): 10266-10280. doi: 10.3934/math.2021594 |
[3] | Mdi Begum Jeelani, Kamal Shah, Hussam Alrabaiah, Abeer S. Alnahdi . On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies. AIMS Mathematics, 2023, 8(11): 27268-27290. doi: 10.3934/math.20231395 |
[4] | Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319 |
[5] | Xiaoyong Xu, Fengying Zhou . Orthonormal Euler wavelets method for time-fractional Cattaneo equation with Caputo-Fabrizio derivative. AIMS Mathematics, 2023, 8(2): 2736-2762. doi: 10.3934/math.2023144 |
[6] | Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058 |
[7] | Ricardo Almeida . Variational problems of variable fractional order involving arbitrary kernels. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028 |
[8] | Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi . Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259 |
[9] | Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372 |
[10] | Iqbal M. Batiha, Abeer A. Al-Nana, Ramzi B. Albadarneh, Adel Ouannas, Ahmad Al-Khasawneh, Shaher Momani . Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia's infections. AIMS Mathematics, 2022, 7(7): 12842-12858. doi: 10.3934/math.2022711 |
Fractional calculus (FC) is not a new research area; in reality, it has almost the same history as classical calculus. It motivates the study of derivatives and integrals of fractional order (FO). The history of FC was started in 1695 and appreciated during last few decades, when L'Hopital's question to Leibniz about the differentiation of d12dx(x) [1]. For this, at that time, dated 30 September 1695, Leibniz responded to L'Hopital that "This is an apparent Paradox from which, one day, useful consequences will be drawn" and that was the birth of FC. After that, this concept of fractional differentiation, fractional integration, and its application has found in many numerous areas of the research field of sciences and engineering, especially in control engineering, electromagnetism, signal processing, fluid mechanics, diffusion process, biosciences, statistical, and continuum mechanics and many more. Also, from time to time, FC has been generalized by many researchers and mathematicians, namely Euler, Laplace, Lagrange, Fourier, Riemann, and many others. The differentiation of FO β>0 has various definitions. But Riemann Liouville (RL) derivative and Caputo's derivative are the old and most commonly used. The CFD is used for our work as it has some advantage in dealing with the IVP of fractional differential equation of non-integer order β>0. Also, many authors [2,3] have given the existence and uniqueness conditions of the IVP for FDEs.
In the study, it has been found that most of the IVP of FDEs don't have an exact scheme to find the solution, especially for non-linear FDEs. So, it becomes a challenging situation for researchers to establish some methods for finding the analytical solutions of FDEs. Therefore, many researchers have suggested several methods numerically for extended approximate solutions of integer differential equations into fractional differential equations. These schemes incorporates: fractional differential transform scheme, Adomain decomposition scheme [4], variational iteration method [5], spectral collocation scheme [6], fractional finite difference scheme [7], fractional Adams scheme [8], homotopy perturbation scheme [9], homotopy analysis scheme [10], extrapolation method [11], and many others.
In current decades, the IVP of FDEs used as a weapon to solve the various mathematical models, the epidemic model, the disease model, the dynamical system model, and many others. In recent times, Tong et al. [12] proposed fractional EM and fractional IEM, which are the generalization of classical EM and IEM for first-order IVP of FDEs. That EM has a linear convergence rate while IEM has a quadratic convergence rate. In [13] (Chapter 06), C. Milici et al. study several numerical methods for FO systems. In which, they proposed variational iteration, least squares, Euler's, and Runge-Kutta methods for the system of FDE in the CFD sense. In [14], Kumar et al. suggested a numerical scheme to demonstrate the numerical behavior of the IVP of FDEs in which one of the methods is midpoint point whose convergence rate is quadratic. In [15], Muhammad et al. developed a two-stage generalized Rk2 scheme of second order in the CFD sense. These all referred works motivate us to establish more accurate schemes to solve the IVP of FDE in the CFD sense. Also, our objective is to show, based on a few concrete examples and a few application models, that FDEs can model the physical problem more effectively than ODEs. Recently, many research article has been found that solve the real-world phenomenon in FDEs [16,17,18]. This work proposes a fractional RCM scheme for IVP of linear and non-linear FDEs of order β∈[0,1]. This scheme has a cubic convergence rate. It is the generalization of classical RCM, developed by Anthony Ralston [19,20]. This proposed scheme has a more accurate approximation compared to existing fractional EM, IEM, Midpoint method (MPM), and many others for the IVP of FDE:
CDβx+0u=g(x,u),withinitialconditionu(x0)=u0,andx∈(x0,xEnd]. | (1.1) |
Here, CDβx+0 indicates the CFD of arbitrary order β where β∈[0,1].
By using the proposed work, our main goal is to establish a novel study which is more accurate and appropriate in order to derive the approximate solution of IVP of FDEs (1.1). This scheme incorporates the algorithm, order of convergence, stability, and few numerical examples including the application to WPG model. The scheme also recognize as a type of Runge-Kutta third order method (RK3) and this is explicitly familiar with the term \enquote{One-Step} method.
The presentation of the paper is designed as follows. In Section 2, we provide some preliminary definitions and properties of fractional derivatives and integrals. Next, in Section 3, we suggest our methodology briefly and its order of convergence by following some essential lemma and theorem. Then, in Section 4, we establish the stability of the concerned scheme. After that, in Section 5, we implemented the proposed method on a few examples of linear and nonlinear IVP of FDEs in the CFD frame. In Section 6, we solved World Population Growth (WPG) model via the suggested scheme with the comparison of EM and IEM. Finally, in Section 7, we conclude our methodology with some essential annotations.
This section focuses on some basic definitions of fractional derivatives and integrals, properties, and valuable results in the RL and Caputo derivative sense. This section will be helpful in our this advancement work as this will arise the generalization of ordinary calculus [21,22,23,24,25].
Definition 2.1. [26] The FO integral in the sense of RL derivative for the function κ:[a,b]→R of arbitrary order β>0 are
Jβa+κ(ζ)=1Γ(β)∫ζaκ(p)(ζ−p)1−βdp,ζ>a,andJβb−κ(ζ)=1Γ(β)∫bζκ(p)(p−ζ)1−βdp,ζ<b, |
called the left and right RL fractional integral respectively. Here Γ(β) denotes the Euler's Gamma function.
Definition 2.2. [26,27] The FO derivatives in the RL sense for the function κ:[a,b]→R of order β>0 are
RLDβa+κ(ζ)=1Γ(n−β)dndζn∫ζa(ζ−p)n−β−1κ(p)dp,ζ>a,andRLDβb−κ(ζ)=(−1)nΓ(n−β)dndζn∫bζ(p−ζ)n−β−1κ(p)dp,ζ<b, |
called the left and right RL fractional derivative respectively, where n=1+[β] and [β] indicate the integral part of β. Particularly, if we take 0<β<1, then
RLDβa+κ(ζ)=1Γ(1−β)ddζ∫ζa(ζ−p)−βκ(p)dp,ζ>a,andRLDβb−κ(ζ)=−1Γ(1−β)ddζ∫bζ(p−ζ)−βκ(p)dp,ζ<b, |
are called the left and right RL derivatives of order β, where 0<β<1.
Definition 2.3. [26] The FO derivatives in the Caputo sense for the function κ:[a,b]→R of order β>0 are
CDβa+κ(ζ)=1Γ(n−β)∫ζa(ζ−p)n−β−1κ(n)(p)dp,ζ>a,andCDβb−κ(ζ)=(−1)nΓ(n−β)∫bζ(p−ζ)n−β−1κ(n)(p)dp,ζ<b, |
called the left and right Caputo derivative respectively, where n=1+[β].
Particularly, if we take 0<β<1, then
CDβa+κ(ζ)=1Γ(1−β)∫ζa(ζ−p)−βκ′(p)dp,ζ>a,andCDβb−κ(ζ)=−1Γ(1−β)∫bζ(p−ζ)−βκ′(p)dp,ζ<b, |
are called the left and right FO Caputo derivatives of order β, where 0<β<1.
The relation between the FO derivative in Caputo fractional derivative and Riemann-Liouville fractional derivative is
CDβa+κ(ζ)=RLDβa+κ(ζ)−n−1∑k=0κk(a)(ζ−a)k−βΓ(k−β+1),andCDβb−κ(ζ)=RLDβb−κ(ζ)−n−1∑k=0κk(b)(b−ζ)k−βΓ(k−β+1), |
where n=1+[β].
Definition 2.4. [26] The one and two parameter Mittag-Leffler function are defined by,
Eβ(ζ)=∞∑n=0ζnΓ(βn+1),β,ζ∈C;Re(β)>0,andEβ,γ(ζ)=∞∑n=0ζnΓ(βn+γ),β,γ,ζ∈C;Re(β),Re(γ)>0, |
respectively. If β∈C with Re(β)>0, then the series Eβ(ζ) is convergent for all ζ∈C. Similarly, if β,γ∈C with Re(β),Re(γ)>0, then the series Eβ,γ(ζ) is convergent for all ζ∈C.
Lemma 2.1. [26] If β, γ≥0, and Φ∈L1[a,b], then
Jβa+Jγa+Φ=Jβ+γa+Φ,Jβb−Jγb−Φ=Jβ+γb−Φ, |
holds everywhere on the interval [a,b]. If Φ(x)∈C[a,b] or 1≤β+γ, then identity holds everywhere on the interval [a,b].
Lemma 2.2. [28] If Φ∈Cn[a,b], a<b and n∈N. Moreover, If β1,β2>0 be such that, ∃ some k∈N with k≤n and β1, β1+β2∈[k−1,k]. Then,
CDβ1a+CDβ2a+Φ=CDβ1+β2a+Φ. |
Theorem 2.1. (Existence of IVP of FDE) [12] Let g(x,u) be a function that hold the condition g(x0,u(x0))=0 and also the g(x,u) is continuous on the domain R:0≤x−x0≤d, |u−u0|≤e, then the FDEs:
CDβx+0u=g(x,u),withthecondition,u(a)=u0andx∈(x0,xEnd], | (2.1) |
has at least one solution in the interval 0≤x−x0≤λ with λ=min{d,eM} and max(x,u)∈RCD1−βx+0g(x,u)<M.
Theorem 2.2. (Uniqueness of IVP of FDE) [12] Under the hypotheses of Theorem 2.1, and if gx(x,u) holds the Lipschitz condition in the variable u with Lipschitz constant 0<L,
|gx(x,u1)−gx(x,u2)|≤L|u1−u2|, |
then the FDEs (2.1) have an unique solution.
In our work, we are concerned about the approximate solution of the IVP for the linear and non-linear FDEs:
CDβx+0u=g(x,u),withinitialconditionu(x0)=u0,andx∈(x0,xEnd]. | (3.1) |
Here, we assume the derivative is in the CFD sense of FO β where β∈[0,1]. Now, with the help of Lemma 2.2, we apply suitable analogous transformation so that it becomes the classical differential equation. Then, we get the CFD of order (1−β) and the revised IVP of FDEs:
u′=CD1−βx+0g(x,u),withinitialconditionu(x0)=u0,andx∈(x0,xEnd]. | (3.2) |
Now, to discover the accurate numerical scheme to find the solution of the IVP of FDEs (3.1) is equivalent to locating the accurate numerical scheme for the IVP of FDEs (3.2). For such a precise solution of (3.2), we designed the RCM in fractional derivative operator, which we rename as fractional RCM, and it is more accurate and faster than all other linear and quadratic convergence rates like EM and IEM [12]. Below, we describe the fractional RCM.
For obtaining the approximate solution of FDE (3.2), we consider (xk,uk) be the set points and we make this points accordingly so that the mesh are equally distribute in the whole interval [a,b] where we set x0=a and xEnd=b. This idea will be good by selecting an integer which is non-negative say N and assuming the mesh points. So, By following RCM, we construct the following algorithm:
{xk=x0+kh,fork=0,1,2,…,Nh=xk+1−xk,uk+1=uk+h9(2l1+2l2+4l3),l1=CD1−βx+0g(x,uk)|x=xk,l2=CD1−βx+0g(x+h2,uk+h2l1)|x=xk,l3=CD1−βx+0g(x+3h4,uk+3h4l2)|x=xk. |
Also with the use of Matlab, the RCM algorithm is proven to be an effective and much more accurate compared to linear and quadratic schemes.
Before showing the convergence of our suggested methodology, first we establish few relevant results which will be essential in the establishment of the convergence of the methods.
Lemma 3.1. [12] If gx(x,u) be a function that hold the condition of Lipschitz in the variable of u, for some Lipschitz constant L>0,
|gx(x,u1)−gx(x,u2)|≤L|u1−u2|, |
and also fulfil the conditions of Theorem 2.1, then G(x,u)=CD1−βx+0g(x,u) also holds the condition of Lipschitz in the of variable u, for some another Lipschitz constant M>0,
|G(x,u1)−G(x,u2)|≤M|u1−u2|. |
Lemma 3.2. If the function G(x,y) follows the condition of Lipschitz for the variable u and also satisfies the condition of Theorem 2.1, then
τ(x,u)=29G(x,u)+13G(x+h2,u+h2G(x,u))+49G(x+3h4,u+3h4G(x+3h4,u+3h4G(x+h2,u+h2G(x,u)))), | (3.3) |
also satisfies the condition of Lipschitz in the variable of u.
Proof.
|τ(x,u1)−τ(x,u2)|≤29|G(x,u1)−G(x,u2)|+13|G(x+h2,u1+h2G(x,u1))−G(x+h2,u2+h2G(x,u2))|+49|G(x+3h4,u1+3h4G(x+h2,u1+h2G(x,y)))−G(x+3h4,u2+3h4G(x+h2,u2+h2G(x,y)))|≤M|u1−u2|+hM22|u1−u2|+h2M36|u1−u2|=M(1+hM2!+h2M23!)|u1−u2|=Lτ|u1−u2|, |
So, |τ(x,u1)−τ(x,u2)|≤Lτ|u1−u2|, where Lτ=M(1+hM2!+h2M23!).
Theorem 3.1. Consider gx(x,u) be the function that holds the condition of Lipschitz in the variable of u with Lipschitz constant L>0,
|gx(x,u1)−gx(x,u2)|≤L|u1−u2|, |
and u(x) be the unique solution of IVP of FDEs (3.2).
Let uk be the generated solution approximation by Ralston's Cubic method for some non-negative integer N. Then for each k=0,1,2,…N,
u(xk)−uk=O(h3). |
Proof. Let us take RCM iterative formula which is based on uk=u(xk), then we get
ˉuk+1=u(xk)+h9[2CD1−βx+0g(x,uk)|x=xk+3CD1−βx+0g(x+h2,uk+h2CD1−βx+0g(x,uk)|x=xk)|x=xk4CD1−βx+0g(x+3h4,uk+3h4CD1−βx+0g(x+h2,uk+h2CD1−βx+0g(x,uk)|x=xk)|x=xk)|x=xk]. |
Assuming, G(x,u)=CD1−βx+0g(x,u), then
ˉuk+1=u(xk)+h9[2G(xk,uk)+3G(xk+h2,uk+h2u′(xk))+4G(xk+3h4,uk+3h4G(xk+h2,uk+h2u′(xk)))]=u(xk)+2h9G(xk,uk)+h3[G(xk,uk)+(h2Gx(xk,uk)+h2Gu(xk,uk)u′(xk))+12!((h2)2Gxx(xk,uk)+h22u′(xk)Gxu(xk,uk)+(h2)2(u′(xk))2Guu(xk,uk))+O(h3)]+4h9[G(xk,uk)+(3h4Gx(xk,uk)+3h4(G(xk,uk)+h2Gx(xk,uk)+h2u′(xk)Gu(xk,uk))Gu(xk,uk))+12!(3h4)2(Gxx(xk,uk)+2Gxu(xk,uk)(G(xk,uk)+O(h))+Guu(xk,uk)(G(xk,uk)+O(h))2)+13!(3h4)3(Gxxx(ξ,η)+3(G(xk,uk)+O(h))Gxxu(ξ,η)+3(G(xk,uk)+O(h))2Gxuu(ξ,η)+(G(xk,uk)+O(h))3Guuu(ξ,η))]=u(xk)+hu′(xk)+h22[Gx(xk,uk)+u′(xk)Gu(xk,uk)]+h33![Gxx(xk,uk)+2u′(xk)Gxu(xk,uk)+Guu(xk,uk)(u′(xk))2+Gx(xk,uk)Gy(xk,uk)+u′(xk)(Gu(xk,uk))2]+O(h4)=u(xk)+hu′(xk)+h22u″(xk)+h33!u‴(xk)+O(h4). | (3.4) |
By using the Taylor's series, the exact form of the solution will be:
u(xk+1)=u(xk)+hu′(xk)+h22!u″(xk)+h33!u‴(xk)+h44!u⁗(xk)+… | (3.5) |
Now, from the expression (3.4) and (3.5), we obtained |u(xk+1)−ˉuk+1|=O(h4). So, we get
|u(xk+1)−ˉuk+1|≤Kh4. |
Let us assume that,
τ=29G(x,u)+13G(x+h2,u+h2G(x,u))+49G(x+3h4,u+3h4G(x+3h4,u+3h4G(x+h2,u+h2G(x,u)))), |
then using the stated Lemmas 3.1 and 3.2, we have
|ˉuk+1−uk+1|≤|u(xk)−uk|+h|τ(xk,u(xk))−τ(xk,uk)|≤(1+hLτ)|u(xk)−uk|. |
Now,
|u(xk+1)−uk+1|≤|u(xk+1)−ˉuk+1|+|ˉuk+1−uk+1|≤Kh4+(1+hLτ)|u(xk)−uk|. |
So, we get the estimation, |Ek+1|=(1+hLτ)|Ek|+Kh4.
Thus, we get the recursion relation,
|Ek|≤(1+hLτ)k|E0|+Kh3Lτ[(1+hLτ)k−1]. |
As, xk−x0=khandE0=0then,(1+hLτ)k≤ekhLτ=ϕτ.
So, we have |Ek|≤Kh3Lτ(ϕτ−1).
Therefore, |u(xk)−uk|=O(h3).
This conclude that RCM has a cubic convergence rate.
In this section, let us look at the numerical stability of our proposed scheme. Consider the IVP of FDE 3.2 in the simplest form by assuming G(x,u)=CD1−βx+0g(x,u) as,
u′=G(x,u),withinitialconditionu(x0)=u0,andx∈[x0,xEnd]. | (4.1) |
The numerical solution of the RCM scheme is given by the formula:
{uk+1=uk+h9(2l1+2l2+4l3),l1=G(xk,uk),l2=G(xk+h2,uk+h2l1),l3=G(xk+3h4,uk+3h4l2). |
In the simplest form, the concept of absolute stability [29,30] is based on the analysis of the behavior, according to the values of the step h, of the numerical solutions of the model equation:
u′(x)=μu. |
The linearized equation uses G(x,u)=μu. In this case,
l1=μuk,l2=μ(1+μh2)uk,l3=μ(1+3μh4(1+μh2))uk. |
These combine to form,
uk+1=[1+(hμ)+(hμ)22+(hμ)36]uk=ξ(hμ)uk. |
Let us put hμ=z, then the absolute stability region is the set
{z∈C:|ξ(hμ)|≤1}. |
Let us examine the stability region of the numerical scheme RCM. Here, the stability region is the set of points such that |ξ(hμ)|≤1, which is shown in the Figure 1. Note that for stability, the choice of h must guarantee that |hμ| is inside the region. Furthermore, the real parts must be nonnegative for stability (or marginal stability). Therefore the regions to the left of the imaginary axis are the only ones of relevance.
In this section, we illustrate how our proposed scheme operates in practice. We consider few examples of linear as well as non-linear IVP for FDEs in CFD form and solved numerically using the RCM scheme. First we compare the numerical solution with the analytical ones and then compare with the existing EM and IEM schemes. All the numerical computation have been carried out in MATLAB R2016a version. Now, before proceeding of numerical examples, we define few terminology.
The absolute error used in the table is defined as, eN=maxj∈Z|u(xj)−uN(xj)|. The used estimated oder of convergence (EOC) is defined by the quantity as,
EOC=log2‖u−uN‖∞‖u−u2N‖∞, |
where uN and u2N are the approximate solution at two distinct grids, with step length h and h2, respectively.
In this subsection, we consider four examples of fractional IVPs of FDEs. In these four examples, the Examples 5.1 and 5.2 are linear, Examples 5.3 and 5.4 are non-linear. Here, we consider in Examples 5.1–5.3, the FDE has exact solution and Example 5.4, the FDE has no exact solution. These all FDEs are solved using the proposed fractional RCM including the proper comparison with the existing fractional EM and IEM.
Example 5.1. Consider the following fractional linear initial value problem (IVP) of FDE:
CDβ0+u=x3,0<x≤1,u(0)=0. | (5.1) |
For β=12, the exact solution of (5.1) is,
u(x)=Γ(4)Γ(4.5)x3.5. |
Using our suggested scheme for β=12 and with step length h=110, the numerical solution of (5.1) are graphically represented in the Figure 2 and their exact solution, approximate solution are illustrated in the Table 1. Together with this, the absolute error visualization is indicated in Figure 3. The EOC and CPU performance of the schemes is tabulated in Table 2, and its plot is illustrated in Figure 4.
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.00 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.10 | 0.000163 | 0.000000 | 0.000163 | 0.000285 | 0.000122 | 0.000157 | 0.000006 |
0.20 | 0.001845 | 0.000571 | 0.001275 | 0.002186 | 0.000340 | 0.001837 | 0.000009 |
0.30 | 0.007628 | 0.003801 | 0.003828 | 0.008250 | 0.000622 | 0.007617 | 0.000011 |
0.40 | 0.020879 | 0.012700 | 0.008179 | 0.021835 | 0.000956 | 0.020866 | 0.000013 |
0.50 | 0.045593 | 0.030970 | 0.014624 | 0.046927 | 0.001334 | 0.045578 | 0.000015 |
0.60 | 0.086305 | 0.062885 | 0.023420 | 0.088057 | 0.001752 | 0.086288 | 0.000017 |
0.70 | 0.148030 | 0.113230 | 0.034800 | 0.150237 | 0.002207 | 0.148012 | 0.000018 |
0.80 | 0.236223 | 0.187245 | 0.048978 | 0.238919 | 0.002696 | 0.236203 | 0.000020 |
0.90 | 0.356743 | 0.290592 | 0.066151 | 0.359959 | 0.003216 | 0.356722 | 0.000021 |
1.00 | 0.515830 | 0.429326 | 0.086505 | 0.519596 | 0.003766 | 0.515808 | 0.000022 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.08650 | --- | 0.00005 | 0.00377 | --- | 0.00006 | 0.00002 | --- | 0.00008 |
20 | 0.04419 | 0.96891 | 0.00011 | 0.00094 | 2.00107 | 0.00024 | 0.00000 | 2.97066 | 0.00032 |
40 | 0.02233 | 0.98472 | 0.00029 | 0.00024 | 2.00039 | 0.00067 | 0.00000 | 2.97987 | 0.00100 |
80 | 0.01123 | 0.99242 | 0.00006 | 0.00034 | 2.00014 | 0.00068 | 0.00000 | 2.98607 | 0.00115 |
160 | 0.00563 | 0.99623 | 0.00117 | 0.00001 | 2.00005 | 0.00194 | 0.00000 | 2.99030 | 0.00284 |
320 | 0.00282 | 0.99812 | 0.00244 | 0.00000 | 2.00002 | 0.00469 | 0.00000 | 2.99321 | 0.00578 |
640 | 0.00141 | 0.99906 | 0.00490 | 0.00000 | 2.00001 | 0.01049 | 0.00000 | 2.99524 | 0.01400 |
1280 | 0.00071 | 0.99953 | 0.00862 | 0.00000 | 2.00000 | 0.01811 | 0.00000 | 2.99664 | 0.02656 |
2560 | 0.00035 | 0.99977 | 0.01213 | 0.00000 | 2.00000 | 0.02224 | 0.00000 | 2.99744 | 0.04221 |
In the Figure 2, it represents the comparison between the exact and numerical result of our proposed scheme RCM with EM and IEM. Table 1 indicates the exact value, approximate value and absolute error of EM, IEM, and our proposed scheme RCM in which we observe that the numerical solution of RCM are more accurate to the exact solution. Figure 3 represents the absolute error of EM, IEM and our proposed scheme RCM, in which we notice that RCM has minimum absolute error in the comparison of EM and IEM, while IEM has second order of convergence. The order of convergence of our suggested scheme RCM, EM, IEM is tabulated in the Table 2 and graphically shown in the Figure 4. From there, it is clear that the order of EM is linear, the order of IEM is quadratic and the order of RCM is cubic. So, RCM is better than the EM and IEM. Next, in the Figure 4, the blue line indicates the linear convergence of EM, the magenta line indicates the quadratic convergence of IEM, and the green line indicates the cubic convergence of RCM respectively.
From our stated Example 5.1, the conclusion is that RCM is much more accurate in the comparison of the EM and IEM. Similar conclusion can also be drawn in the Examples 5.2 and 5.3.
Example 5.2. Consider the following linear IVP of FDE [31]:
CDβ0+u=u,0.1<x≤1,u(0.1)=Eβ((0.1)β). | (5.2) |
For β=12, the exact solution of (5.2) is,
u(x)=Eβ(xβ). |
Using our suggested scheme for β=12 and with step length h=110, the numerical solution of (5.2) are graphically represented in the Figure 5 and their exact solution, approximate solution are illustrated in the Table 3. Together with this, the absolute error visualization is indicated in Figure 6. The EOC and CPU performance of the schemes is tabulated in Table 4, and its plot is illustrated in Figure 7.
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.10 | 1.486763 | 1.486763 | 0.000000 | 1.486763 | 0.000000 | 1.486763 | 0.000000 |
0.20 | 1.799017 | 1.813852 | 0.014835 | 1.803337 | 0.004320 | 1.799343 | 0.000326 |
0.30 | 2.107699 | 2.119910 | 0.012211 | 2.113254 | 0.005555 | 2.108071 | 0.000372 |
0.40 | 2.430043 | 2.433687 | 0.003644 | 2.436248 | 0.006205 | 2.430428 | 0.000385 |
0.50 | 2.774286 | 2.765897 | 0.008389 | 2.780962 | 0.006676 | 2.774675 | 0.000389 |
0.60 | 3.146213 | 3.123114 | 0.023099 | 3.153299 | 0.007086 | 3.146603 | 0.000390 |
0.70 | 3.550803 | 3.510572 | 0.040230 | 3.558285 | 0.007482 | 3.551193 | 0.000390 |
0.80 | 3.992836 | 3.933086 | 0.059750 | 4.000723 | 0.007887 | 3.993226 | 0.000390 |
0.90 | 4.477185 | 4.395448 | 0.081737 | 4.485498 | 0.008313 | 4.477573 | 0.000389 |
1.00 | 5.008980 | 4.902637 | 0.106343 | 5.017751 | 0.008771 | 5.009367 | 0.000387 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.09645 | --- | 0.00006 | 0.00715 | --- | 0.00007 | 0.00029 | --- | 0.00010 |
20 | 0.04997 | 0.94871 | 0.00012 | 0.00183 | 1.96664 | 0.00016 | 0.00004 | 2.89943 | 0.00022 |
40 | 0.02544 | 0.97401 | 0.00028 | 0.00046 | 1.99007 | 0.00031 | 0.00000 | 2.98186 | 0.00054 |
80 | 0.01284 | 0.98703 | 0.00033 | 0.00012 | 1.99737 | 0.00059 | 0.00000 | 3.00258 | 0.00090 |
160 | 0.00645 | 0.99354 | 0.00064 | 0.00003 | 1.99933 | 0.00181 | 0.00000 | 3.00457 | 0.00370 |
320 | 0.00323 | 0.99678 | 0.00229 | 0.00001 | 1.99983 | 0.00451 | 0.00000 | 3.00313 | 0.00711 |
640 | 0.00162 | 0.99839 | 0.00238 | 0.00000 | 1.99996 | 0.00505 | 0.00000 | 3.00178 | 0.01928 |
1280 | 0.00081 | 0.99920 | 0.00589 | 0.00000 | 1.99999 | 0.00680 | 0.00000 | 3.00095 | 0.02912 |
2560 | 0.00040 | 0.99960 | 0.00682 | 0.00000 | 2.00000 | 0.01662 | 0.00000 | 3.00009 | 0.04033 |
Example 5.3. Consider the following non-linear IVP of FDE:
CDβ1+u=(35√π32)u67,1<x≤2,u(1)=1. | (5.3) |
For β=12, the exact solution of (5.3) is,
u(x)=x3.5. |
Using our suggested scheme for β=12 and with step length h=110, the numerical solution of (5.3) are graphically represented in the Figure 8 and their exact solution, approximate solution are illustrated in the Table 5. Together with this, the absolute error visualization is indicated in Figure 9. The EOC and CPU performance of the schemes is tabulated in Table 6, and its plot is illustrated in Figure 10.
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
1.00 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
1.10 | 1.395965 | 1.350000 | 0.045965 | 1.391837 | 0.004127 | 1.395743 | 0.000221 |
1.20 | 1.892929 | 1.783674 | 0.109255 | 1.883452 | 0.009478 | 1.892442 | 0.000488 |
1.30 | 2.504965 | 2.312825 | 0.192141 | 2.488830 | 0.016135 | 2.504165 | 0.000800 |
1.40 | 3.246745 | 2.949869 | 0.296875 | 3.222565 | 0.024180 | 3.245583 | 0.001161 |
1.50 | 4.133514 | 3.707821 | 0.425693 | 4.099827 | 0.033687 | 4.131942 | 0.001571 |
1.60 | 5.181076 | 4.600266 | 0.580810 | 5.136346 | 0.044730 | 5.179043 | 0.002033 |
1.70 | 6.405768 | 5.641347 | 0.764422 | 6.348392 | 0.057377 | 6.403222 | 0.002546 |
1.80 | 7.824449 | 6.845745 | 0.978704 | 7.752755 | 0.071694 | 7.821336 | 0.003113 |
1.90 | 9.454479 | 8.228665 | 1.225814 | 9.366733 | 0.087746 | 9.450744 | 0.003735 |
2.00 | 11.313708 | 9.805821 | 1.507887 | 11.208114 | 0.105594 | 11.309296 | 0.004413 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 1.50789 | --- | 0.00006 | 0.10559 | --- | 0.00007 | 0.00441 | --- | 0.00011 |
20 | 0.80303 | 0.90901 | 0.00027 | 0.02854 | 1.88746 | 0.00045 | 0.00059 | 2.89185 | 0.00064 |
40 | 0.41481 | 0.95299 | 0.00046 | 0.00743 | 1.94236 | 0.00091 | 0.00008 | 2.94618 | 0.00117 |
80 | 0.21087 | 0.97610 | 0.00074 | 0.00189 | 1.97081 | 0.00093 | 0.00001 | 2.97319 | 0.00251 |
160 | 0.10632 | 0.98795 | 0.00109 | 0.00048 | 1.98531 | 0.00465 | 0.00000 | 2.98662 | 0.00889 |
320 | 0.05338 | 0.99395 | 0.00326 | 0.00012 | 1.99263 | 0.00564 | 0.00000 | 2.99332 | 0.00976 |
640 | 0.02675 | 0.99697 | 0.00729 | 0.00003 | 1.99631 | 0.01485 | 0.00000 | 2.99666 | 0.02247 |
1280 | 0.01339 | 0.99848 | 0.01173 | 0.00001 | 1.99815 | 0.03425 | 0.00000 | 2.99833 | 0.03725 |
2560 | 0.00670 | 0.99924 | 0.02115 | 0.00000 | 1.99908 | 0.03590 | 0.00000 | 2.99907 | 0.04107 |
Example 5.4. Consider the following IVP of FDE:
CDβ0+u=e2x,0<x≤1,u(0)=1. | (5.4) |
With the help of our suggested scheme for β=110 and with step length h=110 and h=120, the numerical solution of (5.4) is graphically shown in the Figure 11 and their approximate solutions for h=120 is illustrated in the Table 7. In this example, the absolute error is calculated as the difference between the approximate solution at N grid point and 2N grid point. The absolute error visualization is indicated in Figure 12 for h=120. The EOC and CPU performance of the schemes is tabulated in Table 8, and its plot is illustrated in Figure 13 for h=120.
EM | IEM | RCM | ||||
x | uEM | |uEM(h)−uEM(h2)| | uIEM | |uIEM(h)−uIEM(h2)| | uRCM | |uRCM(h)−uRCM(h2)| |
0.00 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
0.10 | 1.196419 | 0.005035 | 1.206748 | 0.000129 | 1.206575 | 0.000001 |
0.20 | 1.436327 | 0.011185 | 1.459271 | 0.000287 | 1.458887 | 0.000001 |
0.30 | 1.729350 | 0.018697 | 1.767703 | 0.000479 | 1.767061 | 0.000002 |
0.40 | 2.087249 | 0.027872 | 2.144423 | 0.000715 | 2.143466 | 0.000003 |
0.50 | 2.524389 | 0.039079 | 2.604549 | 0.001002 | 2.603208 | 0.000005 |
0.60 | 3.058312 | 0.052766 | 3.166549 | 0.001353 | 3.164738 | 0.000007 |
0.70 | 3.710447 | 0.069484 | 3.852977 | 0.001781 | 3.850593 | 0.000009 |
0.80 | 4.506967 | 0.089903 | 4.691383 | 0.002305 | 4.688297 | 0.000011 |
0.90 | 5.479839 | 0.114843 | 5.715413 | 0.002944 | 5.711471 | 0.000014 |
1.00 | 6.668107 | 0.145305 | 6.966167 | 0.003725 | 6.961180 | 0.000018 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.28317 | --- | 0.00003 | 0.01489 | --- | 0.00004 | 0.00014 | --- | 0.00005 |
20 | 0.14531 | 0.96258 | 0.00007 | 0.00372 | 1.99910 | 0.00007 | 0.00002 | 2.99292 | 0.00010 |
40 | 0.07358 | 0.98163 | 0.00011 | 0.00093 | 1.99977 | 0.00012 | 0.00000 | 2.99678 | 0.00019 |
80 | 0.03702 | 0.99090 | 0.00017 | 0.00023 | 1.99994 | 0.00024 | 0.00000 | 2.99847 | 0.00065 |
160 | 0.01857 | 0.99547 | 0.00028 | 0.00006 | 1.99999 | 0.00049 | 0.00000 | 2.99926 | 0.00075 |
320 | 0.00930 | 0.99774 | 0.00034 | 0.00001 | 2.00000 | 0.00063 | 0.00000 | 2.99963 | 0.00096 |
640 | 0.00465 | 0.99887 | 0.00104 | 0.00000 | 2.00000 | 0.00164 | 0.00000 | 2.99984 | 0.00190 |
1280 | 0.00233 | 0.99944 | 0.00129 | 0.00000 | 2.00000 | 0.00292 | 0.00000 | 2.99947 | 0.00471 |
2560 | 0.00116 | 0.99972 | 0.00334 | 0.00000 | 2.00000 | 0.00724 | 0.00000 | 3.00440 | 0.01124 |
In this section, we consider one application of the real-world phenomenon WPG model in the form of CFD. We solve the model numerically using our proposed scheme. Also, we discuss the benefits of FC using the WPG model.
Example 6.1. Consider the following linear IVP of FDE of WPG model [32],
CDβt+0N(t)=PN(t),t>t0, | (6.1) |
N(t0)=N0. | (6.2) |
Here N(t) suggest the number of individuals population at any time t and here our P represents the production rate where P=B−M, B indicates the rate of birth, and M indicates the rate of mortality. Now, if we assume the value of β=1 then in this case, our corresponding model will be linear population world growth model which is also famous as a classical population world growth model. The exact solution of (6.1) for β=1 is,
N(t)=N0ePt,t>0. |
Where N0 indicates the initial population at the initial time t=t0. Our fractional model is better than the classical model from the numerical perspective. We have taken the population database from the year 1920 to 2018, that is around one century from the world population sites https://www.census.gov/data/tables/time-series/demo/international-programs/historical-est-worldpop.html or https://datacommons.org/place/Earth (provided by world bank), and also one is taken by United Nations [33]. These statistical population data match our fractional model scheme for β=1.393298754843208. Also, The exact solution of (6.1) for the fractional model of population world growth model will be,
N(t)=N0Eβ(Pt),t>0. |
Now, in our classical population model scheme, the estimated value of our production rate is P≈0.013501 and for the fractional model scheme, the production rate P≈0.0034399 [34]. So, it has been found that the statistical population date value fit with the our fractional model for β=1.3932987548432.
The world population data from the year 1920 to 2018 is graphically represented in the Figure 14 and the numerical value of (6.1) for β=1 and β=1.393298754843 with the step size h=1 year is graphically shown in the Figure 15, tabulated in the Table 9. In addition to this, the absolute error visualization represented in Figure 16. From all the tables and figures, we conclude that our suggested scheme RCM is much more accurate and faster than EM and IEM.
EM | IEM | RCM | ||||||
Year(t) | Nclasical | Nfrac | NEM | Error | NIEM | Error | NRCM | Error |
1920 | 1.8600×103 | 1.8600×103 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 |
1930 | 2.1289×103 | 1.9909×103 | 1.9799×103 | 1.1060×101 | 1.9892×103 | 1.7315×100 | 1.9904×103 | 4.8870×10−1 |
1940 | 2.4366×103 | 2.2169×103 | 2.2020×103 | 1.4921×101 | 2.2152×103 | 1.7413×100 | 2.2164×103 | 4.8880×10−1 |
1950 | 2.7888×103 | 2.5173×103 | 2.4987×103 | 1.8625×101 | 2.5156×103 | 1.7390×100 | 2.5168×103 | 4.8882×10−1 |
1960 | 3.1919×103 | 2.8943×103 | 2.8717×103 | 2.2615×101 | 2.8926×103 | 1.7320×100 | 2.8938×103 | 4.8884×10−1 |
1970 | 3.6533×103 | 3.3561×103 | 3.3290×103 | 2.7117×101 | 3.3544×103 | 1.7219×100 | 3.3556×103 | 4.8885×10−1 |
1980 | 4.1814×103 | 3.9147×103 | 3.8824×103 | 3.2308×101 | 3.9130×103 | 1.7090×100 | 3.9142×103 | 4.8886×10−1 |
1990 | 4.7858×103 | 4.5858×103 | 4.5474×103 | 3.8363×101 | 4.5841×103 | 1.6930×100 | 4.5853×103 | 4.8888×10−1 |
2000 | 5.4775×103 | 5.3885×103 | 5.3431×103 | 4.5471×101 | 5.3869×103 | 1.6737×100 | 5.3881×103 | 4.8889×10−1 |
2010 | 6.2693×103 | 6.3462×103 | 6.2923×103 | 5.3847×101 | 6.3445×103 | 1.6505×100 | 6.3457×103 | 4.8891×10−1 |
2020 | 7.1755×103 | 7.4865×103 | 7.4228×103 | 6.3739×101 | 7.4849×103 | 1.6229×100 | 7.4860×103 | 4.8893×10−1 |
From the year 1920 to June 2018, as per \enquote{The Census Bureau's International Data Base} indicates that the world population data reached around 7.5 billion. This data is very accurate and near to our fractional model for the FO β=1.3932987548432. So, by our scheme, the numerical population data gives a more precise and appropriate solution than the fractional EM and fractional IEM.
In this paper, the fractional RCM scheme is established for the IVP of FDE in CFD sense for the first time. Here, we do some analogous conversion of CFD of order β into an ODE of integer order one, and then we operate our proposed scheme in the revised problem. The numerical scheme was used directly without consuming the perturbation, linearization, or other assumptions. The convergence analysis and stability analysis of the scheme has been proved. Also, in this work, we demonstrated a comparative numerical study of our proposed scheme with the comparison of the existing scheme fractional EM and fractional IEM for various examples of linear and non-linear FDEs. The scheme also solves one real-world phenomenon: The fractional WPG model. Now, here we conclude the significant benefits of our scheme:
● The fractional RCM scheme has a cubic convergence rate which is slightly faster than the other linear and quadratic convergence methods for the IVP of FDEs.
● The idea of computation of the proposed scheme is better, and we can get the desired approximation with the increment of mesh points.
● With the help of the WPG model, we discovered that FDEs fit the model better than ODE.
In the future, this work may be helpful to solve the IVP of FDE more accurately and effectively.
The first and third author extended their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University, Saudi Arabia.
All authors declare no conflicts of interest.
[1] |
Eknoyan G (2006) On the origin of genetics and beginnings of medical genetics of diseases of the kidney. Adv Chronic Kidney Dis 13: 174-177. doi: 10.1053/j.ackd.2006.01.004
![]() |
[2] | Keller EF (2002, Print) The Century of the Gene. Cambridge, MA: Harvard UP, 2002. |
[3] |
Portin P (2014) The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J Genet 93: 293-302. doi: 10.1007/s12041-014-0337-4
![]() |
[4] |
Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262: 56-61, 64-5. doi: 10.1038/scientificamerican0490-56
![]() |
[5] | Sweeney BP (2004) Watson and Crick 50 years on. From double helix to pharmacogenomics. Anaesthesia 59: 150-165. |
[6] | Evans CH, Rosier RN (2005) Molecular biology in orthopaedics: the advent of molecular orthopaedics. J Bone Joint Surg Am 87: 2550-2564. |
[7] | Puzas JE, O'Keefe RJ, Lieberman JR (2002) The orthopaedic genome: what does the future hold and are we ready?. J Bone Joint Surg Am 84-A: 133-141. |
[8] | Bayat A, Barton A, Ollier WE (2004) Dissection of complex genetic disease: implications for orthopaedics. Clin Orthop Relat Res (419): 297-305. |
[9] |
Matzko ME, Bowen TR, Smith WR (2012) Orthogenomics: an update. J Am Acad Orthop Surg 20: 536-546. doi: 10.5435/JAAOS-20-08-536
![]() |
[10] |
Riegel M (2014) Human molecular cytogenetics: From cells to nucleotides. Genet Mol Biol 37: 194-209. doi: 10.1590/S1415-47572014000200006
![]() |
[11] |
Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79: 4381-4385. doi: 10.1073/pnas.79.14.4381
![]() |
[12] |
Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818-821. doi: 10.1126/science.1359641
![]() |
[13] |
Pinkel D, Segraves R, Sudar D, et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207-211. doi: 10.1038/2524
![]() |
[14] |
Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399-407. doi: 10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I
![]() |
[15] |
Wiszniewska J, Bi W, Shaw C, et al. (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 22: 79-87. doi: 10.1038/ejhg.2013.77
![]() |
[16] |
Shashi V, McConkie-Rosell A, Rosell B, et al. (2014) The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 16: 176-182. doi: 10.1038/gim.2013.99
![]() |
[17] |
Ogilvie J (2010) Adolescent idiopathic scoliosis and genetic testing. Curr Opin Pediatr 22: 67-70. doi: 10.1097/MOP.0b013e32833419ac
![]() |
[18] | Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician 89: 193-198. |
[19] |
Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55: 974-982. doi: 10.2106/00004623-197355050-00006
![]() |
[20] | Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22: 2009-2014; |
[21] |
Wu J, Qiu Y, Zhang L, et al. (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 31: 1131-1136. doi: 10.1097/01.brs.0000216603.91330.6f
![]() |
[22] |
Chen S, Zhao L, Roffey DM, et al. (2014) Association between the ESR1-351A > G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Eur Spine J 23: 2586-2593. doi: 10.1007/s00586-014-3481-x
![]() |
[23] | Zhao L, Roffey DM, Chen S (2016) Association between the Estrogen Receptor Beta (ESR2) Rs1256120 Single Nucleotide Polymorphism and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976): Epub ahead of print. |
[24] | Yang P, Liu H, Lin J, et al. (2015) The Association of rs4753426 Polymorphism in the Melatonin Receptor 1B (MTNR1B) Gene and Susceptibility to Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-analysis. Pain Physician 18: 419-431. |
[25] |
Ogura Y, Kou I, Miura S, et al. (2015) A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am J Hum Genet 97: 337-342. doi: 10.1016/j.ajhg.2015.06.012
![]() |
[26] |
Buchan JG, Alvarado DM, Haller GE, et al. (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 23: 5271-5282. doi: 10.1093/hmg/ddu224
![]() |
[27] |
Liu Z, Wang F, Xu LL, et al. (2015) Polymorphism of rs2767485 in Leptin Receptor Gene is Associated With the Occurrence of Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 40: 1593-1598. doi: 10.1097/BRS.0000000000001095
![]() |
[28] |
Zhou S, Qiu XS, Zhu ZZ, et al. (2012) A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord 13: 181-2474-13-181. doi: 10.1186/1471-2474-13-181
![]() |
[29] |
Ryzhkov II, Borzilov EE, Churnosov MI, et al. (2013) Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 38: E699-704. doi: 10.1097/BRS.0b013e31828de9e1
![]() |
[30] |
Zhang H, Zhao S, Zhao Z, et al. (2014) The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysis. Mol Biol Rep 41: 2543-2549. doi: 10.1007/s11033-014-3112-y
![]() |
[31] |
Bae JW, Cho CH, Min WK, et al. (2012) Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 39: 5561-5567. doi: 10.1007/s11033-011-1360-7
![]() |
[32] | Yu Y, Chen ZJ, Qiu Y, et al. (2009) Association between matrilin-1 gene polymorphism and bracing effectiveness in adolescent idiopathic scoliosis girls. Zhonghua Wai Ke Za Zhi 47: 1728-1731. |
[33] | Wang B, Chen ZJ, Qiu Y, et al. (2009) Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1638-1641. |
[34] | Chen ZJ, Qiu Y, Yu Y, et al. (2009) Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1332-1335. |
[35] |
Montanaro L, Parisini P, Greggi T, et al. (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1: 21. doi: 10.1186/1748-7161-1-21
![]() |
[36] |
Wang H, Wu Z, Zhuang Q, et al. (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33: 2199-2203. doi: 10.1097/BRS.0b013e31817c03f9
![]() |
[37] |
Gorman KF, Julien C, Moreau A (2012) The genetic epidemiology of idiopathic scoliosis. Eur Spine J 21: 1905-1919. doi: 10.1007/s00586-012-2389-6
![]() |
[38] | Zhu Z, Xu L, Qiu Y (2015) Current progress in genetic research of adolescent idiopathic scoliosis. Ann Transl Med 3: S19. |
[39] |
Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299: 1335-1344. doi: 10.1001/jama.299.11.1335
![]() |
[40] |
Chettier R, Nelson L, Ogilvie JW, et al. (2015) Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One 10: e0117708. doi: 10.1371/journal.pone.0117708
![]() |
[41] |
Ikegawa S (2016) Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord 11: 5-016-0067-x. doi: 10.1186/s13013-016-0067-x
![]() |
[42] |
Grauers A, Wang J, Einarsdottir E, et al. (2015) Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J 15: 2239-2246. doi: 10.1016/j.spinee.2015.05.013
![]() |
[43] |
Jagla K, Dolle P, Mattei MG, et al. (1995) Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev 53: 345-356. doi: 10.1016/0925-4773(95)00450-5
![]() |
[44] | Gross MK, Moran-Rivard L, Velasquez T, et al. (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413-424. |
[45] |
Schafer K, Neuhaus P, Kruse J, et al. (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92: 73-80. doi: 10.1161/01.RES.0000050587.76563.A5
![]() |
[46] |
Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34: 535-549. doi: 10.1016/S0896-6273(02)00690-6
![]() |
[47] |
Xu JF, Yang GH, Pan XH, et al. (2015) Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 105: 101-107. doi: 10.1016/j.ygeno.2014.11.009
![]() |
[48] |
Kou I, Takahashi Y, Johnson TA, et al. (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45: 676-679. doi: 10.1038/ng.2639
![]() |
[49] | Zhao L, Roffey DM, Chen S (2015) Genetics of adolescent idiopathic scoliosis in the post-genome-wide association study era. Ann Transl Med 3: S35. |
[50] |
Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61: 437-455. doi: 10.1146/annurev-med-100708-204735
![]() |
[51] |
Buchan JG, Alvarado DM, Haller G, et al. (2014) Are copy number variants associated with adolescent idiopathic scoliosis?. Clin Orthop Relat Res 472: 3216-3225. doi: 10.1007/s11999-014-3766-8
![]() |
[52] |
Costell M, Gustafsson E, Aszodi A, et al. (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147: 1109-1122. doi: 10.1083/jcb.147.5.1109
![]() |
[53] |
Rodgers KD, Sasaki T, Aszodi A, et al. (2007) Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome. Hum Mol Genet 16: 515-528. doi: 10.1093/hmg/ddl484
![]() |
[54] |
Stum M, Davoine CS, Vicart S, et al. (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum Mutat 27: 1082-1091. doi: 10.1002/humu.20388
![]() |
[55] | Baschal EE, Wethey CI, Swindle K, et al. (2014) Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 (Bethesda) 5: 167-174. |
[56] |
Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37: 9-25. doi: 10.1136/jmg.37.1.9
![]() |
[57] |
Tuncbilek E, Alanay Y (2006) Congenital contractural arachnodactyly (Beals syndrome). Orphanet J Rare Dis 1: 20. doi: 10.1186/1750-1172-1-20
![]() |
[58] | Patten SA, Margaritte-Jeannin P, Bernard JC, et al. (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125: 1124-1128. |
[59] |
Li W, Li Y, Zhang L, et al. (2016) AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. J Med Genet 53: 488-493. doi: 10.1136/jmedgenet-2015-103684
![]() |
[60] |
Weinstein SL, Dolan LA, Wright JG, et al. (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369: 1512-1521. doi: 10.1056/NEJMoa1307337
![]() |
[61] |
Ward K, Ogilvie JW, Singleton MV, et al. (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35: E1455-1464. doi: 10.1097/BRS.0b013e3181ed2de1
![]() |
[62] |
Roye BD, Wright ML, Matsumoto H, et al. (2015) An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am 97: 1994-1998. doi: 10.2106/JBJS.O.00217
![]() |
[63] | Lee MC (2015) The Distance from Bench to Bedside: Commentary on an article by Benjamin D. Roye, MD, MPH, et al..: "An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis". J Bone Joint Surg Am 97: e79. |
[64] |
Tang QL, Julien C, Eveleigh R, et al. (2015) A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine (Phila Pa 1976) 40: 537-543. doi: 10.1097/BRS.0000000000000807
![]() |
[65] | Bohl DD, Telles CJ, Ruiz FK, et al. (2016) A Genetic Test Predicts Providence Brace Success for Adolescent Idiopathic Scoliosis When Failure Is Defined as Progression to >45 Degrees. Clin Spine Surg 29: E146-50. |
[66] |
Xu L, Qiu X, Sun X, et al. (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J 20: 1757-1764. doi: 10.1007/s00586-011-1874-7
![]() |
[67] |
Lowry RB, Bedard T (2016) Congenital limb deficiency classification and nomenclature: The need for a consensus. Am J Med Genet A 170: 1400-1404. doi: 10.1002/ajmg.a.37608
![]() |
[68] | Gold NB, Westgate MN, Holmes LB (2011) Anatomic and etiological classification of congenital limb deficiencies. Am J Med Genet A 155A: 1225-1235. |
[69] | Auerbach AD, Allen RG (1991) Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 51: 1-12. |
[70] |
Hurst JA, Hall CM, Baraitser M (1991) The Holt-Oram syndrome. J Med Genet 28: 406-410. doi: 10.1136/jmg.28.6.406
![]() |
[71] |
Hall JG (1987) Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 24: 79-83. doi: 10.1136/jmg.24.2.79
![]() |
[72] | Barham G, Clarke NM (2008) Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2: 1-9. |
[73] |
Zuniga A, Zeller R, Probst S (2012) The molecular basis of human congenital limb malformations. Wiley Interdiscip Rev Dev Biol 1: 803-822. doi: 10.1002/wdev.59
![]() |
[74] | Wang YH, Keenan SR, Lynn J, et al. (2015) Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 138 Pt 3: 256-267. |
[75] | Amprino R, Bonetti DA (1967) Experimental observations in the development of ectoderm-free mesoderm of the limb bud in chick embryos. Nature 214: 826-827. |
[76] |
Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30: 751-771. doi: 10.1101/gad.277137.115
![]() |
[77] |
Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S (1999) Genetics of limb anomalies in humans. Trends Genet 15: 409-417. doi: 10.1016/S0168-9525(99)01823-5
![]() |
[78] |
Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418: 501-508. doi: 10.1038/nature00902
![]() |
[79] |
Boulet AM, Moon AM, Arenkiel BR, et al. (2004) The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 273: 361-372. doi: 10.1016/j.ydbio.2004.06.012
![]() |
[80] |
Zeller R, Zuniga A (2007) Shh and Gremlin1 chromosomal landscapes in development and disease. Curr Opin Genet Dev 17: 428-434. doi: 10.1016/j.gde.2007.07.006
![]() |
[81] |
Khokha MK, Hsu D, Brunet LJ, et al. (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303-307. doi: 10.1038/ng1178
![]() |
[82] |
Dimitrov BI, Voet T, De Smet L, et al. (2010) Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactyly. J Med Genet 47: 569-574. doi: 10.1136/jmg.2009.073833
![]() |
[83] |
Gong Y, Krakow D, Marcelino J, et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302-304. doi: 10.1038/6821
![]() |
[84] |
Walsh DW, Godson C, Brazil DP, et al. (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 20: 244-256. doi: 10.1016/j.tcb.2010.01.008
![]() |
[85] | Garavelli L, Wischmeijer A, Rosato S, et al. (2011) Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation. Am J Med Genet A 155A: 332-336. |
[86] |
Mortlock DP, Innis JW (1997) Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 15: 179-180. doi: 10.1038/ng0297-179
![]() |
[87] |
Goodman FR (2002) Limb malformations and the human HOX genes. Am J Med Genet 112: 256-265. doi: 10.1002/ajmg.10776
![]() |
[88] |
Duboc V, Logan MP (2011) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240: 1017-1027. doi: 10.1002/dvdy.22582
![]() |
[89] | King M, Arnold JS, Shanske A, et al. (2006) T-genes and limb bud development. Am J Med Genet A 140: 1407-1413. |
[90] |
Liu C, Nakamura E, Knezevic V, et al. (2003) A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development 130: 1327-1337. doi: 10.1242/dev.00354
![]() |
[91] |
Bamshad M, Lin RC, Law DJ, et al. (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16: 311-315. doi: 10.1038/ng0797-311
![]() |
[92] |
Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130: 2263-2273. doi: 10.1242/dev.00431
![]() |
[93] |
Rallis C, Del Buono J, Logan MP (2005) Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132: 1961-1970. doi: 10.1242/dev.01787
![]() |
[94] |
Don EK, de Jong-Curtain TA, Doggett K, et al. (2016) Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 5: 359-366. doi: 10.1242/bio.016295
![]() |
[95] |
Ahn DG, Kourakis MJ, Rohde LA, et al. (2002) T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417: 754-758. doi: 10.1038/nature00814
![]() |
[96] |
Kiefer SM, Robbins L, Barina A, et al. (2008) SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat 29: 1133-1140. doi: 10.1002/humu.20759
![]() |
[97] |
Kohlhase J, Wischermann A, Reichenbach H, et al. (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18: 81-83. doi: 10.1038/ng0198-81
![]() |
[98] | Al-Qattan MM (2011) WNT pathways and upper limb anomalies. J Hand Surg Eur Vol 36: 9-22. |
[99] |
Sowinska-Seidler A, Socha M, Jamsheer A (2014) Split-hand/foot malformation-molecular cause and implications in genetic counseling. J Appl Genet 55: 105-115. doi: 10.1007/s13353-013-0178-5
![]() |
[100] |
Naveed M, Nath SK, Gaines M, et al. (2007) Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet 80: 105-111. doi: 10.1086/510724
![]() |
[101] | Gurnett CA, Dobbs MB, Nordsieck EJ, et al. (2006) Evidence for an additional locus for split hand/foot malformation in chromosome region 8q21.11-q22.3. Am J Med Genet A 140: 1744-1748. |
[102] | Jiang B, Zhang Z, Zheng P, et al. (2014) Apoptotic genes expression in placenta of clubfoot-like fetus pregnant rats. Int J Clin Exp Pathol 7: 677-684. |
[103] |
Alderman BW, Takahashi ER, LeMier MK (1991) Risk indicators for talipes equinovarus in Washington State, 1987-1989. Epidemiology 2: 289-292. doi: 10.1097/00001648-199107000-00009
![]() |
[104] | Chung CS, Nemechek RW, Larsen IJ, et al. (1969) Genetic and epidemiological studies of clubfoot in Hawaii. General and medical considerations. Hum Hered 19: 321-342. |
[105] |
Moorthi RN, Hashmi SS, Langois P, et al. (2005) Idiopathic talipes equinovarus (ITEV) (clubfeet) in Texas. Am J Med Genet A 132A: 376-380. doi: 10.1002/ajmg.a.30505
![]() |
[106] |
Miedzybrodzka Z (2003) Congenital talipes equinovarus (clubfoot): a disorder of the foot but not the hand. J Anat 202: 37-42. doi: 10.1046/j.1469-7580.2003.00147.x
![]() |
[107] |
Irani RN, Sherman MS (1972) The pathological anatomy of idiopathic clubfoot. Clin Orthop Relat Res 84: 14-20. doi: 10.1097/00003086-197205000-00004
![]() |
[108] |
Bacino CA, Hecht JT (2014) Etiopathogenesis of equinovarus foot malformations. Eur J Med Genet 57: 473-479. doi: 10.1016/j.ejmg.2014.06.001
![]() |
[109] |
Parker SE, Mai CT, Strickland MJ, et al. (2009) Multistate study of the epidemiology of clubfoot. Birth Defects Res A Clin Mol Teratol 85: 897-904. doi: 10.1002/bdra.20625
![]() |
[110] |
Rogers JM (2009) Tobacco and pregnancy. Reprod Toxicol 28: 152-160. doi: 10.1016/j.reprotox.2009.03.012
![]() |
[111] |
Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotine. Semin Perinatol 20: 115-126. doi: 10.1016/S0146-0005(96)80079-6
![]() |
[112] |
Hecht JT, Ester A, Scott A, et al. (2007) NAT2 variation and idiopathic talipes equinovarus (clubfoot). Am J Med Genet A 143A: 2285-2291. doi: 10.1002/ajmg.a.31927
![]() |
[113] |
Sommer A, Blanton SH, Weymouth K, et al. (2011) Smoking, the xenobiotic pathway, and clubfoot. Birth Defects Res A Clin Mol Teratol 91: 20-28. doi: 10.1002/bdra.20742
![]() |
[114] | 114. Engell V, Damborg F, Andersen M, et al. (2006) Club foot: a twin study. J Bone Joint Surg Br 88: 374-376. |
[115] |
de Andrade M, Barnholtz JS, Amos CI, et al. (1998) Segregation analysis of idiopathic talipes equinovarus in a Texan population. Am J Med Genet 79: 97-102. doi: 10.1002/(SICI)1096-8628(19980901)79:2<97::AID-AJMG4>3.0.CO;2-K
![]() |
[116] |
Honein MA, Paulozzi LJ, Moore CA (2000) Family history, maternal smoking, and clubfoot: an indication of a gene-environment interaction. Am J Epidemiol 152: 658-665. doi: 10.1093/aje/152.7.658
![]() |
[117] |
Gurnett CA, Alaee F, Kruse LM, et al. (2008) Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet 83: 616-622. doi: 10.1016/j.ajhg.2008.10.004
![]() |
[118] |
Alvarado DM, McCall K, Aferol H, et al. (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet 20: 3943-3952. doi: 10.1093/hmg/ddr313
![]() |
[119] |
Yong BC, Xun FX, Zhao LJ, et al. (2016) A systematic review of association studies of common variants associated with idiopathic congenital talipes equinovarus (ICTEV) in humans in the past 30 years. Springerplus 5: 896-016-2353-8. eCollection 2016. doi: 10.1186/s40064-016-2353-8
![]() |
[120] |
Rodriguez-Esteban C, Tsukui T, Yonei S, et al. (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398: 814-818. doi: 10.1038/19769
![]() |
[121] | Alvarado DM, Aferol H, McCall K, et al. (2010) Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet 87: 154-160. |
[122] | Lu W, Bacino CA, Richards BS, et al. (2012) Studies of TBX4 and chromosome 17q23.1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A 158A: 1620-1627. |
[123] |
Alnemri ES, Livingston DJ, Nicholson DW, et al. (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171. doi: 10.1016/S0092-8674(00)81334-3
![]() |
[124] |
Heck AL, Bray MS, Scott A, et al. (2005) Variation in CASP10 gene is associated with idiopathic talipes equinovarus. J Pediatr Orthop 25: 598-602. doi: 10.1097/01.bpo.0000173248.96936.90
![]() |
[125] |
Ester AR, Tyerman G, Wise CA, et al. (2007) Apoptotic gene analysis in idiopathic talipes equinovarus (clubfoot). Clin Orthop Relat Res 462: 32-37. doi: 10.1097/BLO.0b013e318073c2d9
![]() |
[126] |
Daher S, Guimaraes AJ, Mattar R, et al. (2008) Bcl-2 and Bax expressions in pre-term, term and post-term placentas. Am J Reprod Immunol 60: 172-178. doi: 10.1111/j.1600-0897.2008.00609.x
![]() |
[127] |
Peebles DM (2004) Fetal consequences of chronic substrate deprivation. Semin Fetal Neonatal Med 9: 379-386. doi: 10.1016/j.siny.2004.03.008
![]() |
[128] |
Sundberg K, Bang J, Smidt-Jensen S, et al. (1997) Randomised study of risk of fetal loss related to early amniocentesis versus chorionic villus sampling. Lancet 350: 697-703. doi: 10.1016/S0140-6736(97)02449-5
![]() |
[129] |
Cederholm M, Haglund B, Axelsson O (2005) Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping. BJOG 112: 394-402. doi: 10.1111/j.1471-0528.2005.00413.x
![]() |
[130] |
Mark M, Rijli FM, Chambon P (1997) Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 42: 421-429. doi: 10.1203/00006450-199710000-00001
![]() |
[131] |
McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283-302. doi: 10.1016/0092-8674(92)90471-N
![]() |
[132] |
Dobbs MB, Gurnett CA, Pierce B, et al. (2006) HOXD10 M319K mutation in a family with isolated congenital vertical talus. J Orthop Res 24: 448-453. doi: 10.1002/jor.20052
![]() |
[133] |
Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. (2004) A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 75: 92-96. doi: 10.1086/422015
![]() |
[134] | Weymouth KS, Blanton SH, Bamshad MJ, et al. (2011) Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot. Am J Med Genet A 155A: 2170-2179. |
[135] |
McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: 693-701. doi: 10.1016/S0006-3495(93)81110-X
![]() |
[136] | Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853-924. |
[137] |
Weymouth KS, Blanton SH, Powell T, et al. (2016) Functional Assessment of Clubfoot Associated HOXA9, TPM1, and TPM2 Variants Suggests a Potential Gene Regulation Mechanism. Clin Orthop Relat Res 474: 1726-1735. doi: 10.1007/s11999-016-4788-1
![]() |
[138] |
Castaneda C, Nalley K, Mannion C, et al. (2015) Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma 5: 4-015-0019-3. eCollection 2015. doi: 10.1186/s13336-015-0019-3
![]() |
[139] |
Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14: 295-300. doi: 10.1038/nrg3463
![]() |
[140] |
Richards S, Aziz N, Bale S, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405-424. doi: 10.1038/gim.2015.30
![]() |
[141] |
Green RC, Berg JS, Grody WW, et al. (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15: 565-574. doi: 10.1038/gim.2013.73
![]() |
1. | Pawan Kumar Shaw, Sunil Kumar, Shaher Momani, Samir Hadid, Dynamical analysis of fractional plant disease model with curative and preventive treatments, 2022, 164, 09600779, 112705, 10.1016/j.chaos.2022.112705 | |
2. | Anil Kumar, Pawan Kumar Shaw, Sunil Kumar, Numerical investigation of pine wilt disease using fractal–fractional operator, 2024, 0973-1458, 10.1007/s12648-024-03298-x |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.00 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.10 | 0.000163 | 0.000000 | 0.000163 | 0.000285 | 0.000122 | 0.000157 | 0.000006 |
0.20 | 0.001845 | 0.000571 | 0.001275 | 0.002186 | 0.000340 | 0.001837 | 0.000009 |
0.30 | 0.007628 | 0.003801 | 0.003828 | 0.008250 | 0.000622 | 0.007617 | 0.000011 |
0.40 | 0.020879 | 0.012700 | 0.008179 | 0.021835 | 0.000956 | 0.020866 | 0.000013 |
0.50 | 0.045593 | 0.030970 | 0.014624 | 0.046927 | 0.001334 | 0.045578 | 0.000015 |
0.60 | 0.086305 | 0.062885 | 0.023420 | 0.088057 | 0.001752 | 0.086288 | 0.000017 |
0.70 | 0.148030 | 0.113230 | 0.034800 | 0.150237 | 0.002207 | 0.148012 | 0.000018 |
0.80 | 0.236223 | 0.187245 | 0.048978 | 0.238919 | 0.002696 | 0.236203 | 0.000020 |
0.90 | 0.356743 | 0.290592 | 0.066151 | 0.359959 | 0.003216 | 0.356722 | 0.000021 |
1.00 | 0.515830 | 0.429326 | 0.086505 | 0.519596 | 0.003766 | 0.515808 | 0.000022 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.08650 | --- | 0.00005 | 0.00377 | --- | 0.00006 | 0.00002 | --- | 0.00008 |
20 | 0.04419 | 0.96891 | 0.00011 | 0.00094 | 2.00107 | 0.00024 | 0.00000 | 2.97066 | 0.00032 |
40 | 0.02233 | 0.98472 | 0.00029 | 0.00024 | 2.00039 | 0.00067 | 0.00000 | 2.97987 | 0.00100 |
80 | 0.01123 | 0.99242 | 0.00006 | 0.00034 | 2.00014 | 0.00068 | 0.00000 | 2.98607 | 0.00115 |
160 | 0.00563 | 0.99623 | 0.00117 | 0.00001 | 2.00005 | 0.00194 | 0.00000 | 2.99030 | 0.00284 |
320 | 0.00282 | 0.99812 | 0.00244 | 0.00000 | 2.00002 | 0.00469 | 0.00000 | 2.99321 | 0.00578 |
640 | 0.00141 | 0.99906 | 0.00490 | 0.00000 | 2.00001 | 0.01049 | 0.00000 | 2.99524 | 0.01400 |
1280 | 0.00071 | 0.99953 | 0.00862 | 0.00000 | 2.00000 | 0.01811 | 0.00000 | 2.99664 | 0.02656 |
2560 | 0.00035 | 0.99977 | 0.01213 | 0.00000 | 2.00000 | 0.02224 | 0.00000 | 2.99744 | 0.04221 |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.10 | 1.486763 | 1.486763 | 0.000000 | 1.486763 | 0.000000 | 1.486763 | 0.000000 |
0.20 | 1.799017 | 1.813852 | 0.014835 | 1.803337 | 0.004320 | 1.799343 | 0.000326 |
0.30 | 2.107699 | 2.119910 | 0.012211 | 2.113254 | 0.005555 | 2.108071 | 0.000372 |
0.40 | 2.430043 | 2.433687 | 0.003644 | 2.436248 | 0.006205 | 2.430428 | 0.000385 |
0.50 | 2.774286 | 2.765897 | 0.008389 | 2.780962 | 0.006676 | 2.774675 | 0.000389 |
0.60 | 3.146213 | 3.123114 | 0.023099 | 3.153299 | 0.007086 | 3.146603 | 0.000390 |
0.70 | 3.550803 | 3.510572 | 0.040230 | 3.558285 | 0.007482 | 3.551193 | 0.000390 |
0.80 | 3.992836 | 3.933086 | 0.059750 | 4.000723 | 0.007887 | 3.993226 | 0.000390 |
0.90 | 4.477185 | 4.395448 | 0.081737 | 4.485498 | 0.008313 | 4.477573 | 0.000389 |
1.00 | 5.008980 | 4.902637 | 0.106343 | 5.017751 | 0.008771 | 5.009367 | 0.000387 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.09645 | --- | 0.00006 | 0.00715 | --- | 0.00007 | 0.00029 | --- | 0.00010 |
20 | 0.04997 | 0.94871 | 0.00012 | 0.00183 | 1.96664 | 0.00016 | 0.00004 | 2.89943 | 0.00022 |
40 | 0.02544 | 0.97401 | 0.00028 | 0.00046 | 1.99007 | 0.00031 | 0.00000 | 2.98186 | 0.00054 |
80 | 0.01284 | 0.98703 | 0.00033 | 0.00012 | 1.99737 | 0.00059 | 0.00000 | 3.00258 | 0.00090 |
160 | 0.00645 | 0.99354 | 0.00064 | 0.00003 | 1.99933 | 0.00181 | 0.00000 | 3.00457 | 0.00370 |
320 | 0.00323 | 0.99678 | 0.00229 | 0.00001 | 1.99983 | 0.00451 | 0.00000 | 3.00313 | 0.00711 |
640 | 0.00162 | 0.99839 | 0.00238 | 0.00000 | 1.99996 | 0.00505 | 0.00000 | 3.00178 | 0.01928 |
1280 | 0.00081 | 0.99920 | 0.00589 | 0.00000 | 1.99999 | 0.00680 | 0.00000 | 3.00095 | 0.02912 |
2560 | 0.00040 | 0.99960 | 0.00682 | 0.00000 | 2.00000 | 0.01662 | 0.00000 | 3.00009 | 0.04033 |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
1.00 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
1.10 | 1.395965 | 1.350000 | 0.045965 | 1.391837 | 0.004127 | 1.395743 | 0.000221 |
1.20 | 1.892929 | 1.783674 | 0.109255 | 1.883452 | 0.009478 | 1.892442 | 0.000488 |
1.30 | 2.504965 | 2.312825 | 0.192141 | 2.488830 | 0.016135 | 2.504165 | 0.000800 |
1.40 | 3.246745 | 2.949869 | 0.296875 | 3.222565 | 0.024180 | 3.245583 | 0.001161 |
1.50 | 4.133514 | 3.707821 | 0.425693 | 4.099827 | 0.033687 | 4.131942 | 0.001571 |
1.60 | 5.181076 | 4.600266 | 0.580810 | 5.136346 | 0.044730 | 5.179043 | 0.002033 |
1.70 | 6.405768 | 5.641347 | 0.764422 | 6.348392 | 0.057377 | 6.403222 | 0.002546 |
1.80 | 7.824449 | 6.845745 | 0.978704 | 7.752755 | 0.071694 | 7.821336 | 0.003113 |
1.90 | 9.454479 | 8.228665 | 1.225814 | 9.366733 | 0.087746 | 9.450744 | 0.003735 |
2.00 | 11.313708 | 9.805821 | 1.507887 | 11.208114 | 0.105594 | 11.309296 | 0.004413 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 1.50789 | --- | 0.00006 | 0.10559 | --- | 0.00007 | 0.00441 | --- | 0.00011 |
20 | 0.80303 | 0.90901 | 0.00027 | 0.02854 | 1.88746 | 0.00045 | 0.00059 | 2.89185 | 0.00064 |
40 | 0.41481 | 0.95299 | 0.00046 | 0.00743 | 1.94236 | 0.00091 | 0.00008 | 2.94618 | 0.00117 |
80 | 0.21087 | 0.97610 | 0.00074 | 0.00189 | 1.97081 | 0.00093 | 0.00001 | 2.97319 | 0.00251 |
160 | 0.10632 | 0.98795 | 0.00109 | 0.00048 | 1.98531 | 0.00465 | 0.00000 | 2.98662 | 0.00889 |
320 | 0.05338 | 0.99395 | 0.00326 | 0.00012 | 1.99263 | 0.00564 | 0.00000 | 2.99332 | 0.00976 |
640 | 0.02675 | 0.99697 | 0.00729 | 0.00003 | 1.99631 | 0.01485 | 0.00000 | 2.99666 | 0.02247 |
1280 | 0.01339 | 0.99848 | 0.01173 | 0.00001 | 1.99815 | 0.03425 | 0.00000 | 2.99833 | 0.03725 |
2560 | 0.00670 | 0.99924 | 0.02115 | 0.00000 | 1.99908 | 0.03590 | 0.00000 | 2.99907 | 0.04107 |
EM | IEM | RCM | ||||
x | uEM | |uEM(h)−uEM(h2)| | uIEM | |uIEM(h)−uIEM(h2)| | uRCM | |uRCM(h)−uRCM(h2)| |
0.00 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
0.10 | 1.196419 | 0.005035 | 1.206748 | 0.000129 | 1.206575 | 0.000001 |
0.20 | 1.436327 | 0.011185 | 1.459271 | 0.000287 | 1.458887 | 0.000001 |
0.30 | 1.729350 | 0.018697 | 1.767703 | 0.000479 | 1.767061 | 0.000002 |
0.40 | 2.087249 | 0.027872 | 2.144423 | 0.000715 | 2.143466 | 0.000003 |
0.50 | 2.524389 | 0.039079 | 2.604549 | 0.001002 | 2.603208 | 0.000005 |
0.60 | 3.058312 | 0.052766 | 3.166549 | 0.001353 | 3.164738 | 0.000007 |
0.70 | 3.710447 | 0.069484 | 3.852977 | 0.001781 | 3.850593 | 0.000009 |
0.80 | 4.506967 | 0.089903 | 4.691383 | 0.002305 | 4.688297 | 0.000011 |
0.90 | 5.479839 | 0.114843 | 5.715413 | 0.002944 | 5.711471 | 0.000014 |
1.00 | 6.668107 | 0.145305 | 6.966167 | 0.003725 | 6.961180 | 0.000018 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.28317 | --- | 0.00003 | 0.01489 | --- | 0.00004 | 0.00014 | --- | 0.00005 |
20 | 0.14531 | 0.96258 | 0.00007 | 0.00372 | 1.99910 | 0.00007 | 0.00002 | 2.99292 | 0.00010 |
40 | 0.07358 | 0.98163 | 0.00011 | 0.00093 | 1.99977 | 0.00012 | 0.00000 | 2.99678 | 0.00019 |
80 | 0.03702 | 0.99090 | 0.00017 | 0.00023 | 1.99994 | 0.00024 | 0.00000 | 2.99847 | 0.00065 |
160 | 0.01857 | 0.99547 | 0.00028 | 0.00006 | 1.99999 | 0.00049 | 0.00000 | 2.99926 | 0.00075 |
320 | 0.00930 | 0.99774 | 0.00034 | 0.00001 | 2.00000 | 0.00063 | 0.00000 | 2.99963 | 0.00096 |
640 | 0.00465 | 0.99887 | 0.00104 | 0.00000 | 2.00000 | 0.00164 | 0.00000 | 2.99984 | 0.00190 |
1280 | 0.00233 | 0.99944 | 0.00129 | 0.00000 | 2.00000 | 0.00292 | 0.00000 | 2.99947 | 0.00471 |
2560 | 0.00116 | 0.99972 | 0.00334 | 0.00000 | 2.00000 | 0.00724 | 0.00000 | 3.00440 | 0.01124 |
EM | IEM | RCM | ||||||
Year(t) | Nclasical | Nfrac | NEM | Error | NIEM | Error | NRCM | Error |
1920 | 1.8600×103 | 1.8600×103 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 |
1930 | 2.1289×103 | 1.9909×103 | 1.9799×103 | 1.1060×101 | 1.9892×103 | 1.7315×100 | 1.9904×103 | 4.8870×10−1 |
1940 | 2.4366×103 | 2.2169×103 | 2.2020×103 | 1.4921×101 | 2.2152×103 | 1.7413×100 | 2.2164×103 | 4.8880×10−1 |
1950 | 2.7888×103 | 2.5173×103 | 2.4987×103 | 1.8625×101 | 2.5156×103 | 1.7390×100 | 2.5168×103 | 4.8882×10−1 |
1960 | 3.1919×103 | 2.8943×103 | 2.8717×103 | 2.2615×101 | 2.8926×103 | 1.7320×100 | 2.8938×103 | 4.8884×10−1 |
1970 | 3.6533×103 | 3.3561×103 | 3.3290×103 | 2.7117×101 | 3.3544×103 | 1.7219×100 | 3.3556×103 | 4.8885×10−1 |
1980 | 4.1814×103 | 3.9147×103 | 3.8824×103 | 3.2308×101 | 3.9130×103 | 1.7090×100 | 3.9142×103 | 4.8886×10−1 |
1990 | 4.7858×103 | 4.5858×103 | 4.5474×103 | 3.8363×101 | 4.5841×103 | 1.6930×100 | 4.5853×103 | 4.8888×10−1 |
2000 | 5.4775×103 | 5.3885×103 | 5.3431×103 | 4.5471×101 | 5.3869×103 | 1.6737×100 | 5.3881×103 | 4.8889×10−1 |
2010 | 6.2693×103 | 6.3462×103 | 6.2923×103 | 5.3847×101 | 6.3445×103 | 1.6505×100 | 6.3457×103 | 4.8891×10−1 |
2020 | 7.1755×103 | 7.4865×103 | 7.4228×103 | 6.3739×101 | 7.4849×103 | 1.6229×100 | 7.4860×103 | 4.8893×10−1 |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.00 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
0.10 | 0.000163 | 0.000000 | 0.000163 | 0.000285 | 0.000122 | 0.000157 | 0.000006 |
0.20 | 0.001845 | 0.000571 | 0.001275 | 0.002186 | 0.000340 | 0.001837 | 0.000009 |
0.30 | 0.007628 | 0.003801 | 0.003828 | 0.008250 | 0.000622 | 0.007617 | 0.000011 |
0.40 | 0.020879 | 0.012700 | 0.008179 | 0.021835 | 0.000956 | 0.020866 | 0.000013 |
0.50 | 0.045593 | 0.030970 | 0.014624 | 0.046927 | 0.001334 | 0.045578 | 0.000015 |
0.60 | 0.086305 | 0.062885 | 0.023420 | 0.088057 | 0.001752 | 0.086288 | 0.000017 |
0.70 | 0.148030 | 0.113230 | 0.034800 | 0.150237 | 0.002207 | 0.148012 | 0.000018 |
0.80 | 0.236223 | 0.187245 | 0.048978 | 0.238919 | 0.002696 | 0.236203 | 0.000020 |
0.90 | 0.356743 | 0.290592 | 0.066151 | 0.359959 | 0.003216 | 0.356722 | 0.000021 |
1.00 | 0.515830 | 0.429326 | 0.086505 | 0.519596 | 0.003766 | 0.515808 | 0.000022 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.08650 | --- | 0.00005 | 0.00377 | --- | 0.00006 | 0.00002 | --- | 0.00008 |
20 | 0.04419 | 0.96891 | 0.00011 | 0.00094 | 2.00107 | 0.00024 | 0.00000 | 2.97066 | 0.00032 |
40 | 0.02233 | 0.98472 | 0.00029 | 0.00024 | 2.00039 | 0.00067 | 0.00000 | 2.97987 | 0.00100 |
80 | 0.01123 | 0.99242 | 0.00006 | 0.00034 | 2.00014 | 0.00068 | 0.00000 | 2.98607 | 0.00115 |
160 | 0.00563 | 0.99623 | 0.00117 | 0.00001 | 2.00005 | 0.00194 | 0.00000 | 2.99030 | 0.00284 |
320 | 0.00282 | 0.99812 | 0.00244 | 0.00000 | 2.00002 | 0.00469 | 0.00000 | 2.99321 | 0.00578 |
640 | 0.00141 | 0.99906 | 0.00490 | 0.00000 | 2.00001 | 0.01049 | 0.00000 | 2.99524 | 0.01400 |
1280 | 0.00071 | 0.99953 | 0.00862 | 0.00000 | 2.00000 | 0.01811 | 0.00000 | 2.99664 | 0.02656 |
2560 | 0.00035 | 0.99977 | 0.01213 | 0.00000 | 2.00000 | 0.02224 | 0.00000 | 2.99744 | 0.04221 |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
0.10 | 1.486763 | 1.486763 | 0.000000 | 1.486763 | 0.000000 | 1.486763 | 0.000000 |
0.20 | 1.799017 | 1.813852 | 0.014835 | 1.803337 | 0.004320 | 1.799343 | 0.000326 |
0.30 | 2.107699 | 2.119910 | 0.012211 | 2.113254 | 0.005555 | 2.108071 | 0.000372 |
0.40 | 2.430043 | 2.433687 | 0.003644 | 2.436248 | 0.006205 | 2.430428 | 0.000385 |
0.50 | 2.774286 | 2.765897 | 0.008389 | 2.780962 | 0.006676 | 2.774675 | 0.000389 |
0.60 | 3.146213 | 3.123114 | 0.023099 | 3.153299 | 0.007086 | 3.146603 | 0.000390 |
0.70 | 3.550803 | 3.510572 | 0.040230 | 3.558285 | 0.007482 | 3.551193 | 0.000390 |
0.80 | 3.992836 | 3.933086 | 0.059750 | 4.000723 | 0.007887 | 3.993226 | 0.000390 |
0.90 | 4.477185 | 4.395448 | 0.081737 | 4.485498 | 0.008313 | 4.477573 | 0.000389 |
1.00 | 5.008980 | 4.902637 | 0.106343 | 5.017751 | 0.008771 | 5.009367 | 0.000387 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.09645 | --- | 0.00006 | 0.00715 | --- | 0.00007 | 0.00029 | --- | 0.00010 |
20 | 0.04997 | 0.94871 | 0.00012 | 0.00183 | 1.96664 | 0.00016 | 0.00004 | 2.89943 | 0.00022 |
40 | 0.02544 | 0.97401 | 0.00028 | 0.00046 | 1.99007 | 0.00031 | 0.00000 | 2.98186 | 0.00054 |
80 | 0.01284 | 0.98703 | 0.00033 | 0.00012 | 1.99737 | 0.00059 | 0.00000 | 3.00258 | 0.00090 |
160 | 0.00645 | 0.99354 | 0.00064 | 0.00003 | 1.99933 | 0.00181 | 0.00000 | 3.00457 | 0.00370 |
320 | 0.00323 | 0.99678 | 0.00229 | 0.00001 | 1.99983 | 0.00451 | 0.00000 | 3.00313 | 0.00711 |
640 | 0.00162 | 0.99839 | 0.00238 | 0.00000 | 1.99996 | 0.00505 | 0.00000 | 3.00178 | 0.01928 |
1280 | 0.00081 | 0.99920 | 0.00589 | 0.00000 | 1.99999 | 0.00680 | 0.00000 | 3.00095 | 0.02912 |
2560 | 0.00040 | 0.99960 | 0.00682 | 0.00000 | 2.00000 | 0.01662 | 0.00000 | 3.00009 | 0.04033 |
EM | IEM | RCM | |||||
x | uexact | uEM | |uexact−uEM| | uIEM | |uexact−uIEM| | uRCM | |uexact−uRCM| |
1.00 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
1.10 | 1.395965 | 1.350000 | 0.045965 | 1.391837 | 0.004127 | 1.395743 | 0.000221 |
1.20 | 1.892929 | 1.783674 | 0.109255 | 1.883452 | 0.009478 | 1.892442 | 0.000488 |
1.30 | 2.504965 | 2.312825 | 0.192141 | 2.488830 | 0.016135 | 2.504165 | 0.000800 |
1.40 | 3.246745 | 2.949869 | 0.296875 | 3.222565 | 0.024180 | 3.245583 | 0.001161 |
1.50 | 4.133514 | 3.707821 | 0.425693 | 4.099827 | 0.033687 | 4.131942 | 0.001571 |
1.60 | 5.181076 | 4.600266 | 0.580810 | 5.136346 | 0.044730 | 5.179043 | 0.002033 |
1.70 | 6.405768 | 5.641347 | 0.764422 | 6.348392 | 0.057377 | 6.403222 | 0.002546 |
1.80 | 7.824449 | 6.845745 | 0.978704 | 7.752755 | 0.071694 | 7.821336 | 0.003113 |
1.90 | 9.454479 | 8.228665 | 1.225814 | 9.366733 | 0.087746 | 9.450744 | 0.003735 |
2.00 | 11.313708 | 9.805821 | 1.507887 | 11.208114 | 0.105594 | 11.309296 | 0.004413 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 1.50789 | --- | 0.00006 | 0.10559 | --- | 0.00007 | 0.00441 | --- | 0.00011 |
20 | 0.80303 | 0.90901 | 0.00027 | 0.02854 | 1.88746 | 0.00045 | 0.00059 | 2.89185 | 0.00064 |
40 | 0.41481 | 0.95299 | 0.00046 | 0.00743 | 1.94236 | 0.00091 | 0.00008 | 2.94618 | 0.00117 |
80 | 0.21087 | 0.97610 | 0.00074 | 0.00189 | 1.97081 | 0.00093 | 0.00001 | 2.97319 | 0.00251 |
160 | 0.10632 | 0.98795 | 0.00109 | 0.00048 | 1.98531 | 0.00465 | 0.00000 | 2.98662 | 0.00889 |
320 | 0.05338 | 0.99395 | 0.00326 | 0.00012 | 1.99263 | 0.00564 | 0.00000 | 2.99332 | 0.00976 |
640 | 0.02675 | 0.99697 | 0.00729 | 0.00003 | 1.99631 | 0.01485 | 0.00000 | 2.99666 | 0.02247 |
1280 | 0.01339 | 0.99848 | 0.01173 | 0.00001 | 1.99815 | 0.03425 | 0.00000 | 2.99833 | 0.03725 |
2560 | 0.00670 | 0.99924 | 0.02115 | 0.00000 | 1.99908 | 0.03590 | 0.00000 | 2.99907 | 0.04107 |
EM | IEM | RCM | ||||
x | uEM | |uEM(h)−uEM(h2)| | uIEM | |uIEM(h)−uIEM(h2)| | uRCM | |uRCM(h)−uRCM(h2)| |
0.00 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 |
0.10 | 1.196419 | 0.005035 | 1.206748 | 0.000129 | 1.206575 | 0.000001 |
0.20 | 1.436327 | 0.011185 | 1.459271 | 0.000287 | 1.458887 | 0.000001 |
0.30 | 1.729350 | 0.018697 | 1.767703 | 0.000479 | 1.767061 | 0.000002 |
0.40 | 2.087249 | 0.027872 | 2.144423 | 0.000715 | 2.143466 | 0.000003 |
0.50 | 2.524389 | 0.039079 | 2.604549 | 0.001002 | 2.603208 | 0.000005 |
0.60 | 3.058312 | 0.052766 | 3.166549 | 0.001353 | 3.164738 | 0.000007 |
0.70 | 3.710447 | 0.069484 | 3.852977 | 0.001781 | 3.850593 | 0.000009 |
0.80 | 4.506967 | 0.089903 | 4.691383 | 0.002305 | 4.688297 | 0.000011 |
0.90 | 5.479839 | 0.114843 | 5.715413 | 0.002944 | 5.711471 | 0.000014 |
1.00 | 6.668107 | 0.145305 | 6.966167 | 0.003725 | 6.961180 | 0.000018 |
EM | IEM | RCM | |||||||
n | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) | Error | EOC | CPU(sec) |
10 | 0.28317 | --- | 0.00003 | 0.01489 | --- | 0.00004 | 0.00014 | --- | 0.00005 |
20 | 0.14531 | 0.96258 | 0.00007 | 0.00372 | 1.99910 | 0.00007 | 0.00002 | 2.99292 | 0.00010 |
40 | 0.07358 | 0.98163 | 0.00011 | 0.00093 | 1.99977 | 0.00012 | 0.00000 | 2.99678 | 0.00019 |
80 | 0.03702 | 0.99090 | 0.00017 | 0.00023 | 1.99994 | 0.00024 | 0.00000 | 2.99847 | 0.00065 |
160 | 0.01857 | 0.99547 | 0.00028 | 0.00006 | 1.99999 | 0.00049 | 0.00000 | 2.99926 | 0.00075 |
320 | 0.00930 | 0.99774 | 0.00034 | 0.00001 | 2.00000 | 0.00063 | 0.00000 | 2.99963 | 0.00096 |
640 | 0.00465 | 0.99887 | 0.00104 | 0.00000 | 2.00000 | 0.00164 | 0.00000 | 2.99984 | 0.00190 |
1280 | 0.00233 | 0.99944 | 0.00129 | 0.00000 | 2.00000 | 0.00292 | 0.00000 | 2.99947 | 0.00471 |
2560 | 0.00116 | 0.99972 | 0.00334 | 0.00000 | 2.00000 | 0.00724 | 0.00000 | 3.00440 | 0.01124 |
EM | IEM | RCM | ||||||
Year(t) | Nclasical | Nfrac | NEM | Error | NIEM | Error | NRCM | Error |
1920 | 1.8600×103 | 1.8600×103 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 | 1.8600×103 | 0.0000×100 |
1930 | 2.1289×103 | 1.9909×103 | 1.9799×103 | 1.1060×101 | 1.9892×103 | 1.7315×100 | 1.9904×103 | 4.8870×10−1 |
1940 | 2.4366×103 | 2.2169×103 | 2.2020×103 | 1.4921×101 | 2.2152×103 | 1.7413×100 | 2.2164×103 | 4.8880×10−1 |
1950 | 2.7888×103 | 2.5173×103 | 2.4987×103 | 1.8625×101 | 2.5156×103 | 1.7390×100 | 2.5168×103 | 4.8882×10−1 |
1960 | 3.1919×103 | 2.8943×103 | 2.8717×103 | 2.2615×101 | 2.8926×103 | 1.7320×100 | 2.8938×103 | 4.8884×10−1 |
1970 | 3.6533×103 | 3.3561×103 | 3.3290×103 | 2.7117×101 | 3.3544×103 | 1.7219×100 | 3.3556×103 | 4.8885×10−1 |
1980 | 4.1814×103 | 3.9147×103 | 3.8824×103 | 3.2308×101 | 3.9130×103 | 1.7090×100 | 3.9142×103 | 4.8886×10−1 |
1990 | 4.7858×103 | 4.5858×103 | 4.5474×103 | 3.8363×101 | 4.5841×103 | 1.6930×100 | 4.5853×103 | 4.8888×10−1 |
2000 | 5.4775×103 | 5.3885×103 | 5.3431×103 | 4.5471×101 | 5.3869×103 | 1.6737×100 | 5.3881×103 | 4.8889×10−1 |
2010 | 6.2693×103 | 6.3462×103 | 6.2923×103 | 5.3847×101 | 6.3445×103 | 1.6505×100 | 6.3457×103 | 4.8891×10−1 |
2020 | 7.1755×103 | 7.4865×103 | 7.4228×103 | 6.3739×101 | 7.4849×103 | 1.6229×100 | 7.4860×103 | 4.8893×10−1 |