Loading [MathJax]/jax/output/SVG/jax.js
Review

Pediatric Orthogenomics: The Latest Trends and Controversies

  • The advent of molecular biology has paved way for an era of personalized medicine. Though medical disciplines such as oncology and cardiology are advanced in their use of genomics, implementation has been slower in other specialties, such as orthopaedics. Recent advances in genomic technology have shed light on the underlying genetic basis of various pediatric orthopaedic disorders. Prior understanding of the genetic makeup of a patient may help individualize care in patients with conditions including idiopathic scoliosis, congenital talipes equinovarus and congenital limb deformities. The fastpaced growth of information in orthogenomics often makes it challenging for an orthopaedic surgeon to effectively use this information for patient care. Genetic characterization of a patient will help indicate risk of progression of a condition, recurrence and/or response to a treatment modality, and a collaborative approach between an orthopaedic surgeon and a geneticist can help tailor patient care. The following review article summarizes current understanding in molecular genomics of common pediatric orthopaedic disorders.

    Citation: Neha Sinha, Mark A. Seeley, Daniel S. Horwitz, Hemil Maniar, Andrea H. Seeley. Pediatric Orthogenomics: The Latest Trends and Controversies[J]. AIMS Medical Science, 2017, 4(2): 192-216. doi: 10.3934/medsci.2017.2.192

    Related Papers:

    [1] Kyungkeun Kang, Dongkwang Kim . Existence of generalized solutions for Keller-Segel-Navier-Stokes equations with degradation in dimension three. Mathematics in Engineering, 2022, 4(5): 1-25. doi: 10.3934/mine.2022041
    [2] Lucio Boccardo . A "nonlinear duality" approach to W1,10 solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [3] Lucas C. F. Ferreira . On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical Lp-space. Mathematics in Engineering, 2022, 4(6): 1-14. doi: 10.3934/mine.2022048
    [4] Alberto Farina . Some results about semilinear elliptic problems on half-spaces. Mathematics in Engineering, 2020, 2(4): 709-721. doi: 10.3934/mine.2020033
    [5] Takeyuki Nagasawa, Kohei Nakamura . Asymptotic analysis for non-local curvature flows for plane curves with a general rotation number. Mathematics in Engineering, 2021, 3(6): 1-26. doi: 10.3934/mine.2021047
    [6] Giuseppe Procopio, Massimiliano Giona . Bitensorial formulation of the singularity method for Stokes flows. Mathematics in Engineering, 2023, 5(2): 1-34. doi: 10.3934/mine.2023046
    [7] Italo Capuzzo Dolcetta . The weak maximum principle for degenerate elliptic equations: unbounded domains and systems. Mathematics in Engineering, 2020, 2(4): 772-786. doi: 10.3934/mine.2020036
    [8] Riccardo Adami, Raffaele Carlone, Michele Correggi, Lorenzo Tentarelli . Stability of the standing waves of the concentrated NLSE in dimension two. Mathematics in Engineering, 2021, 3(2): 1-15. doi: 10.3934/mine.2021011
    [9] L. Dieci, Fabio V. Difonzo, N. Sukumar . Nonnegative moment coordinates on finite element geometries. Mathematics in Engineering, 2024, 6(1): 81-99. doi: 10.3934/mine.2024004
    [10] Massimiliano Giona, Luigi Pucci . Hyperbolic heat/mass transport and stochastic modelling - Three simple problems. Mathematics in Engineering, 2019, 1(2): 224-251. doi: 10.3934/mine.2019.2.224
  • The advent of molecular biology has paved way for an era of personalized medicine. Though medical disciplines such as oncology and cardiology are advanced in their use of genomics, implementation has been slower in other specialties, such as orthopaedics. Recent advances in genomic technology have shed light on the underlying genetic basis of various pediatric orthopaedic disorders. Prior understanding of the genetic makeup of a patient may help individualize care in patients with conditions including idiopathic scoliosis, congenital talipes equinovarus and congenital limb deformities. The fastpaced growth of information in orthogenomics often makes it challenging for an orthopaedic surgeon to effectively use this information for patient care. Genetic characterization of a patient will help indicate risk of progression of a condition, recurrence and/or response to a treatment modality, and a collaborative approach between an orthopaedic surgeon and a geneticist can help tailor patient care. The following review article summarizes current understanding in molecular genomics of common pediatric orthopaedic disorders.


    The main purpose of this note is to provide an alternative construction of nonnegative and nonradially symmetric initial data for some Keller–Segel-type models which will enforce finite or infinite blowup. Consider the following functional:

    F(u,v):=Ω(uloguuv+12|v|2+12v2)dx,

    where ΩR2 is a bounded domain with C2 boundary Ω and a pair of nonnegative smooth functions (u,v). The main result of this note is stated as follows.

    Theorem 1.1. For any M>0 and Λ(4π,) there exists a pair of nonnegative functions (u0,v0)(C(¯Ω))2 satisfying

    {u0L1(Ω)=Λ,F(u0,v0)<M.

    The above functional F(u,v) appears in the study of the minimal Keller–Segel system:

    {ut=Δu(uv)xΩ,t>0,vt=Δvv+uxΩ,t>0,νu=νv=0xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),xΩ, (1.1)

    and also one of the following chemotaxis model featuring a signal-dependent motility function of the negative exponential type:

    {ut=Δ(evu)xΩ,t>0,vt=Δvv+uxΩ,t>0,νu=νv=0xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),xΩ. (1.2)

    Classical positive solutions of (1.1) satisfy the following energy-dissipation identity ([4,9]):

    ddtF(u,v)(t)+Ωu|loguv|2dx+vt2L2(Ω)=0,

    while for the classical solutions to (1.2), there holds ([2]):

    ddtF(u,v)(t)+Ωuev|loguv|2dx+vt2L2(Ω)=0.

    In both cases, the above energy identities will immediately give rise to the a priori upper bound for F(u,v)(t). On the other hand, for any given initial data of small total mass such that u0L1(Ω)<4π, one could derive a lower bound for the energy functional and then the classical solutions of both systems (1.1) and (1.2) exist globally in time and remain bounded uniformly in the two-dimensional setting (see [2,4,7,9]). For large data, unbounded solutions of the above problems could be constructed based on observations of the variational structure of the stationary problem and by taking an advantage of the subtle connection between its associated functional with the energy F. In [5] the authors introduced a transformation problem of the original system (1.1) with the unknowns being the cell density and the relative signal concentration. Then they constructed unbounded solutions for the transformed problem, which in turn implied blowup of the original one.

    In this note we would rather to construct an unbounded solution to the original system (1.1) or (1.2) in a more direct way. To this aim, let us sketch the main idea of the construction of an unbounded solution following [11] (see also [5]). First, the corresponding stationary solutions (us,vs) to (1.1) or (1.2) satisfy the following problem:

    {vsΔvs=ΛΩevsdxevsin Ω,us=ΛΩevsdxevsin Ω,vsν=0on Ω, (1.3)

    for some Λ>0. Denote

    S(Λ):={(us,vs)C2(¯Ω):(us,vs) is a solution to (1.3) }

    for Λ>0. By [5,Lemma 3.5] and [10,Theorem 1], for Λ4πN there exists some C>0 such that

    sup{(us,vs)L(Ω):(us,vs)S(Λ)}C

    and

    F(Λ):=inf{F(us,vs):(us,vs)S(Λ)}C.

    On the other hand, let (u,v) be the classical positive solution to (1.1) or (1.2) in Ω×(0,). If the solution is uniform-in-time bounded, by the compactness method (cf. [13,Lemma 3.1]), there exist a sequence of time {tk}(0,) and a solution (us,vs) to (1.3) with Λ=u0L1(Ω) such that limktk= and that

    limk(u(tk),v(tk))=(us,vs)inC2(¯Ω),

    as well as

    F(us,vs)F(u0,v0).

    Thus taking account of the above discussion, for a pair of nonnegative functions (u0,v0) satisfying

    {u0L1(Ω)=Λ4πN,F(u0,v0)<F(Λ), (1.4)

    the corresponding solution must be unbounded or blow up in finite time.

    Recently in [2], we constructed nonnegative initial data satisfying (1.4) when Λ(8π,) in the radially symmetric case, which differs from those given in [5]. However, it was left open whether our idea for a construction of adequate initial data can be extended to the nonradial symmetric case if Λ(4π,8π). Theorem 1.1 of the present work gives an affirmative answer to this question and as a consequence, we have an alternative proof of the following corollaries ([5]).

    Corollary 1.2. For any Λ(4π,)4πN there exists a nonnegative initial datum (u0,v0) satisfying (1.4) such that the corresponding classical solution of (1.1) satisfies either:

    exists globally in time and lim supt(u(t)L(Ω)+v(t)L(Ω))=;

    blows up in finite time.

    Remark 1.3. Finite time blowup solutions of the corresponding parabolic-elliptic system are constructed if Λ>4π in [8].

    As to the system (1.2), global existence of classical solutions with any nonnegative initial data was guaranteed in [2], which excluded the possibility of finite-time blowup. Hence, we arrive at the following:

    Corollary 1.4. For any Λ(4π,)4πN there exists a nonnegative initial datum (u0,v0) satisfying (1.4) such that the corresponding global classical solution of (1.2) blows up at time infinity.

    In previous works [3,6,12,13], nonnegative initial data with large negative energy were constructed in several modified situations, e.g., the higher dimensional setting, the nonlinear diffusion case, the nonlinear sensitivity case and the indirect signal case. In those works, the initial datum has a concentration at an interior point of Ω. Similarly, in our precedent work [2], we constructed an initial datum which concentrates at the origin based on certain perturbation of the rescaled explicit solutions to the elliptic system

    {ΔV=UxR2,eV=UxR2,R2U=8π,

    provided that the total mass Λ>8π. However, without the radially symmetric requirement and when 4π<Λ<8π, we need to construct an initial datum that concentrates at a boundary point. To this aim, some cut-off and folding-up techniques are introduced. Besides, a lemma of analysis (Lemma 2.2) plays a crucial role in estimating the value of each individual integral in the energy functional and in order to get vanishing estimations of the error terms, the radius of the cut-off function used in our case needs to depend on the rescaled parameter as well, which in contrast was fixed in the radially symmetric case in [2].

    A straightforward calculation leads us to the following lemma.

    Lemma 2.1. For any λ1 and r(0,1), the functions

    uλ(x):=8λ2(1+λ2|x|2)2,vλ(x):=2log1+λ21+λ2|x|2+log8for all xR2,

    satisfy

    R2uλdx=8π,uλ(x)8λ2,vλ(x)>log8>0in Br(0):={xR2||x|<r}.

    Since Ω is C2 class, for any boundary point PΩ there exist some R=RP(0,1) and some C2 function γP:RR such that

    ΩBR(0)={(x1,x2)BR(0)|x2>γP(x1)}

    (cf. [1,Appendix C.1]). Moreover since Ω is a bounded domain, we can find some point P0=(P1,P2)Ω satisfying that there exists R(0,R) such that

    (γP0)(x1)0for all |P1x1|<R. (2.1)

    By translation, we may assume P0=(0,0). Hereafter we fix the above R(0,1) and γ=γP0. In this setting, we have the following lemma:

    Lemma 2.2. Let f:R2R be a radially symmetric, nonnegative and continuous function. For any r(0,R) it follows that

    12Br(0)f(x)dxK(R)(supxBr(0)f(x))r3Br(0)Ωf(x)dx12Br(0)f(x)dx,

    where

    K(R):=max|ξ|Rγ(ξ)>0. (2.2)

    Proof. We first note that for any r(0,R),

    ΩBr(0)={(x1,x2)Br(0)|x2>γ(x1)}.

    Since γ(0)=0 and the assumption (2.1), it follows by Taylor's theorem that for all x1(R,R) we have

    γ(0)x1γ(x1)γ(0)x1+12K(R)x21,

    where K(R):=max|ξ|Rγ(ξ)>0. Thus we can deduce that

    A+ε(ΩBr(0))A,

    where

    A+ε:={(x1,x2)Br(0)|x2>γ(0)x1+12K(R)r2},A:={(x1,x2)Br(0)|x2>γ(0)x1}.

    By denoting

    B+ε:={(x1,x2)Br(0)|γ(0)x1+12K(R)r2x2>γ(0)x1},

    we confirm that

    A+ε=AB+ε.

    Since the radial symmetry of f implies

    Af(x)dx=12Br(0)f(x)dx,

    we have

    12Br(0)f(x)dxB+εf(x)dxΩBr(0)f(x)dx12Br(0)f(x)dx.

    Since

    |B+ε|12K(R)r22r=K(R)r3,

    we have that

    12Br(0)f(x)dx(supxBr(0)f(x))K(R)r3ΩBr(0)f(x)dx12Br(0)f(x)dx,

    which concludes the proof.

    For any 0<η1<η2 we can construct a radially symmetric function ϕη2,η1C(R2) satisfying

    ϕη2,η1(B(0,η1))={1}, 0ϕη2,η11, ϕη2,η1(R2B(0,η2))={0}, xϕη2,η1(x)0.

    For any λ>max{1,(4R)65}, we fix

    r:=λ56,r1:=r2,

    and then 0<r1<r<min{1,R4}. Noting that

    f(λ):=111+(λr1)2=144+λ131 as λ,

    and by the increasing property of f, we can find λ>max{1,(4R)65} such that

    4πf(λ)8K(R)λ12>2π,

    where K(R) is defined in (2.2). Here we confirm that for any λ>λ,

    4πf(λ)8K(R)λ12>2π.

    Now we define the pair

    (u0,v0):=(auλϕr,r1χΩ,avλϕR2,R4χΩ)

    with some a>0. Here we remark that u0 and v0 are nonnegative functions belonging to C(¯Ω).

    Lemma 2.3. Let Λ(4π,). For λ>λ there exists

    a=a(λ)(Λ4π,Λ2π) (2.3)

    such that

    Ωu0dx=Λ. (2.4)

    Proof. Firstly by changing variables, we see that

    B(0,)uλdx=8B(0,λ)dy(1+|y|2)2=8π(λ)20dτ(1+τ)2=8π(111+(λ)2) for >0, (2.5)

    and that

    8π(111+(λr1)2)<Br(0)uλϕr,r1dx<8π(111+(λr)2).

    Here in light of the radial symmetry of uλϕr,r1, we can invoke Lemma 2.2 to have

    4π(111+(λr1)2)K(R)8λ2r3<Ωuλϕr,r1χΩdx<4π(111+(λr)2),

    where we used

    maxxBr(0)uλϕr,r1(x)=8λ2andΩuλϕr,r1χΩdx=Br(0)Ωuλϕr,r1dx.

    By the choice of r>0, we have

    4πf(λ)8K(R)λ12<Ωuλϕr,r1χΩdx.

    Therefore for any λ>λ we find some a=a(λ) satisfying

    Λ4π<a<Λ2π

    and (2.4). We conclude the proof.

    Lemma 2.4. There exists C>0 such that for all λ>λ,

    Ωu0logu0dx8πalogλ+C, (2.6)

    where a=a(λ) is defined in Lemma 2.3.

    Proof. Since slogstlogt+1e for st and u0auλχBr(0)Ω, it follows

    Ωu0logu0dxΩ(auλχBr(0)Ω)log(auλχBr(0)Ω)dx+|Ω|eaΩuλχBr(0)Ωloguλdx+(aloga+e1)Ωuλdx+|Ω|e.

    Since loguλlog(8λ2)=2logλ+log8 and Ωuλ8π, we have

    Ωu0logu0dx2alogλΩuλχBr(0)Ωdx+8π(alog8+aloga+e1)+|Ω|e.

    By Lemma 2.2 we obtain

    ΩuλχBr(0)Ω12Br(0)uλ12R2uλ=4π.

    Therefore

    Ωu0logu0dx8πalogλ+C,

    where we remark that the constant C is independent of a and λ in view of (2.3). We conclude the proof.

    Lemma 2.5. There exists C>0 such that for all λ>λ,

    Ωu0v0dx16πa2logλ64πa2logλ4+λ13K(R)λ12(2log(1+λ2)+log8)C, (2.7)

    where a=a(λ) is defined in Lemma 2.3.

    Proof. Using vλ>0 in B(0,r), u0=0 on B(0,r)c and r1<R4, we see that

    Ωu0v0dxa2B(0,r1)uλvλχBr1(0)Ωdx.

    Since uλvλ is radially symmetric and

    maxxBr1(0)uλvλ(x)=8λ2(2log(1+λ2)+log8),

    we apply Lemma 2.2 and recall r1=21λ56 to deduce that

    Ωu0v0dx12a2B(0,r1)uλvλdxK(R)8λ2(2log(1+λ2)+log8)r31=12a2B(0,r1)uλvλdxK(R)λ12(2log(1+λ2)+log8).

    Since

    vλ(x)>2log1+λ21+λ2|x|2 for xB(0,r1),

    we have that

    12a2B(0,r1)uλvλdx12a2B(0,r1)uλ2log1+λ21+λ2|x|2dx>2a2logλB(0,r1)uλdxa2B(0,r1)uλlog(1+λ2|x|2)dx.

    By (2.5), it follows

    2a2logλB(0,r1)uλdx2a2logλ8π(111+(λr1)2)=16πa2logλ64πa2logλ4+λ13.

    On the other hand, by (2.3) and direct calculations we see

    a2B(0,r1)uλlog(1+λ2|x|2)dx=8a2B(0,r1)λ2log(1+λ2|x|2)(1+λ2|x|2)2dx=16πa2λr10slog(1+s2)(1+s2)2ds<8πa20log(1+ξ)(1+ξ)2dξ<.

    Combining above estimates, we obtain that

    Ωu0v0dx16πa2logλ64πa2logλ4+λ13K(R)λ12(2log(1+λ2)+log8)C

    for λ>λ with some positive constant C, which is independent of a and λ due to (2.3).

    Lemma 2.6. For any ε1>0 there exists C(ε1)>0 such that for all λ>λ,

    12Ω(v20+|v0|2)dx8π(1+ε1)a2logλ+C(ε1), (2.8)

    where a=a(λ) is defined in Lemma 2.3.

    Proof. Since

    1+λ21+λ2|x|21+λ2λ2|x|2(2|x|)2for λ>1,

    we see that for λ>1

    |vλ(x)|4log2|x|+log8  in B1(0).

    Hence it follows from straightforward calculations that there is a positive constant C satisfying

    Ωv20dxa2B1(0)(4log2|x|+log8)2dxC, (2.9)

    where the constant C is independent of a and λ due to (2.3).

    Moreover by Young's inequality, for any ε1>0 there exists C(ε1)>0 such that

    |v0|2=a2|ϕR2,R4vλ+ϕR2,R4vλ|2χBR2(0)Ωa2(1+ε1)ϕ2R2,R4|vλ|2χBR2(0)Ω+C(ε1)a2|ϕR2,R4|2v2λχBR2(0)Ω.

    Since by (2.9) we have some C>0 such that

    a2Ω|ϕR2,R4|2v2λχBR2(0)ΩdxC

    and by the direct calculations, we have

    |vλ(x)|=4λ2|x|1+λ2|x|2,

    and then we infer that

    Ω|v0|2dxa2(1+ε1)Ωϕ2R2,R4|vλ|2χBR2(0)Ωdx+C(ε1)a2Ω|ϕR2,R4|2v2λdx16a2(1+ε1)BR2(0)Ωλ4|x|2(1+λ2|x|2)2dx+C(ε1)

    with some C(ε1)>0. Since λ4|x|2(1+λ2|x|2)2 is radially symmetric, we can invoke Lemma 2.2 to see

    Ω|v0|2dx8a2(1+ε1)BR2(0)λ4|x|2(1+λ2|x|2)2dx+C(ε1),

    thus

    12Ω|v0|2dx4a2(1+ε1)B1(0)λ4|x|2(1+λ2|x|2)2dx+C(ε1)2.

    On the other hand,

    B1(0)λ4|x|2(1+λ2|x|2)2dx=πλ20τ(1+τ)2dτπλ2011+τdτ=πlog(1+λ2).

    Since λ>1, it follows

    log(1+λ2)log(2λ2)=2logλ+log2.

    Hence

    12Ω|v0|2dx4πa2(1+ε1)(2logλ+log2)+C(ε1)2.

    Therefore we conclude

    12Ω|v0|2dx8πa2(1+ε1)logλ+C(ε1),

    where the constant C(ε1) is independent of a and λ due to (2.3).

    Proof of Theorem 1.1. For any Λ(4π,), we have Λ/4π>1. In view of (2.3), we can fix ε1>0 independently of λ such that (1ε1)a1>(1ε1)Λ4π1>0, where a=a(λ) is defined in Lemma 2.3. Then it follows that

    a((1ε1)a1)>Λ4π((1ε1)Λ4π1)>0,for all λ>λ. (2.10)

    Collecting (2.6), (2.7) and (2.8), we infer that there exists some C>0 such that

    F(u0,v0)I1logλ+I2+C,

    where

    I1:=8πa16πa2+8πa2(1+ε1)=8πa((1ε1)a1),I2:=64πa2logλ4+λ13+K(R)λ12(2log(1+λ2)+log8).

    Here (2.10) implies I1<0 for all λ>λ. On the other hand, we note

    limλI2=0.

    Based on the above discussion, for Λ(4π,) and M>0, we can choose some λ>λ such that

    F(u0,v0)<M.

    We conclude the proof.

    The authors thank the anonymous referee's careful reading and useful suggestions. K. Fujie is supported by Japan Society for the Promotion of Science (Grant-in-Aid for Early-Career Scientists; No. 19K14576). J. Jiang is supported by Hubei Provincial Natural Science Foundation under the grant No. 2020CFB602.

    The authors declare no conflict of interest.

    [1] Eknoyan G (2006) On the origin of genetics and beginnings of medical genetics of diseases of the kidney. Adv Chronic Kidney Dis 13: 174-177. doi: 10.1053/j.ackd.2006.01.004
    [2] Keller EF (2002, Print) The Century of the Gene. Cambridge, MA: Harvard UP, 2002.
    [3] Portin P (2014) The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J Genet 93: 293-302. doi: 10.1007/s12041-014-0337-4
    [4] Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262: 56-61, 64-5. doi: 10.1038/scientificamerican0490-56
    [5] Sweeney BP (2004) Watson and Crick 50 years on. From double helix to pharmacogenomics. Anaesthesia 59: 150-165.
    [6] Evans CH, Rosier RN (2005) Molecular biology in orthopaedics: the advent of molecular orthopaedics. J Bone Joint Surg Am 87: 2550-2564.
    [7] Puzas JE, O'Keefe RJ, Lieberman JR (2002) The orthopaedic genome: what does the future hold and are we ready?. J Bone Joint Surg Am 84-A: 133-141.
    [8] Bayat A, Barton A, Ollier WE (2004) Dissection of complex genetic disease: implications for orthopaedics. Clin Orthop Relat Res (419): 297-305.
    [9] Matzko ME, Bowen TR, Smith WR (2012) Orthogenomics: an update. J Am Acad Orthop Surg 20: 536-546. doi: 10.5435/JAAOS-20-08-536
    [10] Riegel M (2014) Human molecular cytogenetics: From cells to nucleotides. Genet Mol Biol 37: 194-209. doi: 10.1590/S1415-47572014000200006
    [11] Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79: 4381-4385. doi: 10.1073/pnas.79.14.4381
    [12] Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818-821. doi: 10.1126/science.1359641
    [13] Pinkel D, Segraves R, Sudar D, et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207-211. doi: 10.1038/2524
    [14] Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399-407. doi: 10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I
    [15] Wiszniewska J, Bi W, Shaw C, et al. (2014) Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 22: 79-87. doi: 10.1038/ejhg.2013.77
    [16] Shashi V, McConkie-Rosell A, Rosell B, et al. (2014) The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 16: 176-182. doi: 10.1038/gim.2013.99
    [17] Ogilvie J (2010) Adolescent idiopathic scoliosis and genetic testing. Curr Opin Pediatr 22: 67-70. doi: 10.1097/MOP.0b013e32833419ac
    [18] Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician 89: 193-198.
    [19] Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55: 974-982. doi: 10.2106/00004623-197355050-00006
    [20] Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22: 2009-2014;
    [21] Wu J, Qiu Y, Zhang L, et al. (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 31: 1131-1136. doi: 10.1097/01.brs.0000216603.91330.6f
    [22] Chen S, Zhao L, Roffey DM, et al. (2014) Association between the ESR1-351A > G single nucleotide polymorphism (rs9340799) and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Eur Spine J 23: 2586-2593. doi: 10.1007/s00586-014-3481-x
    [23] Zhao L, Roffey DM, Chen S (2016) Association between the Estrogen Receptor Beta (ESR2) Rs1256120 Single Nucleotide Polymorphism and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis. Spine (Phila Pa 1976): Epub ahead of print.
    [24] Yang P, Liu H, Lin J, et al. (2015) The Association of rs4753426 Polymorphism in the Melatonin Receptor 1B (MTNR1B) Gene and Susceptibility to Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-analysis. Pain Physician 18: 419-431.
    [25] Ogura Y, Kou I, Miura S, et al. (2015) A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am J Hum Genet 97: 337-342. doi: 10.1016/j.ajhg.2015.06.012
    [26] Buchan JG, Alvarado DM, Haller GE, et al. (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 23: 5271-5282. doi: 10.1093/hmg/ddu224
    [27] Liu Z, Wang F, Xu LL, et al. (2015) Polymorphism of rs2767485 in Leptin Receptor Gene is Associated With the Occurrence of Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 40: 1593-1598. doi: 10.1097/BRS.0000000000001095
    [28] Zhou S, Qiu XS, Zhu ZZ, et al. (2012) A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord 13: 181-2474-13-181. doi: 10.1186/1471-2474-13-181
    [29] Ryzhkov II, Borzilov EE, Churnosov MI, et al. (2013) Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 38: E699-704. doi: 10.1097/BRS.0b013e31828de9e1
    [30] Zhang H, Zhao S, Zhao Z, et al. (2014) The association of rs1149048 polymorphism in matrilin-1(MATN1) gene with adolescent idiopathic scoliosis susceptibility: a meta-analysis. Mol Biol Rep 41: 2543-2549. doi: 10.1007/s11033-014-3112-y
    [31] Bae JW, Cho CH, Min WK, et al. (2012) Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 39: 5561-5567. doi: 10.1007/s11033-011-1360-7
    [32] Yu Y, Chen ZJ, Qiu Y, et al. (2009) Association between matrilin-1 gene polymorphism and bracing effectiveness in adolescent idiopathic scoliosis girls. Zhonghua Wai Ke Za Zhi 47: 1728-1731.
    [33] Wang B, Chen ZJ, Qiu Y, et al. (2009) Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1638-1641.
    [34] Chen ZJ, Qiu Y, Yu Y, et al. (2009) Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47: 1332-1335.
    [35] Montanaro L, Parisini P, Greggi T, et al. (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1: 21. doi: 10.1186/1748-7161-1-21
    [36] Wang H, Wu Z, Zhuang Q, et al. (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33: 2199-2203. doi: 10.1097/BRS.0b013e31817c03f9
    [37] Gorman KF, Julien C, Moreau A (2012) The genetic epidemiology of idiopathic scoliosis. Eur Spine J 21: 1905-1919. doi: 10.1007/s00586-012-2389-6
    [38] Zhu Z, Xu L, Qiu Y (2015) Current progress in genetic research of adolescent idiopathic scoliosis. Ann Transl Med 3: S19.
    [39] Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299: 1335-1344. doi: 10.1001/jama.299.11.1335
    [40] Chettier R, Nelson L, Ogilvie JW, et al. (2015) Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS One 10: e0117708. doi: 10.1371/journal.pone.0117708
    [41] Ikegawa S (2016) Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord 11: 5-016-0067-x. doi: 10.1186/s13013-016-0067-x
    [42] Grauers A, Wang J, Einarsdottir E, et al. (2015) Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J 15: 2239-2246. doi: 10.1016/j.spinee.2015.05.013
    [43] Jagla K, Dolle P, Mattei MG, et al. (1995) Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech Dev 53: 345-356. doi: 10.1016/0925-4773(95)00450-5
    [44] Gross MK, Moran-Rivard L, Velasquez T, et al. (2000) Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413-424.
    [45] Schafer K, Neuhaus P, Kruse J, et al. (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92: 73-80. doi: 10.1161/01.RES.0000050587.76563.A5
    [46] Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34: 535-549. doi: 10.1016/S0896-6273(02)00690-6
    [47] Xu JF, Yang GH, Pan XH, et al. (2015) Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 105: 101-107. doi: 10.1016/j.ygeno.2014.11.009
    [48] Kou I, Takahashi Y, Johnson TA, et al. (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45: 676-679. doi: 10.1038/ng.2639
    [49] Zhao L, Roffey DM, Chen S (2015) Genetics of adolescent idiopathic scoliosis in the post-genome-wide association study era. Ann Transl Med 3: S35.
    [50] Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61: 437-455. doi: 10.1146/annurev-med-100708-204735
    [51] Buchan JG, Alvarado DM, Haller G, et al. (2014) Are copy number variants associated with adolescent idiopathic scoliosis?. Clin Orthop Relat Res 472: 3216-3225. doi: 10.1007/s11999-014-3766-8
    [52] Costell M, Gustafsson E, Aszodi A, et al. (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147: 1109-1122. doi: 10.1083/jcb.147.5.1109
    [53] Rodgers KD, Sasaki T, Aszodi A, et al. (2007) Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome. Hum Mol Genet 16: 515-528. doi: 10.1093/hmg/ddl484
    [54] Stum M, Davoine CS, Vicart S, et al. (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz-Jampel syndrome. Hum Mutat 27: 1082-1091. doi: 10.1002/humu.20388
    [55] Baschal EE, Wethey CI, Swindle K, et al. (2014) Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 (Bethesda) 5: 167-174.
    [56] Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37: 9-25. doi: 10.1136/jmg.37.1.9
    [57] Tuncbilek E, Alanay Y (2006) Congenital contractural arachnodactyly (Beals syndrome). Orphanet J Rare Dis 1: 20. doi: 10.1186/1750-1172-1-20
    [58] Patten SA, Margaritte-Jeannin P, Bernard JC, et al. (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125: 1124-1128.
    [59] Li W, Li Y, Zhang L, et al. (2016) AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. J Med Genet 53: 488-493. doi: 10.1136/jmedgenet-2015-103684
    [60] Weinstein SL, Dolan LA, Wright JG, et al. (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369: 1512-1521. doi: 10.1056/NEJMoa1307337
    [61] Ward K, Ogilvie JW, Singleton MV, et al. (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35: E1455-1464. doi: 10.1097/BRS.0b013e3181ed2de1
    [62] Roye BD, Wright ML, Matsumoto H, et al. (2015) An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am 97: 1994-1998. doi: 10.2106/JBJS.O.00217
    [63] Lee MC (2015) The Distance from Bench to Bedside: Commentary on an article by Benjamin D. Roye, MD, MPH, et al..: "An Independent Evaluation of the Validity of a DNA-Based Prognostic Test for Adolescent Idiopathic Scoliosis". J Bone Joint Surg Am 97: e79.
    [64] Tang QL, Julien C, Eveleigh R, et al. (2015) A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine (Phila Pa 1976) 40: 537-543. doi: 10.1097/BRS.0000000000000807
    [65] Bohl DD, Telles CJ, Ruiz FK, et al. (2016) A Genetic Test Predicts Providence Brace Success for Adolescent Idiopathic Scoliosis When Failure Is Defined as Progression to >45 Degrees. Clin Spine Surg 29: E146-50.
    [66] Xu L, Qiu X, Sun X, et al. (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J 20: 1757-1764. doi: 10.1007/s00586-011-1874-7
    [67] Lowry RB, Bedard T (2016) Congenital limb deficiency classification and nomenclature: The need for a consensus. Am J Med Genet A 170: 1400-1404. doi: 10.1002/ajmg.a.37608
    [68] Gold NB, Westgate MN, Holmes LB (2011) Anatomic and etiological classification of congenital limb deficiencies. Am J Med Genet A 155A: 1225-1235.
    [69] Auerbach AD, Allen RG (1991) Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet 51: 1-12.
    [70] Hurst JA, Hall CM, Baraitser M (1991) The Holt-Oram syndrome. J Med Genet 28: 406-410. doi: 10.1136/jmg.28.6.406
    [71] Hall JG (1987) Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 24: 79-83. doi: 10.1136/jmg.24.2.79
    [72] Barham G, Clarke NM (2008) Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2: 1-9.
    [73] Zuniga A, Zeller R, Probst S (2012) The molecular basis of human congenital limb malformations. Wiley Interdiscip Rev Dev Biol 1: 803-822. doi: 10.1002/wdev.59
    [74] Wang YH, Keenan SR, Lynn J, et al. (2015) Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 138 Pt 3: 256-267.
    [75] Amprino R, Bonetti DA (1967) Experimental observations in the development of ectoderm-free mesoderm of the limb bud in chick embryos. Nature 214: 826-827.
    [76] Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30: 751-771. doi: 10.1101/gad.277137.115
    [77] Manouvrier-Hanu S, Holder-Espinasse M, Lyonnet S (1999) Genetics of limb anomalies in humans. Trends Genet 15: 409-417. doi: 10.1016/S0168-9525(99)01823-5
    [78] Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418: 501-508. doi: 10.1038/nature00902
    [79] Boulet AM, Moon AM, Arenkiel BR, et al. (2004) The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 273: 361-372. doi: 10.1016/j.ydbio.2004.06.012
    [80] Zeller R, Zuniga A (2007) Shh and Gremlin1 chromosomal landscapes in development and disease. Curr Opin Genet Dev 17: 428-434. doi: 10.1016/j.gde.2007.07.006
    [81] Khokha MK, Hsu D, Brunet LJ, et al. (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303-307. doi: 10.1038/ng1178
    [82] Dimitrov BI, Voet T, De Smet L, et al. (2010) Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactyly. J Med Genet 47: 569-574. doi: 10.1136/jmg.2009.073833
    [83] Gong Y, Krakow D, Marcelino J, et al. (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302-304. doi: 10.1038/6821
    [84] Walsh DW, Godson C, Brazil DP, et al. (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 20: 244-256. doi: 10.1016/j.tcb.2010.01.008
    [85] Garavelli L, Wischmeijer A, Rosato S, et al. (2011) Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation. Am J Med Genet A 155A: 332-336.
    [86] Mortlock DP, Innis JW (1997) Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 15: 179-180. doi: 10.1038/ng0297-179
    [87] Goodman FR (2002) Limb malformations and the human HOX genes. Am J Med Genet 112: 256-265. doi: 10.1002/ajmg.10776
    [88] Duboc V, Logan MP (2011) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240: 1017-1027. doi: 10.1002/dvdy.22582
    [89] King M, Arnold JS, Shanske A, et al. (2006) T-genes and limb bud development. Am J Med Genet A 140: 1407-1413.
    [90] Liu C, Nakamura E, Knezevic V, et al. (2003) A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development 130: 1327-1337. doi: 10.1242/dev.00354
    [91] Bamshad M, Lin RC, Law DJ, et al. (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16: 311-315. doi: 10.1038/ng0797-311
    [92] Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130: 2263-2273. doi: 10.1242/dev.00431
    [93] Rallis C, Del Buono J, Logan MP (2005) Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132: 1961-1970. doi: 10.1242/dev.01787
    [94] Don EK, de Jong-Curtain TA, Doggett K, et al. (2016) Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 5: 359-366. doi: 10.1242/bio.016295
    [95] Ahn DG, Kourakis MJ, Rohde LA, et al. (2002) T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417: 754-758. doi: 10.1038/nature00814
    [96] Kiefer SM, Robbins L, Barina A, et al. (2008) SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat 29: 1133-1140. doi: 10.1002/humu.20759
    [97] Kohlhase J, Wischermann A, Reichenbach H, et al. (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18: 81-83. doi: 10.1038/ng0198-81
    [98] Al-Qattan MM (2011) WNT pathways and upper limb anomalies. J Hand Surg Eur Vol 36: 9-22.
    [99] Sowinska-Seidler A, Socha M, Jamsheer A (2014) Split-hand/foot malformation-molecular cause and implications in genetic counseling. J Appl Genet 55: 105-115. doi: 10.1007/s13353-013-0178-5
    [100] Naveed M, Nath SK, Gaines M, et al. (2007) Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet 80: 105-111. doi: 10.1086/510724
    [101] Gurnett CA, Dobbs MB, Nordsieck EJ, et al. (2006) Evidence for an additional locus for split hand/foot malformation in chromosome region 8q21.11-q22.3. Am J Med Genet A 140: 1744-1748.
    [102] Jiang B, Zhang Z, Zheng P, et al. (2014) Apoptotic genes expression in placenta of clubfoot-like fetus pregnant rats. Int J Clin Exp Pathol 7: 677-684.
    [103] Alderman BW, Takahashi ER, LeMier MK (1991) Risk indicators for talipes equinovarus in Washington State, 1987-1989. Epidemiology 2: 289-292. doi: 10.1097/00001648-199107000-00009
    [104] Chung CS, Nemechek RW, Larsen IJ, et al. (1969) Genetic and epidemiological studies of clubfoot in Hawaii. General and medical considerations. Hum Hered 19: 321-342.
    [105] Moorthi RN, Hashmi SS, Langois P, et al. (2005) Idiopathic talipes equinovarus (ITEV) (clubfeet) in Texas. Am J Med Genet A 132A: 376-380. doi: 10.1002/ajmg.a.30505
    [106] Miedzybrodzka Z (2003) Congenital talipes equinovarus (clubfoot): a disorder of the foot but not the hand. J Anat 202: 37-42. doi: 10.1046/j.1469-7580.2003.00147.x
    [107] Irani RN, Sherman MS (1972) The pathological anatomy of idiopathic clubfoot. Clin Orthop Relat Res 84: 14-20. doi: 10.1097/00003086-197205000-00004
    [108] Bacino CA, Hecht JT (2014) Etiopathogenesis of equinovarus foot malformations. Eur J Med Genet 57: 473-479. doi: 10.1016/j.ejmg.2014.06.001
    [109] Parker SE, Mai CT, Strickland MJ, et al. (2009) Multistate study of the epidemiology of clubfoot. Birth Defects Res A Clin Mol Teratol 85: 897-904. doi: 10.1002/bdra.20625
    [110] Rogers JM (2009) Tobacco and pregnancy. Reprod Toxicol 28: 152-160. doi: 10.1016/j.reprotox.2009.03.012
    [111] Lambers DS, Clark KE (1996) The maternal and fetal physiologic effects of nicotine. Semin Perinatol 20: 115-126. doi: 10.1016/S0146-0005(96)80079-6
    [112] Hecht JT, Ester A, Scott A, et al. (2007) NAT2 variation and idiopathic talipes equinovarus (clubfoot). Am J Med Genet A 143A: 2285-2291. doi: 10.1002/ajmg.a.31927
    [113] Sommer A, Blanton SH, Weymouth K, et al. (2011) Smoking, the xenobiotic pathway, and clubfoot. Birth Defects Res A Clin Mol Teratol 91: 20-28. doi: 10.1002/bdra.20742
    [114] 114. Engell V, Damborg F, Andersen M, et al. (2006) Club foot: a twin study. J Bone Joint Surg Br 88: 374-376.
    [115] de Andrade M, Barnholtz JS, Amos CI, et al. (1998) Segregation analysis of idiopathic talipes equinovarus in a Texan population. Am J Med Genet 79: 97-102. doi: 10.1002/(SICI)1096-8628(19980901)79:2<97::AID-AJMG4>3.0.CO;2-K
    [116] Honein MA, Paulozzi LJ, Moore CA (2000) Family history, maternal smoking, and clubfoot: an indication of a gene-environment interaction. Am J Epidemiol 152: 658-665. doi: 10.1093/aje/152.7.658
    [117] Gurnett CA, Alaee F, Kruse LM, et al. (2008) Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet 83: 616-622. doi: 10.1016/j.ajhg.2008.10.004
    [118] Alvarado DM, McCall K, Aferol H, et al. (2011) Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet 20: 3943-3952. doi: 10.1093/hmg/ddr313
    [119] Yong BC, Xun FX, Zhao LJ, et al. (2016) A systematic review of association studies of common variants associated with idiopathic congenital talipes equinovarus (ICTEV) in humans in the past 30 years. Springerplus 5: 896-016-2353-8. eCollection 2016. doi: 10.1186/s40064-016-2353-8
    [120] Rodriguez-Esteban C, Tsukui T, Yonei S, et al. (1999) The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398: 814-818. doi: 10.1038/19769
    [121] Alvarado DM, Aferol H, McCall K, et al. (2010) Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet 87: 154-160.
    [122] Lu W, Bacino CA, Richards BS, et al. (2012) Studies of TBX4 and chromosome 17q23.1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A 158A: 1620-1627.
    [123] Alnemri ES, Livingston DJ, Nicholson DW, et al. (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171. doi: 10.1016/S0092-8674(00)81334-3
    [124] Heck AL, Bray MS, Scott A, et al. (2005) Variation in CASP10 gene is associated with idiopathic talipes equinovarus. J Pediatr Orthop 25: 598-602. doi: 10.1097/01.bpo.0000173248.96936.90
    [125] Ester AR, Tyerman G, Wise CA, et al. (2007) Apoptotic gene analysis in idiopathic talipes equinovarus (clubfoot). Clin Orthop Relat Res 462: 32-37. doi: 10.1097/BLO.0b013e318073c2d9
    [126] Daher S, Guimaraes AJ, Mattar R, et al. (2008) Bcl-2 and Bax expressions in pre-term, term and post-term placentas. Am J Reprod Immunol 60: 172-178. doi: 10.1111/j.1600-0897.2008.00609.x
    [127] Peebles DM (2004) Fetal consequences of chronic substrate deprivation. Semin Fetal Neonatal Med 9: 379-386. doi: 10.1016/j.siny.2004.03.008
    [128] Sundberg K, Bang J, Smidt-Jensen S, et al. (1997) Randomised study of risk of fetal loss related to early amniocentesis versus chorionic villus sampling. Lancet 350: 697-703. doi: 10.1016/S0140-6736(97)02449-5
    [129] Cederholm M, Haglund B, Axelsson O (2005) Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping. BJOG 112: 394-402. doi: 10.1111/j.1471-0528.2005.00413.x
    [130] Mark M, Rijli FM, Chambon P (1997) Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 42: 421-429. doi: 10.1203/00006450-199710000-00001
    [131] McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283-302. doi: 10.1016/0092-8674(92)90471-N
    [132] Dobbs MB, Gurnett CA, Pierce B, et al. (2006) HOXD10 M319K mutation in a family with isolated congenital vertical talus. J Orthop Res 24: 448-453. doi: 10.1002/jor.20052
    [133] Shrimpton AE, Levinsohn EM, Yozawitz JM, et al. (2004) A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-Tooth disease. Am J Hum Genet 75: 92-96. doi: 10.1086/422015
    [134] Weymouth KS, Blanton SH, Bamshad MJ, et al. (2011) Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot. Am J Med Genet A 155A: 2170-2179.
    [135] McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: 693-701. doi: 10.1016/S0006-3495(93)81110-X
    [136] Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853-924.
    [137] Weymouth KS, Blanton SH, Powell T, et al. (2016) Functional Assessment of Clubfoot Associated HOXA9, TPM1, and TPM2 Variants Suggests a Potential Gene Regulation Mechanism. Clin Orthop Relat Res 474: 1726-1735. doi: 10.1007/s11999-016-4788-1
    [138] Castaneda C, Nalley K, Mannion C, et al. (2015) Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinforma 5: 4-015-0019-3. eCollection 2015. doi: 10.1186/s13336-015-0019-3
    [139] Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14: 295-300. doi: 10.1038/nrg3463
    [140] Richards S, Aziz N, Bale S, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405-424. doi: 10.1038/gim.2015.30
    [141] Green RC, Berg JS, Grody WW, et al. (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15: 565-574. doi: 10.1038/gim.2013.73
  • This article has been cited by:

    1. Mario Fuest, Johannes Lankeit, Corners and collapse: Some simple observations concerning critical masses and boundary blow-up in the fully parabolic Keller–Segel system, 2023, 146, 08939659, 108788, 10.1016/j.aml.2023.108788
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5779) PDF downloads(1029) Cited by(0)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog