Citation: Nurul Akhma Zakaria, A.A. Kutty, M.A. Mahazar, Marina Zainal Abidin. Arsenic acute toxicity assessment on select freshwater organism species in Malaysia[J]. AIMS Environmental Science, 2016, 3(4): 804-814. doi: 10.3934/environsci.2016.4.804
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[4] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[7] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[8] | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121 |
[9] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[10] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
In recent years, convexity theory has gained special attention by many researchers because of it engrossing properties and expedient characterizations. It has many applications in fields like biology, numerical analysis and statistics (see [1,2,3,4]). Mathematical inequalities are extensively studied with all type of convex functions (see[1,3,11,13,14,16]). One of the fundamental inequality is Hermite-Hadamard inequality. It has been discussed via different types of convexities and became the center of attention for many researchers. Recently, in 2016, Khan et al. have discussed generalizations of Hermite-Hadamard type for MT-convex functions [26]. In 2017, Khan et al. studied some new inequalities of Hermite-Hadamard types [27]. In 2019, Khurshid et al. have utilized conformable fractional integrals via preinvex functions [28]. In 2020, Khan et al. have discussed Hermite-Hadamard type inequalities via quantum calculus involving green function [29], Mohammed et al. have established a new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals [30], Han et al. used fractional integral to generalize Hermite-Hadamard inequality for convex functions [31], Zhao et al. utilized harmonically convex functions to generalized fractional integral inequalities of Hermite-Hdamrd type [32], Awan et al. presented new inequalities of Hermite-Hdamard type for n-polynomial harmonically convex functions [33]. In 2022, Khan et al. introduced some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings [34]. This reflects the importance of Hermite Hadamard type inequalities among current research.
In [9], s-convex function is given as,
Definition 1.1. A real valued function χ is called s-convex function on R, if
χ(ςρ+(1−ς)γ)≤ςsχ(ρ)+(1−ς)sχ(γ), |
for each ρ,γ∈R and ς∈(0,1) where s∈(0,1].
In [10], m-convexity is discussed as,
Definition 1.2. A real valued function χ defined on [0,b] is said to be a m-convex function for m∈[0,1], if
χ(ςρ+m(1−ς)γ)≤ςχ(ρ)+m(1−ς)χ(γ), |
holds for all ρ,γ∈[0,b] and ς∈[0,1].
(s,m)-convexity in [17] is discussed as,
Definition 1.3. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Equivalent definition for (s,m)–convex functions:
Let ρ,α,γ∈[0,b], ρ<α<γ
χ(α)≤(γ−αγ−ρ)sχ(ρ)+m(α−ργ−ρ)sχ(γ). | (1.1) |
Hölder-İşcan Inequality [5]:
Let p>1, χ and ψ be real valued functions defined on [ρ,γ] and |χ|p,|ψ|q are integrable functions on interval [ρ,γ]
∫γρ|χ(ω)ψ(ω)|dω≤1γ−ρ(∫γρ(γ−ω)|χ(ω)|pdω)1p(∫γρ(γ−ω)|ψ(ω)|qdω)1q+1γ−ρ(∫γρ(ω−ρ)|χ(ω)|pdω)1p(∫γρ(ω−ρ)|ψ(ω)|qdω)1q, | (1.2) |
where 1p+1q=1.
Following lemma is useful to obtain our main results.
Lemma 1.4. [8] For n∈N, let χ:U⊆R⟶R be n-times differentiable mapping on U∘, where ρ,γ∈U∘, ρ<γ and χn∈L[ρ,γ], we have following identity
n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω=(−1)n+1n!γ∫ρωnχ(n)(ω)dω, | (1.3) |
where an empty set is understood to be nil.
In this paper, Hölder-İşcan inequality is used to modify inequalities involving functions having s-convex or s-concave derivatives at certain powers. The purpose of this paper is to establish some generalized inequalities for n-times differentiable (s,m)-convex functions. Applications of these inequalities to means are also discussed. Means are defined as,
Let 0<ρ<γ,
A(ρ,γ)=ρ+γ2, |
G(ρ,γ)=√ργ, |
Lp(ρ,γ)=(γp+1−ρp+1(p+1)(γ−ρ))1p, |
where p≠0,−1 and ρ≠γ.
Theorem 2.1. For any positive integer n, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where ρ,γ∈U∘ with ρ<γ. If χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s,m)-convex on interval [ρ,γ] then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−μ∫ρχ(ω)dω|≤1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q), | (2.1) |
where 1p+1q=1.
Proof. Since |χn|q is (s,m)-convex by using inequality (1.1) for ρ<ω<γ, using Lemma 1.4 and Hölder-Işcan inequality (1.2),
|χn(ω)|q≤|χn(ω−ργ−ργ+mγ−ωγ−ρρ)|q≤(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q,|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρωn|χ(n)(ω)|dω,≤1n!1γ−ρ{(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)|χ(n)(ω)|qdω)1q+(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)|χ(n)(ω)|qdω)1q},≤1n!1γ−ρ(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q+1n!1γ−ρ(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q, | (2.2) |
Let
I1=[γ∫ρ(γ−ω)ωnpdω]1p=[γ∫ρ(γωnp−ωnp+1)dω]1p=(γ−ρ)1p[γ(γnp+1−ρnp+1(γ−ρ)(np+1))−(γnp+2−ρnp+2(γ−ρ)(np+2))]1p=(γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p, |
I2=[γ∫ρ(ω−ρ)ωnpdt]1p=[γ∫ρ(ωnp+1−ρωnp)dω]1p=(γ−ρ)1p[(γnp+2−ρnp+2(γ−ρ)(np+2))−ρ(γnp+1−ρnp+1(γ−ρ)(np+1))]1p=(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p, |
I3=γ∫ρ(γ−ω)(ω−ρ)sdω=(γ−ω)(ω−ρ)s+1s+1|γρ+γ∫ρ(ω−ρ)s+1s+1dω=(γ−ρ)s+2(s+1)(s+2), |
I4=γ∫ρ(γ−ω)s+1dω=(γ−ρ)s+2s+2,I5=γ∫ρ(ω−ρ)s+1dω=(γ−ρ)s+2s+2,I6=γ∫ρ(ω−ρ)(γ−ω)sdω=(ω−ρ)(γ−ω)s+1(s+1)|γρ+γ∫ρ(γ−ω)s+1(s+1)dω=(γ−ρ)s+2(s+1)(s+2). |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.2) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!(γ−ρ)((γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2))]1q+(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2))]1q) |
=(γ−ρ)1p−1+2qn!([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q) |
=1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q). |
which is required inequality (2.1).
For n=1 inequality (2.1) becomes,
|(χ(γ)γ−χ(ρ)ργ−ρ)−1γ−ργ∫ρχ(ω)dω|≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[|χ′(γ)|q(s+1)(s+2)+m|χ′(ρ)|(s+2)q]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[m|χ′(ρ)|q(s+1)(s+2)+|χ′(γ)|(s+2)q]1q). | (2.3) |
Remark 2.2. For s=1 and m=1 our resulting inequality (2.1) becomes the inequality (2) of [5].
Theorem 2.3. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ, χ(n)∈L[ρ,γ] and |χ(n)|q for q>1, is (s,m)-convex on interval [ρ,γ] then following inequality holds
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). | (2.4) |
Proof. Since |χ(n)|q for q>1 is (s,m)-convex on [ρ,γ], by using Lemma 1.4 and Hölder-İşcan inequality (1.2), since s∈(0,1], this fact can be used for ω,ρ,γ∈U⊆(0,∞),
(ω−ρ)s<(ω−ρ)s,(γ−ω)s<(γ−ω)s|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρ1.ωn|χ(n)(ω)|dω,≤1n!1(γ−ρ)([(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq|χ(n)(ω)|qdω)1q]+[(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq|χ(n)(ω)|qdω)1q]),≤1n!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dt)1q+1n!1(γ−ρ)(γ∫ρ(ω−ρ)dt)1p(γ∫ρ(ω−ρ)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dx)1q,≤1s1qn!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q+1s1qn!1(γ−ρ)(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q, I1=γ∫ρ(γ−ω)dω=(γ−ρ)22 I2=γ∫ρ(γ−ω)(ω−ρ)ωnqdω=γωnq+1nq+1−ργωnq+1nq+1−ωnq+3nq+3+ρωnq+2nq+2|γρ =−(γnq+3−ρnq+3nq+3)+ρ(γnq+2−ρnq+2nq+2)+γ(γnq+2−ρnq+2nq+2)−ργ(γnq+1−ρnq+1nq+1) =(γ−ρ)[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)], I3=γ∫ρ(γ−ω)2ωnqdω=γ2ωnq+1nq+1+ωnq+3nq+3−2γωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)−2γ(γnq+2−ρnq+2nq+2)+γ2(γnq+1−ρnq+1nq+1) =(γ−ρ)[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)], I4=γ∫ρ(ω−ρ)2ωnqdω=ωnq+3nq+3+ρ2ωnq+1nq+1−2ρωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)+ρ2(γnq+1−ρnq+1nq+1)−2ρ(γnq+2−ρnq+2nq+2) =(γ−ρ)[Lnq+2nq+2(ρ,γ)+ρ2Lnqnq(ρ,γ)−2ρLnq+1nq+1(ρ,γ)]. | (2.5) |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.5) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ))])1q+(|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))])1q), |
=1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). |
For n=1, Theorem2.3 reduced to the inequality
|γχ(γ)−ρχ(ρ)(γ−ρ)−1(γ−ρ)γ∫ρχ(ω)dω|≤1s1q(12)1p(γ−ρ)2p−2((|χ(1)(γ)|q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(|χ(1)(γ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.6) |
Remark 2.4. For s=1 and m=1 our resulting inequality (2.4) becomes the inequality (6) of [5].
Theorem 2.5. If function χ:[0,b]⟶R, b>0 is a (s, m)-convex function in the second sense where (s,m)∈(0,1]2, holds provided that all ρ,γ∈[0,b] and ς∈[0,1], then
2sχ(ρ+mγ2)≤[1mγ−ρmγ∫ρχ(ω)dω+m2mγ−ργ∫ρmχ(l)dl]≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.7) |
Proof. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Integrating w.r.t ς on [0,1],
1∫0χ(ςρ+m(1−ς)γ)dς≤1∫0ςsχ(ρ)dς+1∫0m(1−ς)sχ(γ)dς,=ςs+1s+1|10χ(ρ)−mχ(γ)(1−ς)s+1s+1|10=χ(ρ)+mχ(γ)s+1. 1∫0χ(ςρ+m(1−ς)γ)dς≤χ(ρ)+mχ(γ)s+1. | (2.8) |
and
χ(ςγ+m(1−ς)ρm2)≤ςsχ(γ)+m(1−ς)sχ(ρm2),1∫0χ(ςγ+m(1−ς)ρm2)dς≤χ(γ)+mχ(ρm2)s+1. | (2.9) |
As χ is (s,m)-convex,
χ(ρ+mγ2)=χ(ςρ+(1−ς)mγ2+m.(1−ς)ρm+ςγ2)≤(12)sχ(ςρ+(1−ς)γm)+m(12)sχ(ςγ+(1−ς)ρm), |
Integrating w.r.t ς over [0,1] and by using (2.8) and (2.9) we get,
2sχ(ρ+mγ2)≤1∫0(χ(ςρ+(1−ς)γm)dς+m1∫0χ(ςγ+(1−ς)ρm)dς≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.10) |
Substituting in first integral,
ςρ+(1−ς)γm=ω,
1∫0χ(ςρ+(1−ς)mγ)dς=1γm−ργm∫ρχ(ω)dω. | (2.11) |
Substituting in the second integral,
ςγ+(1−ς)ρm=l,
1∫0χ(ςγ+(1−ς)ρm)dς=mγm−ργ∫ρmχ(l)dl, | (2.12) |
Using (2.11) and (2.12) in (2.10) required inequality (2.7) obtained.
Remark 2.6. For s,m=1 inequality (2.7) becomes classical Hadamard inequality for convex functions.
Theorem 2.7. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ and χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s, m)-concave on interval [ρ,mγ], then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−mγ∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(n)(ρ+mγ2)|n!((γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p+(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p). | (2.13) |
Proof. |χ(n)|q for q>1 is (s,m)-concave then by using Theorem 2.5 we have,
|χ(n)(ρ)|q+m|χ(n)(γ)|qs+1+|χ(n)(γ)|q+m|χ(n)(ρm2)|qs+1−m2(mγ−ρ)γ∫ρm|χ(n)(l)|qdl≤1(mγ−ρ)mγ∫ρ|χ(n)(ω)|qdω≤2s|χ(n)(ρ+mγ2)|q, |
mγ∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q. |
Using Lemma 1.4 and Hölder-Îşcan inequality (1.2),
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γm∫ρχ(ω)dω|≤1n!γm∫ρωn|χ(n)(ω)|dω, ≤1n!1γ−ρ{(γm∫ρ(γ−ω)ωnpdω)1p(mγ∫ρ(γ−ω)|χn(ω)|qdω)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(mγ∫ρ(ω−ρ)|χn(ω)|qdω)1q}, ≤1n!1γ−ρ((γm∫ρ(γ−ω)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q), I1=(γm∫ρ(γ−ω)ωnpdω)1p=(γωnp+1np+1|γmρ−ωnp+2np+2|γmρ)1p =(mγ−ρ)1p(γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p, I2=(γm∫ρ(ω−ρ)ωnpdω)1p=(ωnp+2np+2|γmρ−ρωnp+1np+1|γmρ)1p =(mγ−ρ)1p(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p. | (2.14) |
Substituting integrals I1,I2 in inequality (2.14) required inequality (2.13) is obtained.
For n=1 inequality (2.13) becomes,
|χ(γ)γ−ρχ(ρ)(γ−ρ)−1(γ−ρ)γm∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(1)(ρ+γ2)|1!((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.15) |
Remark 2.8. For s=1 and m=1 our resulting inequality becomes the inequality obtained in Theorem 4 of [5].
Proposition 2.9. Let ρ,γ∈(0,∞), where ρ<γ, q>1, n,i∈N with i≥n,
|Lii(ρ,γ)[(i+1)∑n−1ν=0(−1)νP(i,ν)(ν+1)!−1]|≤1n!(γ−ρ)1q−1×([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p(γ(i−n)q(s+1)(s+2)+mρ(i−n)q(s+2))1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p(mρ(i−n)q(s+1)(s+2)+γ(i−n)q(s+2))1q), | (2.16) |
where
P(i,n)={i(i−1)...(i−n+1),i>nn!,i=n1,n=0}. |
Proof. Let
χ(ω)=ωi,|χ(n)(ω)|q=|P(i,n)ωi−n|q |
Let
g(ς)=|P(i,n)(ςρ+m(1−ς)γ|(i−n)q−|P(i,n)ςsρ|(i−n)q−|mP(i,n)(1−ς)sγ|(i−n)q, |
g″(ς)=P(i,n)((i−n)q)((i−n)q−1)(ςρ+m(1−ς)γ)(i−n)q−2(ρ−mγ)2−s(s−1)ςs−2P(i,n)ρ(i−n)q−ms(s−1)(1−ς)s−2P(i,n)γ(i−n)q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0, which omplies g≤0, hence
|P(i,n)(ςρ+m(1−ς)γ)|(i−n)q≤|P(i,n)ςsρ|(i−n)q+|mP(i,n)(1−ς)sγ)|(i−n)q. |
By using Theorem 2.1 for |χn(ω)|q which is (s,m)–convex for s,m∈(0,1]2 inequality (2.16) obtained.
Remark 2.10. For s,m=1 inequality (2.16) becomes inequality (3) of [5].
Example 2.11. Taking i=2, n=1, p=q=2 in Proposition 2.9, the following is valid:
2A(ρ2,γ2)+G2(ρ,γ)≤(32√6)([A(3ρ2,γ2)+G2(ρ,γ)]12(γ2(s+1)(s+2)+mρ2(s+2))12+[A(ρ2,3γ2)+G2(ρ,γ)]12(mρ2(s+1)(s+2)+γ2(s+2))12), |
where A and G are classical arithmetic and geometric means, respectively.
Proposition 2.12. Let ρ,γ∈(0,∞), with, ρ<γ, q>1 and n∈N,
1≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γ−q(s+1)(s+2)+mρ−q(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρ−q(s+1)(s+2)+γ−q(s+2))]1q), | (2.17) |
where L is classical logarithmic mean.
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=|ω−1|q |
Let
g(ς)=|(ςρ+m(1−ς)γ|−q−|ςsρ|−q−|m(1−ς)sγ|−q |
g″(ς)=(−q)(−q−1)(ςρ+m(1−ς)γ)−q−2(ρ−mγ)2−s(s−1)ςs−2ρ−q−ms(s−1)(1−ς)s−2γ−q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0 which implies g≤0 as
|(ςρ+m(1−ς)γ|−q≤|ςsρ|−q+|m(1−ς)sγ|−q. |
So |χ(1)(ω)|q is (s,m)-convex. Then by using inequality (2.3) required inequality (2.17) obtained.
Remark 2.13. For s,m=1 inequality (2.17) becomes (4) of [5].
Example 2.14. For n=1 and p=q=2, Proposition 2.12 gives:
1≤1√6([A(3ρ2,γ2)+G2(ρ,γ)]1p[(γ−2(s+1)(s+2)+mρ−2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]1p[(mρ−2(s+1)(s+2)+γ−2(s+2))]12). |
Proposition 2.15. Let ρ,γ∈(0,∞), ρ<γ, q>1, i∈(−∞,0]∪[1,∞)∖{−2q,−q}
then
Liq+1iq+1(ρ,γ)≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γi(s+1)(s+2)+mρi(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρi(s+1)(s+2)+γi(s+2))]1q). | (2.18) |
Proof.
χ(t)=qi+qωiq+1,|χ′(ω)|q=ωi |
Let
g(ς)=|(ςρ+m(1−ς)γ|i−|ςsρ|i−|m(1−ς)sγ|i, |
g″(ς)=(i)(i−1)(ςρ+m(1−ς)γ)i−2(ρ−mγ)2−s(s−1)ςs−2ρi−ms(s−1)(1−ς)s−2γi, |
g″(ς)≥0 and g(1)=g(0) so g≤0 and |χ′(ω)|q is (s,m)-convex, by using inequality (2.3) we have (2.18).
Remark 2.16. For s,m=1 inequality (2.18) becomes (5) of [5].
Example 2.17. For i=2 and p=q=2 Proposition 2.15 reduced to
2A(ρ2,γ2)+G2(ρ,γ)≤(3√6)([A(3ρ2,γ2)+G2(ρ,γ)]12[(γ2(s+1)(s+2)+mρ2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]12[(mρ2(s+1)(s+2)+γ2(s+2))]12). | (2.19) |
Proposition 2.18. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and n∈N then we have
×|Lii(ρ,γ)[n−1∑ν=0(−1)νP(i,ν)(ν+1)!−1]|≤P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(κ,μ)+μ2Lnqnq(ρ,γ)])1q+P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q. | (2.20) |
Proof. Let,
χ(ω)=ωi,|χ(n)(ω)|q=[P(i,n)ωi−n]q |
As |χn(ω)|q is (s,m)-convex on (0,∞), therefore by using Theorem 2.3 required inequality (2.20) is obtained.
Remark 2.19. For s,m=1 inequality (2.20) becomes inequality obtained in Proposition 4 of [5].
Proposition 2.20. Let ρ,γ∈(0,∞) with ρ<γ q>1 and n∈N then we have,
1≤(γ−ρ)2p−2s1q.21p((γ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q), | (2.21) |
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=[ω−1]q |
As |χ(1)(ω)|q is (s,m)–convex, therefore by using inequality (2.6) required (2.21) obtained.
Remark 2.21. For s,m=1 inequality (2.21) becomes inequality obtained in Proposition 5 of [5].
Proposition 2.22. Let ρ,γ∈(0,∞) with ρ<γ q>1 and i∈(−∞,0]∖{−2q,q}, then
Liq+1iq+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γi(γ−ρ)s−1[−Lnq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρm(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.22) |
Proof.
χ(ω)=qi+qωiq+1|χ′(ω)|q=ωi |
|χ′(w)|q is (s,m)-convex by using inequality (2.6) required (2.22) obtained.
For i=1 inequality (2.22) becomes,
L1q+11q+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.23) |
Remark 2.23. For s,m=1 inequality (2.22) becomes inequality obtained in Proposition 6 of [5].
Proposition 2.24. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and i∈[0,1] we have,
Liq+1iq+1(ρ,γ)≤2sq(mγ−ρ)1q1!Aiq(ρ,γ)((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.24) |
Proof.
χ(ω)=qi+qωiq+1,|χ′(ω)|q=ωi. |
As |χ′(ω)|q is (s,m)-concave by using inequality (2.15) we obtain required inequality (2.24).
Remark 2.25. For s,m=1 inequality (2.24) becomes the inequality obtained in Proposition 9 of [5].
In this paper, Hölder-Isçan inequality is utilized to prove Hermite-Hadamard type inequalities for n-times differentiable (s,m)-convex functions. The method is adequate and provide many generalizations of existing results as shown in remarks. Moreover, many other inequalities can be generalized for other types of convex functions.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018)
The authors declare no conflict of interest.
[1] | Waqar K, Ahmad I, Kausar R, et al. (2013) Use of bioremediated sewage effluent for fish survival. Int J Agric Biol 15: 988-992. |
[2] |
Hughes MF, Beck BD, Chen Y, et al. (2011) Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences 123: 305-332. doi: 10.1093/toxsci/kfr184
![]() |
[3] |
Sharma VK, Sohn M (2009) Aquatic arsenic: Toxicity, speciation, transformations and remediations. Environt Int 35: 743-759. doi: 10.1016/j.envint.2009.01.005
![]() |
[4] |
Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154: 29-43. doi: 10.1046/j.1469-8137.2002.00363.x
![]() |
[5] |
Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2: 146-160. doi: 10.1071/EN05062
![]() |
[6] |
Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2: 97-101. doi: 10.2113/gselements.2.2.97
![]() |
[7] |
Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89: 713-764. doi: 10.1021/cr00094a002
![]() |
[8] | Wang W-X (2013) Prediction of metal toxicity in aquatic organisms. Chin Sci Bull 58:194-202. |
[9] |
Zhang N, Wei C, Yang L (2013) Occurrence of arsenic in two large shallow freshwater lakes in China and a comparison to other lakes around the world.Microchem J 110: 169-177. doi: 10.1016/j.microc.2013.03.014
![]() |
[10] | Zingaro RA (1983) Biochemistry of arsenic: recent developments. In: Lederer WH, Fensterheim RJ (ed.), Arsenic, Industrial, Biomedical, Environmental Perspectives, Van Nostrand Reinhold Co: New York, 328. |
[11] |
Suhendrayatna AO, Maeda S (2001) Biotransformation of arsenite in freshwater food chain models. Appl Organometal Chem 15: 277-284. doi: 10.1002/aoc.139
![]() |
[12] | Hutton M (1987) Human health concerns of lead, mercury, cadmium and arsenic. In: Hutchinson, T.C., Meema, K.M. (Eds.), Lead, Mercury, Cadmium and Arsenic in the Environment. Wiley, New York, 53-68. |
[13] |
Romero L, Alonso H, Campano P et al. (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region,Chile).Appl Geochem 18: 1399-1416. doi: 10.1016/S0883-2927(03)00059-3
![]() |
[14] |
Azizur Rahman M., Hasegawa H, Peter Lim R. (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116: 118-135. doi: 10.1016/j.envres.2012.03.014
![]() |
[15] | Bhattacharya P, Ahmed KM, Broms S et al. (2006) Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P, editors. Managing arsenic in the environment: from soil to human health. Melbourne: CSIRO Publishing, 95-115. |
[16] | Bhattacharya P, Jacks G, Ahmed KM, et al. (2006) Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538-45. |
[17] |
Smedley PL, Nicolli HB, Macdonald DMJ et al. (2002) Hydrochemistry of arsenic and other inorganic constituents in groundwater from La Pampa, Argentina. Appl Geochem 17: 259-84. doi: 10.1016/S0883-2927(01)00082-8
![]() |
[18] |
Smedley PL, Kinniburgh DG, Macdonald DMJ, et al. (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina.Appl Geochem 20: 989-1016. doi: 10.1016/j.apgeochem.2004.10.005
![]() |
[19] | Barragner-Bigot P (2004) Contribución al estudio de cinco zonas contam- inadas naturalmente por Arsénico en Nicaragua. In: Morega O, editor. UNICEF report. Managua, Nicaragua: UNICEF Publication, 75. [In Spanish]. |
[20] | New Straits Times Online (2015) Water, fish contain high of arsenic. http://www.nst.com.my/news/2015/09/water-fish-contain-high-level-arsenic. |
[21] | Hasegawa H, Sohrin Y, Seki K et al. (2001) Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae.Chemosphere43: 265-272. |
[22] |
Maher WA, Foster SD, Taylor AM et al. (2011) Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environ Chem 8: 9-18. doi: 10.1071/EN10087
![]() |
[23] |
Maeda S, Ohki A, Kusadome K et al. (1992) Bioaccumulation of arsenic and its fate in a freshwater food chain.Appl organometal chem 6: 213-219. doi: 10.1002/aoc.590060216
![]() |
[24] | Javed M (2013) Chronic effects of nickel and cobalt on fish growth. Int J Agric Biol 15: 575-579. |
[25] | APHA AWWA WPCP (2005) Standard methods for the examination of water and wastewater. 21st Ed. American Public Health Association. |
[26] | Shuhaimi-Othman M, Yakub N, Ramle NA, et al. (2011) Toxicity of metals to a freshwater ostracod: Stenocypris major. J Toxicol 2011. |
[27] | Litchfield Jr JT (1949) A method for rapid graphic solution of time-per cent effect curves. J pharmacol exp ther 97: 399-408. |
[28] | Litchfield JA, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J pharmacol exp ther 96: 99-113. |
[29] | Luoma SN, Rainbow PS (2008) Metal Contamination in Aquatic Environment: Science and Lateral Management. Cambridge, New York. |
[30] | Akter MS, Ahmed K, Akhand AA et al. (2008) Acute Toxicity of Arsenic and Mercury to Fresh Water Climbing Perch, Anabas testudineus (Bloch). World Journal of Zoology 3: 13-18. |
[31] | Sinha TKP, Kumar K (1992) Acute toxicity of mercuric chloride to Anabas testudineus (Bloch). Environ Ecol 10: 720-722. |
[32] | Sangeeta Das (2012) Toxicological effects of arsenic exposure in a freshwater teleost fish, Channa punctatus. Afr J Biotechnol 11: 4447-4454. |
[33] | Shuhaimi-Othman M, Nadzifah Y, Ramle NA et al. (2013) Comparative toxicity of eight metals on freshwater fish. Toxicol ind health 1-10. |
[34] |
Hwang PP, Tsai YN (1993) Effects of arsenic on osmoregulation in the tilapia Orechromis mossambicus reared in seawater. Marine Biol 117:551-558. doi: 10.1007/BF00349765
![]() |
[35] |
Speha RL, Fiandt JT, Anderson RL et al. (1980) Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Arch Environ Contam Toxicol 9: 53-63. doi: 10.1007/BF01055499
![]() |
[36] | Johnson W, Finley MT (1980) Handbook of acute toxicology of chemicals to fish and aquatic invertebrates. U.S. Fish Wildlife Services Resource Publishing 137:1-98. |
[37] | Suhendrayatna, Ohki A, Nakajima T et al (2002). Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere, 46: 319-324. |
[38] |
Gorski J, Nugegoda D (2006) Sublethal toxicity of trace metals to larvae of the blacklip abalone, Haliotis rubra. Environ Toxicol Chem 25: 1360-1367. doi: 10.1897/05-060R.1
![]() |
[39] | Landrum PF, Hayton WL, Lee H et al. (1994) Bioavailability: physical, chemical, and biological interactions. Boca Raton, FL: CRC Press. p 203-215. |
[40] | US EPA (US Environmental Protection Agency) (1981) An Exposure and Risk Assess- ment for Arsenic EPA Office of Water Regulations and Standards, Washington, DC. |
[41] | Whitley LS (1967) The resistance of tubificid worms to three common pollutants. Hydrobiológia 32: 193-205. |
[42] |
Khangarot BS (1991) Toxicity of Metals to a Freshwater Tubificid Worm. Bull Environ Contam Toxicol 46: 906-912. doi: 10.1007/BF01689737
![]() |
[43] | Terzi E, Verep B (2011) Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss). Toxicol ind health 286: 499-504. |
[44] | Ronald E (1994) A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In: Jerome ON (ed.), Arsenic in the Environment: Human and Ecosystem Health. New York: John Wiley & Sons Inc, 185-259. |
[45] |
Jeyasingham K, Ling N (2000) Acute toxicity of arsenic to three species of New Zealand chironomids: Chironomus zealandicus, Chironomus sp. a and Polypedilum pavidus (Diptera, Chironomidae). Bull Environ Contam Toxicol 64: 708-715. doi: 10.1007/s001280000061
![]() |
1. | Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187 | |
2. | Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly (s,m)-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x |