Citation: M Toufiq Reza, Jessica Nover, Benjamin Wirth, Charles J Coronella. Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials[J]. AIMS Energy, 2016, 4(1): 173-189. doi: 10.3934/energy.2016.1.173
[1] | Reza MT, Lynam JG, Vasquez VR, et al. (2012) Pelletization of Biochar from Hydrothermally Carbonized Wood. Environ Prog Sustain 31: 225-234. doi: 10.1002/ep.11615 |
[2] | Reza MT, Lynam JG, Uddin MH, et al. (2013) Hydrothermal carbonization: Fate of inorganics. Biomass Bioenerg 49: 86-94. doi: 10.1016/j.biombioe.2012.12.004 |
[3] | Reza MT, Borrego AG, Wirth B (2014) Optical texture of hydrochar from maize silage and maize silage digestate. Int J of Coal Geology 134–135: 74-79. |
[4] | Reza MT, Becker W, Sachsenheimer K, et al. (2014) Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresource Technol 161: 91-101. doi: 10.1016/j.biortech.2014.03.008 |
[5] | Lynam J, Reza MT, Yan W, et al. (2014) Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conv Bioref : 1-9. |
[6] | Coronella C, Lynam J, Reza MT, et al. (2014) Hydrothermal Carbonization of Lignocellulosic Biomass. In: Jin F, editor. Application of Hydrothermal Reactions to Biomass Conversion: Springer Berlin Heidelberg: 275-311. |
[7] | Liu ZG, Quek A, Parshetti G, et al. (2013) A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar-lignite co-pyrolysis. Appl Energ 108: 74-81. doi: 10.1016/j.apenergy.2013.03.012 |
[8] | Reza MT, Andert J, Wirth B, et al. (2014) Hydrothermal Carbonization of Biomass for Energy and Crop Production. Applied Bioenergy 1: 11-29. |
[9] | Demir-Cakan R, Makowski P, Antonietti M, et al. (2010) Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. Catal Today 150: 115-118. doi: 10.1016/j.cattod.2009.05.003 |
[10] | Bandura AV, Lvov SN (2006) The ionization constant of water over wide ranges of temperature and density. J Phys Chem Ref Data 35: 15-30. doi: 10.1063/1.1928231 |
[11] | Reza MT, Yan W, Uddin MH, et al. (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource Technol 139: 161-169. doi: 10.1016/j.biortech.2013.04.028 |
[12] | Reza MT, Uddin MH, Lynam J, et al. (2014) Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conv Bioref 4: 311-321. doi: 10.1007/s13399-014-0115-9 |
[13] | Wiedner K, Naisse C, Rumpel C, et al. (2013) Chemical modification of biomass residues during hydrothermal carbonization - What makes the difference, temperature or feedstock? Org Geochem 54: 91-100. doi: 10.1016/j.orggeochem.2012.10.006 |
[14] | Funke A (2015) Fate of Plant Available Nutrients during Hydrothermal Carbonization of Digestate. Chemie Ingenieur Technik 87: 1713-1719. doi: 10.1002/cite.201400182 |
[15] | Heilmann SM, Molde JS, Timler JG, et al. (2014) Phosphorus Reclamation through Hydrothermal Carbonization of Animal Manures. Environ Sci Technol 48: 10323-10329. doi: 10.1021/es501872k |
[16] | Funke A, Mumme J, Koon M, et al. (2013) Cascaded production of biogas and hydrochar from wheat straw: Energetic potential and recovery of carbon and plant nutrients. Biomass Bioenerg 58: 229-237. |
[17] | Heilmann SM, Davis HT, Jader LR, et al. (2010) Hydrothermal carbonization of microalgae. Biomass Bioenerg 34: 875-882. doi: 10.1016/j.biombioe.2010.01.032 |
[18] | Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47: 2281-2289. doi: 10.1016/j.carbon.2009.04.026 |
[19] | Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Bior 4: 160-1677. doi: 10.1002/bbb.198 |
[20] | Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17: 515-521. doi: 10.1016/j.cbpa.2013.05.004 |
[21] | Zhu XD, Liu YC, Luo G, et al. (2014) Facile Fabrication of Magnetic Carbon Composites from Hydrochar via Simultaneous Activation and Magnetization for Triclosan Adsorption. Environ Sci Technol 48: 5840-5848. |
[22] | Kumar S, Loganathan VA, Gupta RB, et al. (2011) An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J Environ Manage 92: 2504-2512. doi: 10.1016/j.jenvman.2011.05.013 |
[23] | Regmi P, Moscoso JLG, Kumar S, et al. (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 109: 61-69. doi: 10.1016/j.jenvman.2012.04.047 |
[24] | Hu B, Wang K, Wu LH, et al. (2010) Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv Mater 22: 813-828. doi: 10.1002/adma.200902812 |
[25] | Demir-Cakan R, Baccile N, Antonietti M, et al. (2009) Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. Chem Mater 21: 484-490. doi: 10.1021/cm802141h |
[26] | Baccile N, Laurent G, Babonneau F, et al. (2009) Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS C-13 NMR Investigations. J Phys Chem C 113: 9644-9654. |
[27] | Baccile N, Antonietti M, Titirici MM (2010) One-Step Hydrothermal Synthesis of Nitrogen-Doped Nanocarbons: Albumine Directing the Carbonization of Glucose. Chemsuschem 3: 246-253. doi: 10.1002/cssc.200900124 |
[28] | Zhao L, Bacsik Z, Hedin N, et al. (2010) Carbon Dioxide Capture on Amine-Rich Carbonaceous Materials Derived from Glucose. Chemsuschem 3: 840-845. doi: 10.1002/cssc.201000044 |
[29] | Fechler N, Wohlgemuth SA, Jaker P, et al. (2013) Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions. J Mater Chem A 1: 9418-9421. doi: 10.1039/c3ta10674h |
[30] | Reza MT, Rottler E, Tolle R, et al. (2015) Production, characterization, and biogas application of magnetic hydrochar from cellulose. Bioresource Technol 186: 34-43. doi: 10.1016/j.biortech.2015.03.044 |
[31] | Sevilla M, Fuertes AB (2009) Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem-Eur J 15: 4195-4203. doi: 10.1002/chem.200802097 |
[32] | Titirici MM, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39: 103-116. doi: 10.1039/B819318P |
[33] | Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry 15: 4195-4203. doi: 10.1002/chem.200802097 |
[34] | Cao XD, Ma LN, Gao B, et al. (2009) Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine. Environ Sci Technol 43: 3285-3291. doi: 10.1021/es803092k |
[35] | Diakite M, Paul A, Jager C, et al. (2013) Chemical and morphological changes in hydrochars derived from microcrystalline cellulose and investigated by chromatographic, spectroscopic and adsorption techniques. Bioresource Technol 150: 98-105. doi: 10.1016/j.biortech.2013.09.129 |
[36] | Si Y, Ren T, Li Y, et al. (2012) Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50: 5176-5185. |
[37] | Lynam JG, Reza MT, Vasquez VR, et al. (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99: 271-273. doi: 10.1016/j.fuel.2012.04.035 |
[38] | Ryu J, Suh YW, Suh DJ, et al. (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48: 1990-1998. doi: 10.1016/j.carbon.2010.02.006 |
[39] | Peterson AA, Vogel F, Lachance RP, et al. (2008) Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Env Sci 1: 32-65. |
[40] | Danso-Boateng E, Shama G, Wheatley AD, et al. (2008) Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresource technology 177: 318-327. |