Citation: Lifita N. Tande, Valerie Dupont. Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling[J]. AIMS Energy, 2016, 4(1): 68-92. doi: 10.3934/energy.2016.1.68
[1] | Naik SN, Goud VV, Rout PK, et al. (2010) Production of first and second generation biofuels: A comprehensive review. Renew sust energ rev 14: 578-597. doi: 10.1016/j.rser.2009.10.003 |
[2] | Ni M, Leung DYC, Leung MKH, et al. (2006) An overview of hydrogen production from biomass. Fuel process technol 87: 461-472. |
[3] | Ni M, Leung DYC, Leung MKH, et al. (2006) An overview of hydrogen production from biomass. Fuel process technol 87: 461-472. |
[4] | Wu C, Huang Q, Sui M, et al. (2008) Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Fuel process technol 89: 1306-1316. |
[5] | Chattanathan SA, Adhikari S, Abdoulmoumine N (2012) A review on current status of hydrogen production from bio-oil. Renew sust energ rev 16: 2366-2372. |
[6] | Czernik S, Bridgwater AV (2004) Overview of Applications of Biomass Fast Pyrolysis Oil. Energ fuel 18: 590-598. doi: 10.1021/ef034067u |
[7] | Kamm B, Kamm M, Gruber PR, et al. (2005) Biorefinery Systems—An Overview. In: Kamm B, R GP, Kamm M, editors. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. Weinheim: Wiley-VCH Verlag GmbH, pp. 1-40. |
[8] | Jacobson K, Maheria KC, Dalai AK (2013) Bio-oil valorization: A review. Renew sust energ rev 23: 91-106. doi: 10.1016/j.rser.2013.02.036 |
[9] | Mantilla SV, Gauthier-Maradei P, Gil PÁ, et al. (2014) Comparative study of bio-oil production from sugarcane bagasse and and palm empty fruit bunch: Yield optimization and bio-oil characterization. J anal appl pyrol 108: 284-294. doi: 10.1016/j.jaap.2014.04.003 |
[10] | Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Cataly today 129: 265-268. doi: 10.1016/j.cattod.2006.08.071 |
[11] | Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass bioenerg 62: 174-181. doi: 10.1016/j.biombioe.2014.01.002 |
[12] | Isahak WNRW, Hisham MWM, Yarmo MA, et al. (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew sust energ rev 16: 5910-5923. doi: 10.1016/j.rser.2012.05.039 |
[13] | Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass bioenerg 38: 68-94. |
[14] | Abdullah N, Gerhauser H (2008) Bio-oil derived from empty fruit bunches. Fuel 87: 2606-2613. doi: 10.1016/j.fuel.2008.02.011 |
[15] | Sulaiman F, Abdullah N (2011) Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy 36: 2352-2359. doi: 10.1016/j.energy.2010.12.067 |
[16] | Kim SW, Koo B, Ryu J, et al. (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel process technol 108: 118-124. |
[17] | Autaa M, Erna LM, Hameeda BH (2014) Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. J anal appl pyrol 107: 67-72. doi: 10.1016/j.jaap.2014.02.004 |
[18] | Abdullah N, Gerhauser H, Sulaiman F (2010) Fast pyrolysis of empty fruit bunches. Fuel 89: 2166-2169. |
[19] | Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew sust energ rev 15: 1615-1624. doi: 10.1016/j.rser.2010.11.054 |
[20] | Akhtar J, Kuang SK, Amin NS (2010) Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renewable energy 35: 1220-1227. |
[21] | Sukiran MA, Chin CM, Bakar N (2009) Bio-oils from Pyrolysis of Oil Palm Empty Fruit Bunches. Am j appl sci 6: 869-875. doi: 10.3844/ajassp.2009.869.875 |
[22] | Pimenidou P, Dupont V (2012) Characterisation of palm empty fruit bunch (PEFB) and pinewood bio-oils and kinetics of their thermal degradation. Bioresource technol 109: 198-205. doi: 10.1016/j.biortech.2012.01.020 |
[23] | Khor KH, Lim KO, Zainal ZA (2009) Characterization of bio-oil: a by-product from slow pyrolysis of oil palm empty fruit bunches. Am j appl sci 6: 1647-1652. |
[24] | Ayabe S, Omoto H, Utaka T, et al. (2003) Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catal a-gen 241: 261-269. |
[25] | Rennard DC, Dauenhauer PJ, Tupy SA, et al. (2008) Autothermal Catalytic Partial Oxidation of Bio-Oil Functional Groups: Esters and Acids. Energ fuel 22: 1318-1327. doi: 10.1021/ef700571a |
[26] | Dybkjaer I (1995) Tubular reforming and autothermal reforming of natural gas - an overview of available processes. Fuel process technol 42: 85-107. |
[27] | Rabenstein G, Hacker V (2008) Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. J Power sources 185: 1293-1304. doi: 10.1016/j.jpowsour.2008.08.010 |
[28] | Rostrup-Nielsen T (2005) Manufacture of hydrogen. Cataly today 106: 293-296. doi: 10.1016/j.cattod.2005.07.149 |
[29] | Jonga Md, Reindersa AHME, Kok JBW, et al. (2009) Optimizing a steam-methane reformer for hydrogen production. Int j hydrogen energ 34: 285-292. doi: 10.1016/j.ijhydene.2008.09.084 |
[30] | Adhikari S, Fernando S, Gwaltney SR, et al. (2007) Athermodynamic analysis of hydrogen production by steam reforming of glycerol. Int j hydrogen energ 32: 2875-2880. doi: 10.1016/j.ijhydene.2007.03.023 |
[31] | Vagia EC, Lemonidou AA (2008) Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int j hydrogen energ 33: 2489-2500. doi: 10.1016/j.ijhydene.2008.02.057 |
[32] | Xie J, Su D, Yin X, et al. (2011) Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production. Int j hydrogen energ 36: 15561-15572. doi: 10.1016/j.ijhydene.2011.08.103 |
[33] | Garcia L, French R, Czernik S, et al. (2000) Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl catal a-gen 201: 225-239. |
[34] | Trane R, Dahl S, Skjøth-Rasmussen MS, et al. (2012) Catalytic steam reforming of bio-oil. Int j hydrogen energ 37: 6447-6472. |
[35] | Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Hydrogen and synthesis gas by steam- and C02 reforming. Advance catalysis 47: 65-139. |
[36] | Aasberg-Petersen K, Dybkjær I, Ovesen CV, et al. (2011) Natural gas to synthesis gas – Catalysts and catalytic processes. J nat gas sci eng 3: 423-459. doi: 10.1016/j.jngse.2011.03.004 |
[37] | Czernik S, French R (2014) Distributed production of hydrogen by auto-thermal reforming of fast pyrolysis bio-oil. Int j hydrogen energ 39: 744-750. doi: 10.1016/j.ijhydene.2013.10.134 |
[38] | Rennard D, French R, Czernik S, et al. (2010) Production of synthesis gas by partial oxidation and steam reforming of biomass pyrolysis oils. Int j hydrogen energ 35: 4048-4059. doi: 10.1016/j.ijhydene.2010.01.143 |
[39] | Kolios G, Frauhammer J, Eigenberger G (2000) Autothermal fxed-bed reactor concepts. Chem eng sci 55: 5945-5967. doi: 10.1016/S0009-2509(00)00183-4 |
[40] | Aasberg-Petersen K, Christensen TS, Stub Nielsen C, et al. (2003) Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Process technol 83: 253-261. |
[41] | Martin S, Wörner A (2011) On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming. J power sources 196: 3163-3171. doi: 10.1016/j.jpowsour.2010.11.100 |
[42] | Ruiz JAC, Passos FB, Bueno JMC, et al. (2008) Syngas production by autothermal reforming of methane on supported platinum catalysts. Appl Catal a-gen 334: 259-267. |
[43] | Semelsberger T, Brown F, Borup RL, et al. (2004) Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds. Int j hydrogen energ 29: 1047-1064. doi: 10.1016/S0360-3199(03)00214-3 |
[44] | Zahedi Nezhada M, Rowshanzamira S, Eikanic MH (2009) Autothermal reforming of methane to synthesis gas: Modeling and simulation. Int j hydrogen energ 34: 1292-1300. |
[45] | Haynes DJ, Shekhawat D (2011) Chapter 6 Oxidative Steam Reforming. In: Shekhawat D, Spivey JJ, Berry DA, editors. Fuel Cells: Technologies for Fuel Processing. Amsterdam: Elsevier: 129-190. |
[46] | Garcia La, French R, Czernik S, et al. (2000) Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. Appl catal a-gen 201: 225-239. |
[47] | Wu C, Liu R (2010) Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production. Int j hydrogen energ 35: 7386-7398. doi: 10.1016/j.ijhydene.2010.04.166 |
[48] | Hou T, Yuan L, Ye T, et al. (2009) Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int j hydrogen energ 34: 9095-9107. doi: 10.1016/j.ijhydene.2009.09.012 |
[49] | Resende KA, Ávila-Neto CN, Rabelo-Neto RC, et al. (2015) Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction. Renewable energy 80: 166-176. doi: 10.1016/j.renene.2015.01.057 |
[50] | Wang S, Cai Q, Zhang F, et al. (2014) Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone. Int j hydrogen energ 39: 18675-18687. doi: 10.1016/j.ijhydene.2014.01.142 |
[51] | Latifi M, Berruti F, Briens C (2014) Non-catalytic and catalytic steam reforming of a bio-oil model compound in a novel “Jiggle Bed” Reactor. Fuel 129: 278-291. doi: 10.1016/j.fuel.2014.03.053 |
[52] | García-García I, Acha E, Bizkarra K, et al. (2015) Hydrogen production by steam reforming of m-cresol, a bio-oil model compound, using catalysts supported on conventional and unconventional supports. Int j hydrogen energ 40: 14445–14455. |
[53] | Zin RM, Lea-Langton A, Dupont V, et al. (2012) High hydrogen yield and purity from palm empty fruit bunch and pine pyrolysis oils. Int j hydrogen energ 37: 10627-10638. doi: 10.1016/j.ijhydene.2012.04.064 |
[54] | Sembiring KC, Rinaldi N, Simanungkalit SP (2015) Bio-oil from Fast Pyrolysis of Empty Fruit Bunch at Various Temperature. Energy procedia 65: 162-169. doi: 10.1016/j.egypro.2015.01.052 |
[55] | Zin RM, Ross AB, Jones JM, et al. (2015) Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping. Bioresour technol 176: 257-266. doi: 10.1016/j.biortech.2014.11.034 |
[56] | Hanika J, Lederer J, Tukac V, et al. (2011) Hydrogen production via synthetic gas by biomass/oil partial oxidation. Chem eng j 176-177: 286-290. doi: 10.1016/j.cej.2011.06.050 |
[57] | Lima da Silva A, Malfatti CdF, Müller IL (2009) Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: A detailed study of the conditions of carbon deposition. Int j hydrogen energ 34: 4321-4330. doi: 10.1016/j.ijhydene.2009.03.029 |
[58] | Lwin Y (2000) Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets. Int j eng edu 16: 335-339. |
[59] | Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications: National Aeronautics and Space Administration. |
[60] | Haynes DJ, Shekhawat D (2011) Oxidative Steam Reforming. Fuel cells: technologies for fuel processing: 129-190. |
[61] | Smith MW, Shekhawat D (2011) Catalytic Partial Oxidation. Fuel cells: technologies for fuel processing: 73-128. |
[62] | Nahar GA (2010) Hydrogen rich gas production by the autothermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: A thermodynamic analysis. Int j hydrogen energ 35: 8891-8911. doi: 10.1016/j.ijhydene.2010.05.042 |
[63] | Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl catal a-gen 346: 1-27. |
[64] | Williams MC (2011) Fuel Cells. Fuel cells: technologies for fuel processing: 11-27. |
[65] | Pant K, Gupta RB (2008) Fundamentals and Use of Hydrogen as a Fuel. In: Gupta RB, editor. Hydrogen Fuel Production, Transport, and Storage: CRC Press. |
[66] | Dejong M, Reinders A, Kok J, et al. (2009) Optimizing a steam-methane reformer for hydrogen production. Int j hydrogen energ 34: 285-292. |
[67] | Wilhelm DJ, Simbeck DR, Karp AD, et al. (2001) Syngas production for gas-to-liquids applications technologies, issues and outlook. Fuel process technol 71: 139-148. |
[68] | Aasberg-Petersen K, Bak Hansen JH, Christensen TS, et al. (2001) Technologies for large-scale gas conversion. Appl catal a-gen 221: 379-387. |
[69] | Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Cataly today 63: 159-164. doi: 10.1016/S0920-5861(00)00455-7 |
[70] | Enger BC, Lødeng R, A H (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl catal a-gen 346: 1-27. |
[71] | Kumar R, Ahmed S, Krumpelt M (1996) The low-temperature partial oxidation reforming of fuels for transportation fuel cell systems. Fuel cell seminar. Kissimmee, FL (United States), 17-20 Nov 1996: Argonne National Laboratory, Argonne, IL. |
[72] | Vagia E, Lemonidou A (2007) Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. Int j hydrogen energ 32: 212-223. doi: 10.1016/j.ijhydene.2006.08.021 |