Citation: Vilas K. Mahajan, Sandip P. Patil, Shirish H. Sonawane, Gunvant H. Sonawane. Ultrasonic, photocatalytic and sonophotocatalytic degradation of Basic Red-2 by using Nb2O5 nano catalyst[J]. AIMS Biophysics, 2016, 3(3): 415-430. doi: 10.3934/biophy.2016.3.415
[1] | Elliott JE, Elliott KH (2013) Tracking marine pollution. Science 340: 556–558. |
[2] | Tsao CC, Campbell JE, Mena-Carrasco M, et al. (2011) Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nat Clim Change 2: 53–57. |
[3] | Nakamura H (2010) Recent organic pollution and its biosensing methods. Anal Methods 2: 430–444. |
[4] | Kemp KC, Seema H, Saleh M, et al. (2013) Environmental applications using graphene composites water remediation and gas adsorption. Nanoscale 5: 3149–3171. |
[5] | Lucas MS, Peres JA (2006) Decolorization of the azo dye reactive black 5 by fenton and photo-fenton oxidation. Dyes Pigm 71: 236–244. |
[6] | Zhao L, Ma J, Sun Z, et al. (2009) Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb. Appl. Catal B Environ 89: 326–334. |
[7] | He Y, Grieser F, Ashokkumar M (2011) The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason Sonochem 18: 974–980. |
[8] | Bedoui A, Ahmadi MF, Bensalah N, et al. (2009) Comparative study of Eriochrome black T treatment by BDD-anodicoxidation and Fenton process. Chem Eng J 146: 98–104. |
[9] | Patil SP, Shrivastava VS, Sonawane GH, et al. (2015) Synthesis of novel Bi2O3–montmorillonite nano composite with enhanced photocatalytic performance in dye degradation. J Environ Chem Eng 3: 2597–2603. |
[10] | Herna´ndez-Alonso MD, Fresno F, Suarez S, et al. (2009) Development of alternative photocatalysts to TiO2 Challenges and opportunities. Energy Environ Sci 2: 1231–1257. |
[11] | Tada H, Kiyonaga T, Naya S (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium (IV) dioxide. Chem Soc Rev 38: 1849–1858. |
[12] | Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4: 3861–3877. |
[13] | Djurisˇic´ AB, Chen X, Leung YH, et al. (2012) ZnO nanostructures growth, properties and applications. J Mater Chem 22: 6526–6535. |
[14] | Barroso, M, Pendlebury SR, Cowan AJ, et al. (2013) Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem Sic 4: 2724–2734. |
[15] | Wheeler DA, Wang G, Ling Y, et al. (2012) Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ Sci 5: 6682–6702. |
[16] | Zhai T, Fang X, Li L, et al. (2010) One-dimensional CdS nanostructures synthesis, properties, and applications. Nanoscale 2: 168–187. |
[17] | Efrati A, Yehezkeli O, Tel-Vered R, et al. (2012) Electrochemical Switching of Photoelectrochemical Processes at CdS QDs and Photosystem I-Modified Electrodes. ACS Nano 6: 9258–9266. |
[18] | Feigl C, Russo SP, Barnard AS (2010) Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. J Mater Chem 20: 4971–4980. |
[19] | Zhu G, Zhang S, Xu Z, et al. (2011) Ultrathin ZnS Single Crystal Nanowires: Controlled Synthesis and Room-Temperature Ferromagnetism Properties. J Am Chem Soc 133: 15605–15612. |
[20] | Khataee AR, Zarei M, Ordikhani-Seyedlar R (2011) Heterogenous photocatalysis of a dye solution using supported TiO2 nano particles combined with homogenous photoelectrochemical process molecular degradation products. J Mol Catal A-Chem 338: 84–91. |
[21] | Yan C, Xue D (2008) Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures. Adv Mater 20: 1055–1058. |
[22] | Liu M, Xue D, Li K (2008) Soft-chemistry synthesis of LiNbO3 crystallites. J Alloys Compd 449: 28–31. |
[23] | Liu M, Xue D (2007) Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites. J Alloys Compd 427: 256–259. |
[24] | Liu M, Xue D, Luo C (2006) Wet chemical synthesis of pure LiNbO3 powders from simple niobium oxide Nb2O5. J Alloys Compd 426: 118–123. |
[25] | Saien J, Soleymani AR (2007) Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. J Hazard Mater 144: 506–512. |
[26] | Madhavan J, Kumar PSS, Anandanb S, et al. (2010) Degradation of acid red 88 by the combination of sonolysis and photocatalysis. Sep Purif Technol 74: 336–341. |
[27] | Hashemzadeh F, Rahimi R, Gaffarinejad A (2013) Photocatalytic Degradation of Methylene blue and Rhodamine B dyes by Niobium Oxide Nanoparticles synthesized Via Hydrothermal method. Int J Applied Chem Sci Res 1: 95–102. |
[28] | Meshram S, Limaye R, Ghodke S, et al. (2011) Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem Eng J 172: 1008–1015. |
[29] | Talebiana N, Reza M, Fatemeh N, et al. (2013) Comparative study on the sonophotocatalytic degradation of hazardous waste. Can Ceram Q 39: 913–920. |
[30] | Abbasi M, Asl NR (2008) Sonochemical degradation of Basic Blue 41 dye assisted bynano TiO2 and H2O2, J Hazard Mater 153: 942–947. |
[31] | Laxmi NV, Saritha P, Rambabu N, et al. (2010) Sonochemical degradation of 2-chloro-5-methyl phenol assisted by TiO2 and H2O2. J Hazard Mater 174: 151–155. |
[32] | Muthukumari B, Selvam K, Muthuvel I, et al. (2009) Photoassistedhetero-Fenton mineralisation of azo dyes by Fe (II)-Al2O3catalyst. Chem Eng J 153: 9–15. |
[33] | Mrowetz, M, Pirola, C, Selli, E (2003) Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrason Sonochem 10: 247–254. |
[34] | Berberidou C, Poulios I, Xekoukoulotakis NP, et al. (2007) Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl Catal B-Environ 74: 63–72. |