Citation: Mary Jane Beilby, Sabah Al Khazaaly. Re-modeling Chara action potential: I. from Thiel model of Ca2+transient to action potential form[J]. AIMS Biophysics, 2016, 3(3): 431-449. doi: 10.3934/biophy.2016.3.431
[1] | Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544. doi: 10.1113/jphysiol.1952.sp004764 |
[2] | Beilby MJ (1976) An investigation into the electrochemical properties of cell membranes during excitation. School of Physics. University of New South Wales, Sydney, Australia, Doctor of Philosophy thesis |
[3] | Beilby MJ, Coster HGL (1979a) The Action Potential in Chara corallina II. Two Activation-Inactivation Transients in Voltage Clamps of the Plasmalemma. Aust J Plant Physiol 6: 323–335. |
[4] | Beilby MJ, Coster HGL (1979b) The Action Potential in Chara corallina III. The Hodgkin-Huxley Parameters for the Plasmalemma. Aust J Plant Physiol 6: 337–353. |
[5] | Thiel G, MacRobbie EA, Hanke DE (1990) Raising the intercellular level of inositol 1,4,5-triphosphate changes plasma membrane ion transport in characean algae. EMBO J 9: 1737–1741. |
[6] | Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: New insights with new techniques. J Exp Bot 48: 609–622. doi: 10.1093/jxb/48.Special_Issue.609 |
[7] | Kikuyama M, Shimada K, Hiramoto Y (1993) Cessation of cytoplasmic streaming follows an increase of cytoplasmic Ca2+ during action potential in Nitella. Protoplasma 174: 142–146. doi: 10.1007/BF01379046 |
[8] | Biskup B, Gradmann D, Thiel G (1999) Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Let 453: 72–76. doi: 10.1016/S0014-5793(99)00600-6 |
[9] | Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118: 11–21. |
[10] | Wacke M, Thiel G, Hutt MT (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Memb Biol 191: 179–192. doi: 10.1007/s00232-002-1054-0 |
[11] | Othmer HG (1997) Signal transduction and second messenger systems. In: Case studies in Mathematical Modeling—Ecology, Physiology and Cell Biology. Englewood Cliffs: Prentice Hall, 123–186. |
[12] | Tazawa M, Kikuyama M (2003) Is Ca2+ released from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol 44: 518–526. doi: 10.1093/pcp/pcg065 |
[13] | Shepherd VA, Beilby MJ, Al Khazaaly S, et al. (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch- activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31: 1575–1591. |
[14] | Beilby MJ, Al Khazaaly S (2009). The role of H+/OH- channels in salt stress response of Chara australis. J Memb Biol 230: 21–34. |
[15] | Al Khazaaly S, Beilby MJ (2012) Zinc ions block H+/OH- channels in Chara australis. Plant Cell Environ 35: 1380–1392. |
[16] | Zherelova OM (1989) Activation of chloride channels in the plasmalemma of Nitella syncarpa by inositol 1,4,5-trisphosphate. FEBS Let 249: 105–107. doi: 10.1016/0014-5793(89)80025-0 |
[17] | Beilby MJ, Casanova MT (2013) The Physiology of Characean Cells. Berlin: Springer. |
[18] | Hansen UP, Gradmann D, Sanders D, et al. (1981) Interpretation of current-voltage relationships for “active” ion transport systems: I. steady-state reaction-kinetic analysis of class-I mechanisms. J Memb Biol 63: 165–190. |
[19] | Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29: 75–112. |
[20] | Beilby MJ, Walker NA (1996) Modelling the current-voltage characteristics of Chara membranes. I. the effect of ATP and zero turgor. J Memb Biol 149: 89–101. |
[21] | Bush EW, Hood DB, Papst PJ, et al. (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281: 33487–33496. doi: 10.1074/jbc.M605536200 |
[22] | Trewavas A (1999) Le Calcium, C’est la Vie: Calcium Makes Waves. Plant Physiol 120: 1–6. doi: 10.1104/pp.120.1.1 |
[23] | Munnik T, Vermeer JE (2010) Osmotic stress-induced phophoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33: 655–669. doi: 10.1111/j.1365-3040.2009.02097.x |
[24] | Tang RH, Han S, Zheng H, et al. (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS?IP3 pathway in Arabidopsis. Science 315: 1423–1426 |
[25] | Perera IY, Heilmann I, Boss WF (1999) Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci 96: 5838–5843. |
[26] | Dong W, Lv H, Xia G, et al. (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Sign Behav 7: 472–475. doi: 10.4161/psb.19644 |
[27] | Mikami K (2014) Comparative genomic view of the Inositol-1,4,5-trisphosphate receptor in plants. J Plant Biochem Physiol 2: doi:10.4172/2329-9029.1000132. |
[28] | Lemtiri-Chlieh F, MacRobbie EA, Webb AA, et al. (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci 100: 10091–10095. |
[29] | Berestovsky GN, Kataev AA (2005) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Euro Biophys J 34: 973–986. doi: 10.1007/s00249-005-0477-9 |
[30] | Baudenbacher F, Fong LE, Thiel G, et al. (2005) Intracellular axial current in Chara corallina reflects the altered kinetics of ions in cytoplasm under the influence of light. Biophys J 88: 690–697. doi: 10.1529/biophysj.104.044974 |
[31] | Wheeler GL, Brownlee C (2008) Ca2+ signaling in plants and green algae-changing channels. Trends Plant Sci 13: 506–514. doi: 10.1016/j.tplants.2008.06.004 |
[32] | Teakle NL, Tyerman SD (2010) Mechanisms of Cl– transport contributing to salt tolerance. Plant Cell Environ 33: 566–589. doi: 10.1111/j.1365-3040.2009.02060.x |
[33] | Roelfsema M, Hedrich R (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ 33: 305–321. doi: 10.1111/j.1365-3040.2009.02075.x |
[34] | Hepler P (2005) Calcium: A central regulator of plant growth and development. Plant Cell 17: 2142–2155. doi: 10.1105/tpc.105.032508 |