Citation: David Gosselin, Maxime Huet, Myriam Cubizolles, David Rabaud, Naceur Belgacem, Didier Chaussy, Jean Berthier. Viscoelastic capillary flow: the case of whole blood[J]. AIMS Biophysics, 2016, 3(3): 340-357. doi: 10.3934/biophy.2016.3.340
[1] | Lucas R (1918) Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten. Kolloid-Z. 23: 15–22. doi: 10.1007/BF01461107 |
[2] | Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17: 273–283. doi: 10.1103/PhysRev.17.273 |
[3] | Rideal EK (1922) On the flow of liquids under capillary pressure. Philos Mag Ser 6: 1152–1159. |
[4] | Bosanquet C (1923) On the flow of liquids into capillary tubes. Philos Mag Ser 6: 525–553. |
[5] | Ouali FF, McHale G, Javed H, et al. (2013) Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluid Nanofluid 15: 309–326. doi: 10.1007/s10404-013-1145-5 |
[6] | Berthier J, Gosselin D, Berthier E (2015) A generalization of the Lucas-Washburn-Rideal law to composite microchannels of arbitrary cross section. Microfluid Nanofluid 19: 497–507. doi: 10.1007/s10404-014-1519-3 |
[7] | Erickson D, Li D, Park CB (2002) Numerical simulations of capillary-driven flows in non-uniform cross-sectional capillaries. J Colloid Interf Sci 250: 422–430. doi: 10.1006/jcis.2002.8361 |
[8] | Elizalde E, Urtega R, Koropecki RR, et al. (2014) Inverse Problem of Capillary Filling. PRL 112, 134502. |
[9] | Berthier J, Gosselin D, Pham A, et al. (2016) Spontaneous capillary flows in piecewise varying cross section microchannels. Sens Actuators B 223: 868–877. doi: 10.1016/j.snb.2015.10.023 |
[10] | Berthier J, Gosselin D, Pham A, et al. (2016) Capillary Flow Resistors: Local and Global Resistor. Langmuir 32: 915–921. doi: 10.1021/acs.langmuir.5b02090 |
[11] | Issadore D, Westervelt RM (2013) Point-of-care diagnostics on a chip. Biological and Medical Physics, Biomedical Engineering Series, Springer. |
[12] | Gervais L (2011) Capillary microfluidic chips for point-of-care testing: from research tools to decentralized medical diagnostics. [PhD Thesis] Ecole Polytechnique de Lausanne. |
[13] | Berthier J, Brakke KA, Furlani EP, et al. (2015) Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens Actuators B. 206: 258–267. doi: 10.1016/j.snb.2014.09.040 |
[14] | Merrill EW (1969) Rheology of blood. Physiol Rev 49: 863–888. |
[15] | Brooks DE, Goodwin JW, Seaman GVF (1970) Interactions among erythrocytes under shear. J Appl Physiol 28: 172–177. |
[16] | Apostolidis AJ, Beris AN (2014) Modeling of the blood rheology in steady-state shear flows. J Rheol 58: 607–633. doi: 10.1122/1.4866296 |
[17] | Chien S (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168: 977–979. doi: 10.1126/science.168.3934.977 |
[18] | McEwen MP, Reynolds KJ (2012) Light Transmission Patterns in Occluded Tissue: Does Rouleaux Formation Play a Role? Proceedings of the World Congress on Engineering Vol I WCE 2012, London, U.K. |
[19] | Fedosov DA, Pan W, Caswell B, et al. (2011) Predicting human blood viscosity in silico. PNAS 108: 11772–11777. doi: 10.1073/pnas.1101210108 |
[20] | Vand V (1948) Viscosity of solutions and suspensions. J Phys Colloid Chem 52: 300–314. doi: 10.1021/j150458a002 |
[21] | Fahraeus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. Am J Physiol 96: 562–568. |
[22] | Herschel WH, Bulkley R (1926) Konsistenz-messungen von Gummi-Benzollösungen. Kolloid-Z. 39: 291–300. doi: 10.1007/BF01432034 |
[23] | Steffe JF (1996) Rheological Methods in Food Process Engineering 2nd. Freeman Press. |
[24] | Bingham EC (1922) Fluidity and Plasticity. McGraw-Hill, New York. |
[25] | Morhell N, Pastoriza H (2016) Power law fluid viscometry through capillary filling in a closed microchannel. Sens Actuators B 227: 24–28. doi: 10.1016/j.snb.2015.12.033 |
[26] | Cito S, Ahn YC, Pallares J, et al. (2012) Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluid Nanofluid 13: 227–237. doi: 10.1007/s10404-012-0950-6 |
[27] | Rabinowitsch B (1929) Uber die Viskosität und Elastizität von Solen. A Physic Chemie A 145: 1–26. |
[28] | Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2: 210–221. doi: 10.1122/1.2116364 |
[29] | Rosina J, Kvasnák E, Suta D, et al. (2007) Temperature dependence of blood surface tension. Physiol Res 56: S93–98. |
[30] | Cherry EM, Eaton JK (2013) Shear thinning effects on blood flow in straight and curved tubes. Phys Fluids 25: 073104-1-19. doi: 10.1063/1.4816369 |
[31] | Quéré D (1997) Inertial capillarity. Europhys Lett 39: 533–538. |
[32] | Bracke M, Voeght FD, Joos P (1989) The kinetics of wetting: the dynamic contact angle, in Trends in Colloid and Interface Science III, P. Bothorel and E. J. Dufourc, Eds. Steinkopff, 142–149. |
[33] | Berthier J, Gosselin D, Delapierre G (2015) Spontaneous Capillary Flow: Should a Dynamic Contact Angle be Taken into Account ? Sens Transducers J 191: 40–45. |
[34] | Berthier J, Brakke K, Berthier E (2014) A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid Nanofluid 16: 779–785. doi: 10.1007/s10404-013-1270-1 |