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Abstract: The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can 
be predicted by the Lucas-Washburn-Rideal (LWR) law. However a wide variety of viscoelastic 
fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior. 

In this work we consider the Herschel-Bulkley (HB) rheological model and Navier-Stokes 
equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The 
Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law 
fluids (also called Ostwald fluids), the Bingham fluids and the Newtonian fluids. It will be shown 
that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to 
the Weissenberg-Rabinowitsch-Mooney (WRM) law for power-law fluids. Although HB model 
cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit 
the whole blood rheology with the same accuracy. 

Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately 
fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood 
was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and 
rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian 
anymore. This non-Newtonian behavior was successfully fit by the proposed equation. 
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1. Introduction 

Capillary flow of Newtonian fluids is abundantly reported in the literature. First in the case of 
cylindrical duct with the Lucas-Washburn-Rideal law [1–4] and then extended to a large number of 
other channel geometries [5,6]. Recent studies have investigated the capillary flow of Newtonian 
liquids within non-uniform channels [7–10]. 

Capillary flows are of interest for point-of-care (POC) and home-care systems since they must 
be low cost, energetically autonomous, portable, and user-friendly. Blood from a finger prick is a 
very common biological sample for POC and many of them rely on capillarity to move the blood 
through the different parts of the system [11–13]. However the capillary flow of whole blood is 
conditioned by its complicated rheology linked to the multiplicity and variability of its components, 
such as plasma, red blood cells, white blood cells, platelets, etc. 

Whole blood shows different rheological regimes according to the shear rate it is exposed  
to [14–17]. On one hand, for high shear rates ( ̇ > 100 s−1), blood exhibits a Newtonian behavior and 
its viscosity    is constant and given by 

     
 

 ̇
         (1) 

where  ̇ is the shear rate and τ the shear stress. On the other hand, for low shear rates ( ̇ < 30 s−1) 
whole blood exhibits a non-Newtonian rheology, which is often modeled by Casson’s law [14–16]. 
Casson’s law links the shear stress τ to the shear rate  ̇ by the expression 

 00         (2) 

where τ0 is the yield stress. Relation (2) indicates that if the shear stress τ is not larger than τ0, there is 
no shear rate ( 0 ). In other words, when the shear stress is not high enough, the fluid behaves as a 
solid, with an infinite viscosity. This can be explained by the fact that, contrary to high shear rate 
which would disperse the red blood cells, the red blood cells tend to aggregate and form rouleaux at 
small shear rates. This aggregation gives to the blood its non-Newtonian behavior [17–19]. 

Besides, in the case of a medium flow velocity and/or diluted blood, cells tends to migrate away 
from the walls forming a cell-free layer. This phenomenon is sometimes called the Vand effect, or 
the Farhaeus-Lindqvist effect [20,21]. Note that this effect is not very apparent in the case of whole 
blood spontaneous capillary flow because the velocities are relatively small. In accordance, it will 
not be taken into account in this study. 

In this work, the Herschel-Bulkley (HB) rheological model [22] is used to derive a general 
equation for the dynamics of capillary flow for non-Newtonian fluids. This model encompasses a 
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wide variety of fluids, including the Power-law fluids (also called Ostwald fluids), the Bingham 
fluids and the Newtonian fluids. The constitutive equations of this model are given by: 
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where K and n are two rheological parameters depending on the fluid. Just like the Casson’s law, the 
HB model allows the yield stress to be taken into account but it has an additional degree of freedom 
which is the n parameter. Note that if τ0 = 0 this law reduces to the well-known power-law. The fluid 
is then said shear-thinning if n < 1 and shear-thickening if n > 1. On the other hand if n = 1 (and 
    ), a Herschel-Bulkley fluid is called a Bingham fluid [23,24]. Finally if n = 1 and τ0 = 0, 
equation (3) reduces to the classical Newtonian relationship between the shear rate, the shear stress 
and the viscosity (Eq 1). Although the HB model cannot be reduced to the Casson’s law—which is 
usually used for whole blood, it also describes accurately the non-Newtonian rheological behavior of 
whole blood, as we shall see later. Using the HB model, it will be shown that the proposed 
generalized equation accurately fit experimental data of whole blood flowing through cylindrical 
capillaries. 

Recently studies were conducted on capillary flow of power-law fluids [25,26]. Although the 
authors used blood for some of their experiments, their theoretical model could not take the effect of 
the yield stress into account. The present work is based on the HB law, and provides a very general 
model for the flow of non-Newtonian fluids with or without yield stress. It will also be demonstrated 
that the proposed equation consistently reduces to previously described laws for Newtonian fluids—
the LWR law [1–4] and Power-law fluids—the Weissenberg-Rabinowitsch-Mooney (WRM)  
law [23,27,28]. 

2. Materials and Methods 

2.1. Monitoring of the capillary filling 

Blood flow experiments were performed in glass tubular micro-channels of inner radius 50µm 
(CM scientific, VitroCom). More precisely the micro-channels are made with the Schott’s Duran 
Borosilicate 3.3. The radius of the tubes has been chosen to be consistent with the one of typical 
microchannels used for in-vitro point-of-care devices. The commercialized micro-channels are 60 cm 
long, but for convenience for the experiments, were cut to the length of 20 cm. 

The micro-channel is glued (Scotch 3M) in an outlet channel of a reservoir (Figure 1). The 
outlet is 1 mm wide and 10 mm long and the reservoir is 10 mm in diameter; both are 1 mm deep. 
They are milled from PMMA substrate using a CNC milling machine (Charly4U, charlyrobot). This 
reservoir offers a volume of 80 µL  which is large compared to the volume of the cylindrical channels 
(1.6 µL ). The large dimensions of the reservoir ensure that the curvature of the meniscus is negligible 
and that the air-liquid interface remains flat during the filling—so that the Laplace pressure of the 
reservoir is null or negligible. The meniscus height is low enough to neglect the added hydrostatic 
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pressure. Thus the reservoir provides a liquid supply at nearly atmospheric pressure during the whole 
experiment. 

The reservoir was taped on a plastic holder, itself attached to a millimeter paper, to avoid any 
displacement of the set up during the experiment. 

 

Figure 1. Set-up of the experiment. The microchannel is connected to the reservoir and 
fixed in the reservoir outlet channel using glue. 

The filling distance was monitored during the capillary filling with a Canon EOS 600D fixed on 
a tripod. A snapshot was taken every 2 seconds using a timer remote controller during the whole 
experiment. Because all the set up was fixed, the monitoring of the filling distance is easily done by 
recording the corresponding distance of the front interface (Figure 2) on the millimeter paper. By this 
method, a precision of 0.3 mm can be achieved. 

 

Figure 2. Microchannel and position of the front interface. The filling distance is 
obtained by looking at the corresponding position on the millimeter paper. 

2.2. Blood sample 

A blood sample from a healthy donor (Etablissement Français du Sang (EFS), Grenoble, 
FRANCE) collected in EDTA (Ethylenediaminetetraacetic acid) vacutainer tubes (Becton Dickinson) 
was used for the experiments. According to the ethical and legal standards of our blood supplier 
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(EFS), informed consent was given by blood donor. The blood tube was delivered 3 days after 
withdrawal and was refrigerated at 4 °C  for storage. The experiments were performed the day of 
delivery. 

For this study we will assume the value of 60mN/m for the surface tension of whole blood, 
which is a typical value for healthy people at the temperature of which the experiments are 
conducted, i.e. 21 °C  [29]. 

2.3. The Herschel-Bulkley model for whole blood. 

The general HB law is used to model the non-Newtonian behavior in the present work. To 
determine the rheological constants (τ0, K and n) of whole blood needed for this work, data collected 
from three previous studies in [30] are used. In figure 3, the circles depict these data whereas the red 
solid line represents the Herschel-Bulkley model obtained by fitting the data with the cftool toolbox 
of MATLAB (MathWorks). This fit gives a R2 coefficient of 0.98 and the rheological parameters of 
Table 1. 

Table 1. Blood rheological parameters obtained from the Herschel-Bulkley fit of data 
extracted from [30]. 

Blood rheological parameters 
                
                 

          
 
The blue dashed curve of Figure 3 depicts a fit using the Casson’s law—R2 coefficient of 0.98. 

This figure shows that, just like the Casson’s law, the HB law is well suited for describing the non-
Newtonian rheological behavior of whole blood. Thus the choice of the HB model over the usual 
Casson’s law is not an issue to model the capillary flow of whole blood. 

 

Figure 3. Circles: Data extracted from [30]. Red solid line: Fit with the Herschel-Bulkley 
model using the rheological parameters given in Eq (4). Blue dashed line: Fit with the 
Casson’s law. 
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2.4. Fit of the non-Newtonian flow. 

In the Results and Discussions section, a differential equation for dynamics of non-Newtonian 
capillary flow is derived from the Navier-Stokes equation. Although most of the coefficients are 
known—see previous subsections of Materials and Methods for the rheological coefficients, channel 
dimensions, and blood surface tension—one coefficient of the equation remains unknown: the 
contact angle θ between blood and the borosilicate tube. In order to determine θ, the mean square 
error between experimental results and the solutions of our model (see equation (6)) computed with θ 
varying between 50° and 70° is calculated. It is done with the MATLAB software using the ode45 
function. The contact angle is then the value which gives the smallest mean square error. For this 
numerical method, only the data points falling in the non-Newtonian regime have to be taken into 
account. By looking at the plot of the filling distance versus the square root of time, one can see that 
the data points start to deviate from the linear relationship characterizing the Newtonian regime 
around 7 cm from the inlet. Thus only the data points at a distance farther than 7 cm from the inlet 
are used for the non-Newtonian fitting. 

2.5. Fit of the Newtonian flow. 

The fitting of the Newtonian part of the flow is done using Microsoft Excel software. The 
Newtonian behavior is a proper description of the blood rheology at the beginning of the capillary 
flow when the velocity of the flow is high and the shear rate disperses the red blood cells. Although 
the data points seem deviate from the Newtonian regime only after 7 cm, a transition regime can be 
expected during the few preceding centimeters. Thus the Newtonian fitting will only use data points 
until 5 cm. In addition, at the very beginning of a capillary flow inertia and dynamic contact angle 
influence the dynamics [31,32]. Previous studies have established that after a few millimeters the 
dynamic contact angle is nearly the same as the static contact angle [33]. Thus to avoid these effects 
the Newtonian fit starts only after the first two centimeters. Note that the contact angle for the 
Newtonian regime is the same as the one previously determined with the fitting of the viscoelastic 
regime. 

3. Results and Discussions 

3.1. The Newtonian—non Newtonian transition 

By plotting the filling distance against the square root of time, one can observe two different 
behaviors (Figure 4). First the filling distance evolves linearly with the square root of time as 
expected for a Newtonian fluid. But after a few centimeters (around 7 cm) this relation is no longer 
true. 
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Figure 4. In the first centimeters the filling distance of whole blood inside a borosilicate 
cylindrical microchannel evolves linearly with the square root of time. Afterwards the 
data points (blue crosses) depart from the Newtonian linear fit (green dashed-line). 

This transition of behavior is consistent with the expected rheological behaviors of undiluted 
whole blood. Indeed at the beginning of the capillary flow there is very little friction with the walls 
and the velocity of the flow is relatively high (a few mm/s). This results in a high shear rate which 
disperses the RBCs and the blood exhibits a Newtonian behavior [17–19]. As the capillary flow 
advances in the capillary channel, drag increases and velocity decreases. Along with the decrease in 
velocity, the shear rate also decreases and RBCs start aggregating together [17–19], leading to the 
non-Newtonian collective behavior of the fluid. 

To quantify this decrease, the shear rate profile has been calculated along the radius of the tube 
after either 1 cm or 7 cm of capillary flow. Since in this first part of the flow the whole blood has a 
Newtonian behavior, the shear rate is linear with the radius and can be easily obtained from the 
Newtonian parabolic Poiseuille profile. Doing such a calculation, it is shown that after 7 centimeters 
of capillary flow the shear rate has been divided by seven (at the wall, it decreases from 930 s−1 to 
130 s−1 ). This large decrease of the shear rate, allowing the formation of rouleaux, can thus explain 
the Newtonian – non Newtonian transition. 

In the following subsections, fits between theory and experiments will be presented for the two 
rheological behaviors of whole blood. The Lucas-Washburn-Rideal law is well-established for the 
Newtonian capillary filling of a tube. However two unknowns remain for this part of the flow: the 
Newtonian viscosity of the blood sample and the contact angle of whole blood with the borosilicate 
walls. On the contrary, because the Herschel-Bulkley parameters were determined in the Materials 
and Method section, only the contact angle remains as an unknown for the non-Newtonian part of the 
flow. That is why the dynamics of the non-Newtonian regime of the capillary filling is first 
investigated, allowing a consistent determination of the contact angle by a fit with the experiments. 
Afterwards using this value of contact angle, the Newtonian regime of the capillary filling is 
analyzed. 
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3.2. The dynamics of a Herschel-Bulkley capillary filling 

In the general case (arbitrary cross-section, open or closed) of a uniform channel, the dynamic 
of the capillary flow of a Herschel-Bulkley fluid is given by the following differential equation 
directly obtained via the Navier-Stokes equations (see calculation in Appendix A): 
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where x is the filling distance, t is the time,    is the wetting perimeter, A is the cross section area, 
  ̅̅ ̅ is the average generalized friction length (defined in Appendix A (A.10) as an extension to the 
friction length introduced in [6]), σ is the surface tension, θ* is the generalized Cassie angle and ρ the 
fluid density. More details on these different notations can be found in the Appendix A. 

The complexity of the problem is hidden in the average generalized friction length   ̅̅ ̅ . Its 
expression, in the particular case of a cylindrical duct, is calculated in appendix B. Using expression 
B.22 of Appendix B and the fact that the channel is made of a single material (θ* = θ), Eq (4) 
becomes: 
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where R is the radius of the channel,   and c are two dimensionless coefficients which expressions 
are given in Appendix B. 

Because in micro-channels the Reynolds and Weber numbers are small, and even more so in the 
viscoelastic regime corresponding to small shears, the inertial term can be neglected in a similar 
manner as for the LWR law, and (5) simplifies to 
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Note that in the case of a Newtonian fluid, n = 1,       ,   = 1/2, K = µ, and expression (6) 
reduces to the Lucas-Washburn-Rideal law. 

Unfortunately direct integration of equation (6) is not possible for Herschel-Bulkley fluids and a 
closed-form solution does not exists. Thus numerical integration is required to obtain the solution for 
x(t). 

However, note that in the simplified case of a power-law fluid, (6) simplifies to 
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which can be integrated into the following closed-form 
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which is the Weissenberg-Rabinowitsch-Mooney (WRM) law. Equation (6) appears to be the 
generalization of the WRM law for HB fluids. 

3.3. Capillary flow of whole blood 

3.3.1. The non-Newtonian viscoelastic regime 

Table 2 summarizes the contact angle values and the associated mean square errors obtained by 
the fitting method explained in the experimental section using the numerical integration of (6). Three 
experiments with three different channels (of same section) have been performed. 

Table 2. Values of contact angle and Mean Square Error (MSE) obtained by the fitting of 
non-Newtonian part of the flow.  

 Channel 1 Channel 2 Channel 3 
Contact angle 55.7° 56.2° 54.8° 
MSE (×10-5) 3.1 0.56 2.6 

 

Figure 5. Comparison between the non-Newtonian model of the capillary flow of whole 
blood (red solid line) and the experimental data points (blue crosses). The green dashed-
line shows the Newtonian fit of the first part of the capillary flow. 
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The different values of contact angle obtained for the three experiments are very close to each 
other. Besides the very low MSE values show that our modeling of the non-Newtonian part of the 
flow is valid. Figure 5 shows that the non-Newtonian red curves plotted using θ from table 2 are in 
good agreements with the experimental data points (blue crosses). On the one hand this demonstrates 
that the equation (6) is a suitable model for the non-Newtonian capillary flow. On the other hand it 
confirms the consistency of the Herschel-Bulkley model for whole blood. 

3.3.2. The Newtonian regime 

The law for the capillary filling of cylindrical duct by a Newtonian fluid is known for decades 
and is given by [1–4]: 

    √
 

 

 

 
    √        (9) 

The slope   of the linear function   √  determines the viscosity of dispersed whole blood. 
Using the different experiments, the viscosity is determined by the formula 
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Table 3. Values of viscosity deduced from the linear fit of the Newtonian part of the flows. 

 Channel 1 Channel 2 Channel 3 

Viscosity 
(mPa.s)      3.67 3.87 

Table 3 summarizes the value of viscosity obtained with each of the three Newtonian fits. In  
ref [30] Cherry and Eaton use a value of 0.004 kg/m/s (or 4mPa.s) for the blood viscosity at high 
shear rate (i. e. in the Newtonian regime). The values obtained in our study are thus in accordance 
with such classical blood viscosity values. Finding consistent values of high shear rate viscosities for 
the whole blood confirms again the validity of the generalized equation (6) which has been used to 
determine the contact angle of the whole blood with the borosilicate tubes. 

4. Conclusion and Perspectives 

Rheology of whole blood is complicated due to its composition. It is known that, according to 
the shear rate, its behavior can be depicted by 2 regimes: a Newtonian regime for high shear rates, 
and a non-Newtonian regime for small shear rates. In this work, we have investigated the capillary 
filling of whole blood within a 50µm-radius cylindrical duct made of borosilicate. By plotting the 
filling distance against time we were able to distinguish the two characteristic rheological behaviors 
of the blood. 
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On the one hand, the filling distance first follows the Newtonian Lucas-Washburn-Rideal law, 
i.e. is linear with the square root of time. On the other hand, after a few centimeters (around 7 cm for 
our 50 µm  radius tubes) it departs from the LWR law, meaning that it undergoes a transition towards 
its non-Newtonian behavior. In this paper a general differential equation for the dynamics of 
capillary flow of Herschel-Bulkley fluids is derived from the Navier-Stokes equations. The 
numerical solutions obtained from this equation are in close agreement with the different 
experiments conducted. This approach demonstrates the validity of the generalized equation for the 
dynamics of non-Newtonian capillary flows and confirms the consistency of the Herschel-Bulkley 
model for the whole blood rheology. 

Although only whole blood was used for this study, the model proposed in this work profits 
from the generality of the Herschel-Bulkley law and can be used for the capillary flow of viscoelastic 
fluids. Capillary flows of fluids such as alginates and xanthan used in biology and biotechnology are 
now predictable. 
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Appendix 

Appendix A: Dynamics of the capillary flow of a Herschel-Bulkley fluid 

In the general case of incompressible fluids the Navier-Stokes equation writes: 

 
  ⃗ 

  
      ⃗⃗     ⃗⃗   ̿              (A.1) 

where ρ is the fluid density,    is the flow velocity vector, t is the time, P is the pressure,  ̿ is the 
deviatoric stress tensor and    the body forces. 

Assuming a uniform cross-section channel and a laminar flow—which is the general case in 
microfluidics, where the Reynolds number is small—there is a unique velocity component—denoted 
v—directed along the x-axis. 

Additionally, assuming that there are no external forces—such as gravity, because of the small 
dimensions and horizontality of the system—, relation (A1) simplifies to 
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Moreover remarking that the continuity equation implies that   
  
    , relation (A.2) can be 

written as 
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Upon integration of (A.3) on the fluid volume in the channel between the channel inlet and the 
front of the flow and using the Gauss-Ostrogradski theorem, one obtains 

   ( )  
  ̅

  
           ∯     ⃗⃗⃗⃗   

      (A.4) 

where A is the cross-section of the duct,  ̅ is the average flow velocity in a cross-section, x(t) is the 
penetration distance,    is the wetted surface of the duct,    is the wall friction, and ΔP the drop 
pressure over the flow. 

An average wall friction can be introduced, defined by 

  ̅̅̅̅    
 

  
∮      

        (A.5) 

where pw is the wetted perimeter in a cross-section and Γ the wetted contour. Substitution of (A.5) in 
(A.4) yields 

  ̅

  
     

  

 

 

 ( )
 
  

   
   ̅̅̅̅        (A.6) 

According to (3), the wall friction of a Herschel-Bulkley fluid reads as 
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     (
  

| ̇ |
  | ̇ |

   )  ̇ ,       (A.7) 

where  ̇  is the shear rate at the wall defined by  ̇      ( )   ⃗ ⁄ |   . V(r) is the velocity field 
over the cross section. To be consistent with the Gauss-Ostrogradski theorem used for (A.4)  ⃗  is the 
outward unit-vector normal to the wall. As represented in figure 2, one can define a friction length   
by 

 ̅      
  ( )

  ⃗ 
|
 

        (A.8) 

 
Figure A.1. Definition of the friction factor from the velocity profile. 

Substituting relation (A.7) in (A.5) and using the parameter λ yields 

  ̅̅̅̅         
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        (A.9) 

If we define the average generalized friction length   ̅̅ ̅ [6] by 
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,         (A.10) 

relation (A.9) can be cast under the form 

  ̅̅̅̅        
 

  ̅̅ ̅̅
  ̅  .         (A.11) 

And finally the differential equation (A.6) writes 

   

   
 
  

   

 

  ̅̅ ̅̅
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         (A.12) 

Equation (A.12) is a second order differential equation where the only remaining unknown 
parameter is the friction length   ̅̅ ̅. The pressure drop ΔP is given by the capillary pressure (Laplace 
pressure) with the convention of an inlet pressure null in reference to the atmosphere. 
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      (A.13) 

where    is the generalized Cassie angle which takes into account the wetting on the different walls 
and air in the case of composite or open channels [34]. Using (A.13), (A.12) can be cast under the 
following form: 
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         (A.14) 

The following appendix focuses on the calculation of the average friction length   ̅̅ ̅ in the 
particular case of a cylindrical duct made of a single material. 

Appendix B: Calculation of the average friction length for a cylindrical duct. 

The expression (A.8) can be written 

 

 
    

 

 ̅

  ( )

  ⃗ 
|
 

         (B.1) 

which shows that the friction length can be determined from the velocity field. 
Thus we need to calculate the velocity profile v(r) and the mean velocity  ̅ for a flow within a 

cylindrical duct 
Determination of the velocity profile 

Let us first calculate the velocity profile from the general Navier-Stokes equation 

  
  ⃗ 

  
    (

  ⃗ 

  
     ⃗⃗   )      ⃗⃗     ⃗⃗    ̿           (B.2) 

A velocity profile at a given location is determined by the local cross section of the channel, the 
rheological behavior of the fluid (both through the stress tensor), the local pressure gradient and the 
body forces that applied at this location. Hence to determine the velocity profile over a given cross 
section one can consider a steady-state flow through this same cross section where the fluid rheology, 
the pressure gradient and the body forces become parameters. In our case we can thus consider a 
steady-state flow through a cylindrical duct. Thus the left hand side of (B.2) is zero. Besides in the 
case of a horizontal channel, the body forces are null, and equation (B.2) simplifies to 

    
  

  
   

  

  
 
 

 
          (B.3) 

with 

    ( | ̇|    
  

| ̇|
)  ̇         ( 

  

  
)
 

      (B.4) 

Note that since we are dealing with a uniform channel, the pressure decreases linearly along the 
channel. Hence G is a constant with respect to x. 
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Substituting (B.4) in (B.3) gives 
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)       (B.5) 

Hence 
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)        (B.6) 

Integrating (B.6) in respect to r— which is possible since G does not depend on r —yields 
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        (B.7) 

or 
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       (B.8) 

where       
   

   
 . Note that r =    is the radius where the velocity profile flattens. Physically in 

the region where r < R0, the shear is too small and the liquid has a constant velocity, i.e. it behaves as 
a solid. 

Denoting       
 

, a second integration for r     (with the no slip condition at the wall, i.e. v(R) 

= 0) yields the following velocity distribution 
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1     (B.9) 

Within this region, the velocity has a profile as a power law of exponent n/(n+1). Note that if n 
= 1 and τ0 = 0, one regains the Newtonian expression. 

In the central region, the constant velocity, independent of r, is given by 
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        (B.10) 

Remark that in the case where τ0 = 0 (and    ), the fluid is called a ―power-law‖ fluid, i.e. 
       ̇ , and the velocity profile in a cross-section has been derived by Rabinowitsch and Mooney 
[23,27,28]. In such a case, R0 = 0 (no yield stress), and relation (B.9) simplifies to 
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(  )
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 +       (B.11) 

where   
 
 is the pressure gradient. Relation (B.11) is exactly the profile derived by Rabinowitsch and 

Mooney. 



356 

AIMS Biophysics  Volume 3, Issue 3, 340-357. 

Determination of the mean velocity 

As stated in the beginning of this appendix we also need the mean velocity to calculate the 
friction length (B.1). Thus let us now determinate the mean velocity  ̅ of the flow in a cross-section. 
Integration of the velocity profile over a cross section yields 
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) (B.12) 

Note that we have introduced the radius R0 because of the constant velocity—noted v(R0)—
inside the disc r < R0. 

Substituting (B.9) and (B.10) in (B.12) leads to 
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Integration of (B.13) yields 
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           (B.14)  

Some algebra is required to transform the integral at the right hand side of (B.14). Let us use the 

auxiliary variable      
 
   . Then 
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Finally, 
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The expression of the average velocity is then 
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or 
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Determination of the average friction length 

For simplicity of calculation let us write the velocity profile according to the average velocity. 
Upon substitution of (B.18) in (B.9) and (B.10), one finds the following expressions for the 

velocity profile 
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1 for r > R0     (B.19) 

and 
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  for r < R0       (B.20) 

where   (   )
   

 ,    (   ) (
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)- ,       

 
 and       

   

   
. 

It can easily be verified that when n = 1 and τ0 = 0,   = 1/2, then     ̅ (    

  
) , which is the 

well-know profile for Newtonian fluids. 
Let us now calculate the friction length by substituting Eq (B.19) into Eq (B.1): 
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Given the cylindrical symmetry of our channel, the average friction length writes: 
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(   )     (B.22) 

where pw is the length of the wetted perimeter and Г the perimeter of the channel. 
Note that Expression (B.22) is consistent with the Newtonian case (n = 1 and       ) for 

which       , c = 0,   = 1/2 and  ̅     
 
 [6]. 
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