Citation: Vladimir B. Teif, Andrey G. Cherstvy. Chromatin and epigenetics: current biophysical views[J]. AIMS Biophysics, 2016, 3(1): 88-98. doi: 10.3934/biophy.2016.1.88
[1] | Knight K (2015) A comparative perspective on epigenetics. J Exp Biol 218: 1–5. doi: 10.1242/jeb.118075 |
[2] | Hoppeler HH (2015) Epigenetics in comparative physiology. J Exp Biol 218: 6–6. doi: 10.1242/jeb.117754 |
[3] | Chen X, Qi Y, Sung ZR (2015) Special issue on plant epigenetics. Molecular Plant 7: 453. |
[4] | Gutierrez C, Puchta H (2015) Chromatin and development: a special issue. Plant J 83: 1–3. |
[5] | Meissner A (2012) What can epigenomics do for you? Genome Biology 13: 420. doi: 10.1186/gb-2012-13-10-420 |
[6] | Attar N (2012) The allure of the epigenome. Genome Biology 13: 419. doi: 10.1186/gb-2012-13-10-419 |
[7] | Tyler J (2015) Special Issue "Chromatin dynamics". Genes. MDPI, Basel, Switzerland. Available from: http://www.mdpi.com/journal/genes/special_issues/chromatin_dynamics. |
[8] | Muñoz-Cánoves P, Di Croce L (2015) Special Issue: Epigenetics. FEBS J 282: 1569–1570. doi: 10.1111/febs.13281 |
[9] | Everaers R, Schiessel H (2015) The physics of chromatin. J Phys Condens Matter 27: 060301. |
[10] | Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23: 415–420. doi: 10.1007/s10577-015-9499-z |
[11] | Imhof A, Rappsilber J (2016) A Focus on Chromatin Proteomics. Proteomics 16: 379–380. |
[12] | Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37: 375–397. doi: 10.1146/annurev.biophys.37.032807.125817 |
[13] | Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22: 27–65. doi: 10.1146/annurev.bb.22.060193.000331 |
[14] | Schubert T, Längst G (2015) Studying epigenetic interactions using MicroScale Thermophoresis (MST). AIMS Biophysics 2: 370–380. doi: 10.3934/biophy.2015.3.370 |
[15] | Bereznyak E, Gladkovskaya N, Dukhopelnykov E, et al. (2015) Thermal analysis of ligand-DNA interaction: determination of binding parameters. AIMS Biophysics 2: 423–440. doi: 10.3934/biophy.2015.4.423 |
[16] | Mast CB, Schink S, Gerland U, et al. (2013) Escalation of polymerization in a thermal gradient. Proc Natl Acad Sci U S A 110: 8030–8035. |
[17] | Teif VB, Erdel F, Beshnova DA, et al. (2013) Taking into account nucleosomes for predicting gene expression. Methods 62: 26–38. doi: 10.1016/j.ymeth.2013.03.011 |
[18] | Weingarten-Gabbay S, Segal E (2014) The grammar of transcriptional regulation. Hum Genet 133: 701–711. doi: 10.1007/s00439-013-1413-1 |
[19] | Yanao T, Sano T, Yoshikawa K (2015) Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity. AIMS Biophysics 2: 666–694. |
[20] | Luger K, Mader AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260. |
[21] | Lee DJ, Cortini R, Korte AP, et al. (2013) Chiral effects in dual-DNA braiding. Soft Matter 9: 9833–9848. |
[22] | Langowski J (2006) Polymer chain models of DNA and chromatin. Eur Phys J E Soft Matter 19: 241–249. doi: 10.1140/epje/i2005-10067-9 |
[23] | Stehr R, Kepper N, Rippe K, et al. (2008) The effect of internucleosomal interaction on folding of the chromatin fiber. Biophys J 95: 3677–3691. doi: 10.1529/biophysj.107.120543 |
[24] | Wedemann G, Langowski J (2002) Computer simulation of the 30-nanometer chromatin fiber. Biophys J 82: 2847–2859. doi: 10.1016/S0006-3495(02)75627-0 |
[25] | Schiessel H (2003) The physics of chromatin. J Phys Condens Matter 15: R699. doi: 10.1088/0953-8984/15/19/203 |
[26] | Mergell B, Everaers R, Schiessel H (2004) Nucleosome interactions in chromatin: fiber stiffening and hairpin formation. Phys Rev E Stat Nonlin Soft Matter Phys 70: 011915. |
[27] | Marti-Renom MA, Mirny LA (2011) Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput Biol 7: e1002125. |
[28] | Norouzi D, Katebi A, Cui F, et al. (2015) Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription. AIMS Biophysics 2: 613–629. |
[29] | Korolev N, Allahverdi A, Lyubartsev AP, et al. (2012) The polyelectrolyte properties of chromatin. Soft Matter 8: 9322–9333. |
[30] | Korolev N, Fan Y, Lyubartsev AP, et al. (2012) Modelling chromatin structure and dynamics: status and prospects. Curr Opin Struct Biol 22: 151–159. doi: 10.1016/j.sbi.2012.01.006 |
[31] | Kunze KK, Netz RR (2002) Complexes of semiflexible polyelectrolytes and charged spheres as models for salt-modulated nucleosomal structures. Phys Rev E Stat Nonlin Soft Matter Phys 66: 011918. doi: 10.1103/PhysRevE.66.011918 |
[32] | Sun J, Zhang Q, Schlick T (2005) Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. Proc Natl Acad Sci U S A 102: 8180–8185. |
[33] | Bohinc K, Lue L (2016) On the electrostatics of DNA in chromatin. AIMS Biophysics 3: 75–87. |
[34] | Vijayanathan V, Thomas T, Shirahata A, et al. (2001) DNA condensation by polyamines: a laser light scattering study of structural effects. Biochemistry 40: 13644–13651. doi: 10.1021/bi010993t |
[35] | Deng H, Bloomfield VA, Benevides JM, et al. (2000) Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 28: 3379–3385. doi: 10.1093/nar/28.17.3379 |
[36] | Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25: 335–343. doi: 10.1016/j.tig.2009.06.002 |
[37] | Lowary PT, Widom J (1997) Nucleosome packaging and nucleosome positioning of genomic DNA. Proc Natl Acad Sci U S A 94: 1183–1188. doi: 10.1073/pnas.94.4.1183 |
[38] | Kaplan N, Moore IK, Fondufe-Mittendorf Y, et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458: 362–366. doi: 10.1038/nature07667 |
[39] | Trifonov EN (1980) Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res 8: 4041–4053. doi: 10.1093/nar/8.17.4041 |
[40] | Trifonov EN (2015) Columnar structure of SV40 minichromosome. AIMS Biophysics 2: 274–283. doi: 10.3934/biophy.2015.3.274 |
[41] | Trifonov EN, Nibhani R (2015) Review fifteen years of search for strong nucleosomes. Biopolymers 103: 432–437. |
[42] | Li G, Levitus M, Bustamante C, et al. (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12: 46–53. |
[43] | Singh RP, Brysbaert G, Lensink MF, et al. (2015) Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS Biophysics 2: 398–411. doi: 10.3934/biophy.2015.4.398 |
[44] | Racki LR, Yang JG, Naber N, et al. (2009) The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462: 1016. doi: 10.1038/nature08621 |
[45] | Blosser TR, Yang JG, Stone MD, et al. (2009) Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462: 1022–1027. |
[46] | Blossey R, Schiessel H (2011) The dynamics of the nucleosome: thermal effects, external forces and ATP. FEBS J 278: 3619–3632. |
[47] | Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78: 273–304. |
[48] | Moshkin YM (2015) Chromatin—a global buffer for eukaryotic gene control. AIMS Biophysics 2: 531–554. doi: 10.3934/biophy.2015.4.531 |
[49] | Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318–356. doi: 10.1016/S0022-2836(61)80072-7 |
[50] | Mirny LA (2010) Nucleosome-mediated cooperativity between transcription factors. Proc Natl Acad Sci U S A 107: 22534–22539. |
[51] | Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301. |
[52] | Fudenberg G, Mirny LA (2012) Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev 22: 115–124. |
[53] | Babu D, Fullwood MJ (2015) 3D genome organization in health and disease: emerging opportunities in cancer translational medicine. Nucleus 6: 382–393. doi: 10.1080/19491034.2015.1106676 |
[54] | Nichols MH, Corces VG (2015) A CTCF Code for 3D Genome Architecture. Cell 162: 703–705. |
[55] | Genomics PE (2015) Inching toward the 3D genome. Science 347: 10. doi: 10.1126/science.347.6217.10 |
[56] | Rao SS, Huntley MH, Durand NC, et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665–1680. |
[57] | Mizuguchi T, Fudenberg G, Mehta S, et al. (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516: 432–435. |
[58] | Bianchi A, Lanzuolo C (2015) Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS Biophysics 2: 585–612. doi: 10.3934/biophy.2015.4.585 |
[59] | Caré BR, Emeriau P-E, Cortini R, et al. (2015) Chromatin epigenomic domain folding: size matters. AIMS Biophysics 2: 517–530. doi: 10.3934/biophy.2015.4.517 |
[60] | Jost D, Carrivain P, Cavalli G, et al. (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42: 9553–9561. doi: 10.1093/nar/gku698 |
[61] | Moscalets AP, Nazarov LI, Tamm MV (2015) Towards a robust algorithm to determine topological domains from colocalization data. AIMS Biophysics 2: 503–516. doi: 10.3934/biophy.2015.4.503 |
[62] | Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Some problems of the statistical physics of polymer chains with volume interaction. Rev Modern Phys 50: 683 doi: 10.1103/RevModPhys.50.683 |
[63] | Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31: 361–392. |
[64] | Rosa A, Everaers R (2008) Structure and dynamics of interphase chromosomes. PLoS Comput Biol 4: e1000153. doi: 10.1371/journal.pcbi.1000153 |
[65] | Lebeaupin T, Sellou H, Timinszky G, et al. (2015) Chromatin dynamics at DNA breaks: what, how and why? AIMS Biophysics 2: 458–475. |
[66] | Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19: 37–51. |
[67] | Grant DJ, Shakes LA, Wolf HM, et al. (2015) Exploring function of conserved non-coding DNA in its chromosomal context. AIMS Biophysics 2: 773–793. doi: 10.3934/biophy.2015.4.773 |
[68] | McFadden EJ, Hargrove AE (2016) Biochemical Methods to Investigate lncRNA and the Influence of lncRNA:protein Complexes on Chromatin. Biochemistry. |
[69] | Hamilton MJ, Young MD, Sauer S, et al. (2015) The interplay of long non-coding RNAs and MYC in cancer. AIMS Biophysics 2: 794–809. |
[70] | Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45. doi: 10.1038/47412 |
[71] | Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6–21. doi: 10.1101/gad.947102 |
[72] | Lawrence M, Daujat S, Schneider R (2016) Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 32: 42–56. doi: 10.1016/j.tig.2015.10.007 |
[73] | Chen QY, Costa M, Sun H (2015) Structure and function of histone acetyltransferase MOF. AIMS Biophysics 2: 555–569. doi: 10.3934/biophy.2015.4.555 |
[74] | Venkatasubramani AV, McLaughlin K, Blanco GR, et al. (2015) Pilot RNAi screening using mammalian cell-based system identifies novel putative silencing factors including Kat5/Tip60. AIMS Biophysics 2: 570–584. doi: 10.3934/biophy.2015.4.570 |
[75] | Mandrioli M, Manicardi GC (2015) Cytosine methylation in insects: new routes for the comprehension of insect complexity. AIMS Biophysics 2: 412–422. doi: 10.3934/biophy.2015.4.412 |
[76] | Kim JM, Kim K, Punj V, et al. (2015) Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Sci Rep 5: 16714. |
[77] | Sun J, Wei HM, Xu J, et al. (2015) Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation. Nat Commun 6: 8856. doi: 10.1038/ncomms9856 |
[78] | Thorslund T, Ripplinger A, Hoffmann S, et al. (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527: 389–393. doi: 10.1038/nature15401 |
[79] | Parseghian MH (2015) What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS Biophysics 2: 724–772. |