Review Special Issues

Cellular mechanotransduction

  • Received: 21 August 2015 Accepted: 11 January 2016 Published: 20 January 2016
  • Cell adhesion and cell–cell contacts are pre-requisites for proper metabolism, protein synthesis, cell survival, and cancer metastasis. Major transmembrane receptors are the integrins, which are responsible for cell matrix adhesions, and the cadherins, which are important for cell-cell adhesions.  Adherent cells are anchored via focal adhesions (FAs) to the extracellular matrix, while cell-cell contacts are connected via focal adherens junctions (FAJs). Force transmission over considerable distances and stress focusing at these adhesion sites make them prime candidates for mechanosensors. Exactly which protein(s) within FAs and FAJs or which membrane component of ion channels sense, transmit, and respond to mechano-chemical signaling is currently strongly debated and numerous candidates have been proposed.

    Citation: José Luis Alonso, Wolfgang H. Goldmann. Cellular mechanotransduction[J]. AIMS Biophysics, 2016, 3(1): 50-62. doi: 10.3934/biophy.2016.1.50

    Related Papers:

  • Cell adhesion and cell–cell contacts are pre-requisites for proper metabolism, protein synthesis, cell survival, and cancer metastasis. Major transmembrane receptors are the integrins, which are responsible for cell matrix adhesions, and the cadherins, which are important for cell-cell adhesions.  Adherent cells are anchored via focal adhesions (FAs) to the extracellular matrix, while cell-cell contacts are connected via focal adherens junctions (FAJs). Force transmission over considerable distances and stress focusing at these adhesion sites make them prime candidates for mechanosensors. Exactly which protein(s) within FAs and FAJs or which membrane component of ion channels sense, transmit, and respond to mechano-chemical signaling is currently strongly debated and numerous candidates have been proposed.


    加载中
    [1] Wang JHC, Thampatty BP (2006) An introductory review in cell mechanobiology. Biomechan Model Mechanobiol 5: 1–6. doi: 10.1007/s10237-005-0012-z
    [2] Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29: 225–237.
    [3] Bausch AR, Schwarz US (2013) Cellular mechanosensing: Sharing the force. Nat Mat 12: 948–949. doi: 10.1038/nmat3791
    [4] Luo T, Mohan K, Iglesias PA, et al. (2013) Molecular mechanisms of cellular mechanosensing. Nat Mat 12: 1064–1071. doi: 10.1038/nmat3772
    [5] Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biology 10: 75–82.
    [6] Goldmann WH (2012a) Mechanotransduction in cells. Cell Biol Int 36: 649–652.
    [7] Shao X, Li Q, Mogilner A, et al. (2015) Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Nat Acad Sci USA122: E2595–2601.
    [8] Jalali S, del Pozo MA, Chen KD, et al. (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98: 1042–1046. doi: 10.1073/pnas.98.3.1042
    [9] Steinwachs J, Metzner C, Skodzek K, et al. (2015) Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods [in press].
    [10] Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Molecular Cell Biology 10: 21–33. doi: 10.1038/nrm2593
    [11] Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Molecular Cell Biology 10: 63–73. doi: 10.1038/nrm2597
    [12] Grashoff C, Hofman BD, Brenner MD, et al. (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466: 263–267. doi: 10.1038/nature09198
    [13] Honarmandi P, Lee H, Lang MJ, et al. (2010) A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 11: 684–694.
    [14] Fabry B, Klemm AH, Kienle S, et al. (2011) Focal adhesion kinase stabilizes the cytoskeleton. Biophys J 101: 2131–2138. doi: 10.1016/j.bpj.2011.09.043
    [15] Goldmann WH (2014) Mechanosensation: a basic cellular process. Progress in Molecular Biology and Translational Science 126: 75–102. doi: 10.1016/B978-0-12-394624-9.00004-X
    [16] Dent JE, Devescovi V, Li H, et al. (2015) Mechanotransduction map: simulation model, molecular pathway, gene set. Bioinformatics 31: 1053–1059. doi: 10.1093/bioinformatics/btu776
    [17] Goldmann WH (2016) Role of vinculin in cellular mechanotransduction. Cell Biol Int [in press].
    [18] Janoštiak R, Pataki AC, Brabek J, et al. (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93: 445–454. doi: 10.1016/j.ejcb.2014.07.002
    [19] Ezzell RM, Goldmann WH, Wang N, et al. (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231: 14–26. doi: 10.1006/excr.1996.3451
    [20] Mierke CT, Kollmannsberger P, Zitterbart DP, et al. (2010) Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 285: 13121–13130. doi: 10.1074/jbc.M109.087171
    [21] Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Molecular Cell Biology 10: 34–42. doi: 10.1038/nrm2592
    [22] Bays JL, Peng X, Tolbert CE, et al. (2014) Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol 205: 251–263. doi: 10.1083/jcb.201309092
    [23] Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117: 2449–2460. doi: 10.1242/jcs.01232
    [24] Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20: 811–827. doi: 10.1096/fj.05-5424rev
    [25] Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19: 1356–1369.
    [26] Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12: 139–153. doi: 10.1038/nrn2993
    [27] Nomura S, Yamamoto TT (2000) Molecular events caused by mechanical stress in bone. Matrix Biology 19: 91–96. doi: 10.1016/S0945-053X(00)00050-0
    [28] Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475: 316–23. doi: 10.1038/nature10316
    [29] Luo T, Mohan K, Iglesias PA, et al. (2013) Molecular mechanisms of cellular mechanosensing. Nat Materials 12: 1064–1071. doi: 10.1038/nmat3772
    [30] Leerberg JM, Gomez GA, Verma S, et al. (2014) Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr Biology 24: 1689–1699. doi: 10.1016/j.cub.2014.06.028
    [31] Milllward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32: 435–446. doi: 10.1023/B:ABME.0000017538.72511.48
    [32] Shivashankar GV (2011) Mechanosignaling to the cell nucleus and gene regulation. Ann Rev Biophysics 40: 361–378. doi: 10.1146/annurev-biophys-042910-155319
    [33] McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Eur J Physiol 462: 89–104.
    [34] Frank D, Frey N (2011) Cardiac Z-disc Signaling Network. J Biol Chem 286: 9897–9904. doi: 10.1074/jbc.R110.174268
    [35] Paluch EK, Nelson CM, Biais N, et al. (2015) Mechanotransduction: use the force(s). BMC Biology 13: 47. doi: 10.1186/s12915-015-0150-4
    [36] Ross RS (2004) Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovascular Res 63: 381–390. doi: 10.1016/j.cardiores.2004.04.027
    [37] Vogel V, Sheetz MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Biol Cell Biol 21: 38–46. doi: 10.1016/j.ceb.2009.01.002
    [38] Dupont S, Morsut L, Aragona M, et al. (2011) Role of YAP/TAZ in mechanotransduction. Nature 474: 179–185.
    [39] Goldmann WH, Auernheimer V, Thievessen I, et al. (2013) Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 37: 397–405. doi: 10.1002/cbin.10064
    [40] Kaminski A, Fedorchak GR, Lammerding J (2014) The cellular mastermind(?)– Mechanotransduction and the nucleus. Progress in Molecular Biology and Translational Science 126: 157–203. doi: 10.1016/B978-0-12-394624-9.00007-5
    [41] Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biology 10: 75–82. doi: 10.1038/nrm2594
    [42] Alenghat FJ, Ingber DE (2002) Mechanotransduction: All signals point to cytoskeleton, Matrix, and Integrins. Sci StKE 119: pe6.
    [43] Auernheimer V, Lautscham LA, Leidenberger M, et al. (2015) Vinculin phosphorylation at residues V100 and Y1065 is required for cellular force transmission. J Cell Sci 128: 3435–3443.
    [44] Goldmann WH (2002) Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26: 313–317. doi: 10.1006/cbir.2002.0857
    [45] Janoštiak R, Brábek J, Auernheimer V, et al. (2014) CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 71: 727–44. doi: 10.1007/s00018-013-1450-x
    [46] Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289: H2291–H2301. doi: 10.1152/ajpheart.00749.2005
    [47] Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nature Rev. Cancer 9: 108–122. doi: 10.1038/nrc2544
    [48] Goldmann WH (2012b) Mechanotransduction and focal adhesions. Cell Biol Int 36: 649–652.
    [49] Vogel V, Sheetz MP (2006) Local force and geometry sensing regulate cell functions. Nat Rev Molecular Cell Biology 7: 265–275. doi: 10.1038/nrm1890
    [50] Wang HB, Dembo M, Hanks SK, et al. (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Nat Acad Sci USA 98: 11295–11300. doi: 10.1073/pnas.201201198
    [51] Bendig G, Grimmler M, Huttner IG, et al. (2006) Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 20: 2361–2372.
    [52] Shih YRV, Tseng KF, Lai HY, et al. (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26: 730–738. doi: 10.1002/jbmr.278
    [53] Mehta PK, Griendling KK (2006) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292: C82–C97. doi: 10.1152/ajpcell.00287.2006
    [54] Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553–2560.
    [55] McBeath R, Pirone DM, Nelson CM, et al. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Cell 6: 483–495.
    [56] Bertrand AT, Ziaei S, Ehret C, et al. (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127: 2873–2884. doi: 10.1242/jcs.144907
    [57] Yuan JM, Chyan AL, Zhou HX, et al. (2008) The effect of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci 17: 2156–2166. doi: 10.1110/ps.037325.108
    [58] Ladoux B, Nelson WJ, Yan J, et al. (2015) The mechanotransduction machinery at work at adherens junctions. Integr Biol 7: 1109–1119. doi: 10.1039/C5IB00070J
    [59] Agrawal S, Agrawal A, Doughty B, et al. (2003) Cutting edge: different toll-like receptors agonists instruct dendritic cells to induce distinct responses via differential modulation of extracellular signal-regulated kinase-activated protein kinase and cFos. J Immunol 171: 4984–4989. doi: 10.4049/jimmunol.171.10.4984
    [60] Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91: 10.1152.
    [61] Maroto R, Raso A, Wood TG, et al. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7: 179–185. doi: 10.1038/ncb1218
    [62] Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell: an endothelial paradigm. Cir Res 72: 239–245. doi: 10.1161/01.RES.72.2.239
    [63] Burkholder TJ (2008) Mechanotransduction in skeletal muscle. Front Biosci 12: 174–191.
    [64] Benavides DT, Egli M (2014) Calcium's Role in Mechanotransduction during muscle development. Cell Physiol Biochem 33: 249–272. doi: 10.1159/000356667
    [65] Schwartz MA, Simone DW (2008) Cell adhesion receptors in mechano-transduction. Curr Opion Cell Biol 20: 551–556. doi: 10.1016/j.ceb.2008.05.005
    [66] Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35: 1–14.
    [67] Schreiner SM, Koo PK, Zhao Y, et al (2015) The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Comm 6: 7159.
    [68] Engler AJ, Kumar S (2014) Mechanosensation. Progress in Molecular Biology and Translational Science, Academic Press. 126: 1–384.
    [69] Isermann P, Lammerding J (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr Biol 23: R1113–1121. doi: 10.1016/j.cub.2013.11.009
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9505) PDF downloads(1935) Cited by(40)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog