Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Chromatin dynamics at DNA breaks: what, how and why?

  • Received: 15 July 2015 Accepted: 06 September 2015 Published: 10 September 2015
  • Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review the recent progresses in the understanding of the interplay between chromatin architecture and DNA repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation of the DNA repair machinery is associated with major changes in the compaction state and the mobility of chromatin. We discuss the functional consequences of these changes in yeast and mammals in the light of the different repair pathways utilized by these organisms. In the final section of this review, we show how future developments in high-resolution light microscopy and chromatin modelling by polymer physics should contribute to a better understanding of the relationship between the structural changes in chromatin and the activity of the repair processes.

    Citation: Théo Lebeaupin, Hafida Sellou, Gyula Timinszky, Sébastien Huet. Chromatin dynamics at DNA breaks: what, how and why?[J]. AIMS Biophysics, 2015, 2(4): 458-475. doi: 10.3934/biophy.2015.4.458

    Related Papers:

    [1] Yanli Guo, Xingyou Yao . Distortional buckling behavior and design method of cold-formed steel lipped channel with rectangular holes under axial compression. Mathematical Biosciences and Engineering, 2021, 18(5): 6239-6261. doi: 10.3934/mbe.2021312
    [2] Xiaoyu Du, Yijun Zhou, Lingzhen Li, Cecilia Persson, Stephen J. Ferguson . The porous cantilever beam as a model for spinal implants: Experimental, analytical and finite element analysis of dynamic properties. Mathematical Biosciences and Engineering, 2023, 20(4): 6273-6293. doi: 10.3934/mbe.2023270
    [3] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [4] Zhizhou Ma, Yujun Qi, Weiqing Liu . A comparative study of pull-out performance of bolted joints in pultruded FRP with drilled holes or punched holes. Mathematical Biosciences and Engineering, 2019, 16(5): 4213-4228. doi: 10.3934/mbe.2019210
    [5] Zheng Liu, Hangxin Guo, Yuanjun Zhao, Bin Hu, Lihua Shi, Lingling Lang, Bangtong Huang . Research on the optimized route of cold chain logistics transportation of fresh products in context of energy-saving and emission reduction. Mathematical Biosciences and Engineering, 2021, 18(2): 1926-1940. doi: 10.3934/mbe.2021100
    [6] Yan Li, Junwei Wang, Shuangkui Ge, Xiangyang Luo, Bo Wang . A reversible database watermarking method with low distortion. Mathematical Biosciences and Engineering, 2019, 16(5): 4053-4068. doi: 10.3934/mbe.2019200
    [7] Liyun Liu, Zichi Wang, Zhenxing Qian, Xinpeng Zhang, Guorui Feng . Steganography in beautified images. Mathematical Biosciences and Engineering, 2019, 16(4): 2322-2333. doi: 10.3934/mbe.2019116
    [8] Juncai Yao, Jing Shen, Congying Yao . Image quality assessment based on the perceived structural similarity index of an image. Mathematical Biosciences and Engineering, 2023, 20(5): 9385-9409. doi: 10.3934/mbe.2023412
    [9] Xiujuan Zheng, Zhanheng Li, Xinyi Chun, Xiaomei Yang, Kai Liu . A model-based method with geometric solutions for gaze correction in eye-tracking. Mathematical Biosciences and Engineering, 2020, 17(2): 1396-1412. doi: 10.3934/mbe.2020071
    [10] Dingwei Tan, Yuliang Lu, Xuehu Yan, Lintao Liu, Longlong Li . High capacity reversible data hiding in MP3 based on Huffman table transformation. Mathematical Biosciences and Engineering, 2019, 16(4): 3183-3194. doi: 10.3934/mbe.2019158
  • Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review the recent progresses in the understanding of the interplay between chromatin architecture and DNA repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation of the DNA repair machinery is associated with major changes in the compaction state and the mobility of chromatin. We discuss the functional consequences of these changes in yeast and mammals in the light of the different repair pathways utilized by these organisms. In the final section of this review, we show how future developments in high-resolution light microscopy and chromatin modelling by polymer physics should contribute to a better understanding of the relationship between the structural changes in chromatin and the activity of the repair processes.


    To evaluate a lot of genuine life troubles, MADM is the most dominant and feasible procedure from the decision-making strategy to survive with intricate data in authentic life scenarios. Under the beneficial processes of MADM conception, a lot of people have employed it in the circumstance of diverse territories. But, to accomplish with more than two sorts of opinions, Zadeh [1] firstly invented such sort of idea which includes more than two sorts of opinions in the shape of truth grade (TG) is called fuzzy set (FS). A large number of scholars have modified the conception of FS were to present the intuitionistic FS (IFS) [2], soft set (SS) [3], N-SS [4], fuzzy N-SS [5,6], Hesitant N-SS [7], bipolar valued FS (BFS) [8] and bipolar SS (BSS) [9]. All these theories have their importance but IFS proves to be a valuable procedure to convey the awkward fuzzy knowledge because it has TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right) $ and falsity grade (FG) $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right) $, with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{if}}\left(\mathcal{b}\right)\le 1 $. Further, Yager [10] diagnosed another well-known conception of Pythagorean FS (PFS), with a valuable technique $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{pf}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{pf}}^{2}\left(\mathcal{b}\right)\le 1 $. Some implementations have been invented by distinct peoples likewise, correlation coefficient [11], different sort of methods [12], Pythagorean m-polar FSs [13], TOPSIS methods [14], and Chebyshev measure [15] by using the PFSs.

    The conception of FS was extended by Ramot et al. [16]. They initiated the technique of complex FS (CFS), signifying TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $, with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right), {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\in \left[\mathrm{0, 1}\right] $. But in a lot of scenarios, they are unable to identify real-life dilemmas. In that spot, the complex IFS (CIFS), invented by Alkouri and Salleh [17]. CIFS includes the TG $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $ and FG $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $, with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\le 1 $. Several modifications are illustrated here: for instance, CIF classes [18], CIF graph [19], CIF soft sets [20], CIF aggregation operators (AOs) [21], CIF quaternion number [22], CIF group [23], CIF algebraic structure [24]. Further, Ullah et al. [25] diagnosed the complex PFS (CPFS), which includes a new well-known strategy in the shape $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. A lot of applications have been employed by Akram and Naz [26], Akram and Sattar [27], Akram et al. [28], Ma et al. [29], Akram and Khan [30], and Garg [31].

    IFSs, PFSs, CIFSs, and CPFSs have achieved a lot of well-wishes from the side of scholars under the very well-known techniques of all prevailing conceptions. The distinct sort of implementations are stated in the shape: geometric AOs for IFSs [32], Hamacher AOs for IFSs [33], frank power AOs for IFSs [34], Heronian AOs for IFSs [35], Harmonic AOs for IFSs [36], Bonferroni AOs for IFSs [37], Prioritized AOs for IFSs [38], Power AOs for IFSs [39], Maclaurin symmetric mean for IFSs [40], AOs for PFSs [41], Einstein AOs for PFSs [42], Hamacher AOs for PFSs [43], Choquet frank AOs for PFSs [44], Heronian AOs for IFSs [45], Bonferroni AOs for PFSs [46], Prioritized AOs for PFSs [47], Power AOs for IFSs [48], Maclaurin symmetric mean for PFSs [49]. Under the above circumstances, a decision-making strategy always includes a lot of major hurdles as:

    1) How to demonstrate the data on the appropriate procedures to clarify the data.

    2) How to calculate the distinct attribute objects and arrange the generally favorite quantity.

    3) How to study the beneficial ideal from a lot of collections in the shape of alternatives.

    Hence, the major contribution of the theme is to invent the beneficial decision-making strategy under CPFSs by using the AOs for CLs. The prevailing conceptions are the specific parts of the invented CPFSs under implementing the distinct sort techniques. In CPFS, the intellectual faced two sorts of theory in the shape of real and unreal terms, which can help to decision-maker for taking a beneficial decision. But the prevailing IFSs, PFSs have a grip on one aspect at a time due to their weak mathematical structure. The unreal terms have been completely missed in these two ideas and due to these issues, the decision-maker loses a lot of data during the decision-making procedure. The importance of the unreal term in CPFS is that if an expert wants to lunch the car enterprise based on the well-known considerations in the shape of its name of the car and production dates. Here, the name of the car shows the real part, and the production of the car date shows the unreal part. For managing with such sort of scenario, the technique of IFS and PFS has been unsuccessful. For this, we consider the well-known conception of CPFS to try to demonstrate the beneficial results. The key factors of the invented works are implemented in the shape:

    1) To analyze some new operational laws based on CLs for CPF setting.

    2) To demonstrate the concept of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented.

    3) Several significant features of the invented works are also diagnosed.

    4) To investigate the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data. A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works.

    5) To identify the sensitive analysis and merits of the invented works with the help of comparative analysis and they're graphical shown.

    The sensitive analysis of the prevailing and proposed works is diagnosed in the shape of Table 1.

    Table 1.  Show the invented works are more powerful is compared to prevailing works.
    Model IFSs PFSs CIFSs CPFSs
    Geometric AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Hamacher AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    frank power AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Heronian AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Harmonic AOs $ \surd $ $ \surd $ $ \times $ $ \times $
    Bonferroni AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Prioritized AOs $ \surd $ $ \surd $ $ \times $
    Power AOs $ \surd $ $ \surd $ $ \surd $ $ \times $
    Maclaurin symmetric mean $ \surd $ $ \surd $ $ \times $ $ \times $
    Einstein AOs $ \times $ $ \surd $ $ \times $ $ \surd $
    Proposed work $ \times $ $ \surd $ $ \times $ $ \surd $

     | Show Table
    DownLoad: CSV

    In Table 1, we easily get that the symbol " $ \surd $ " stated the operators were developed someone and the symbol $ \times $, stated the operators cannot be developed by anyone up to date. We know that the conception of CPFS is very well-known and interesting, but up to date, no one has employed it in the region of any sorts of operators to investigate the feasibility and consistency of the invented works. For more convenience, we illustrated Figure 1, which stated the invented works.

    Figure 1.  Stated the practical structure of the invented works.

    Lastly, the main characteristics of the CPFSs under a lot of points are illustrated in Table 2.

    Table 2.  Stated the sensitivity analysis.
    Model Uncertainty Falsity Hesitation Periodicity 2-D information Square in Power
    FSs $ \surd $ $ \times $ $ \times $ $ \times $ $ \times $ $ \times $
    IFSs $ \surd $ $ \surd $ $ \surd $ $ \times $ $ \times $ $ \times $
    PFSs $ \surd $ $ \surd $ $ \surd $ $ \times $ $ \times $ $ \times $
    CFSs $ \surd $ $ \times $ $ \times $ $ \surd $ $ \surd $ $ \times $
    CIFSs $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \times $
    CPFSs $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $

     | Show Table
    DownLoad: CSV

    Likewise, a narrative MADM process in the viewpoint of these recommended operators is constructed in which rankings are characterized in conditions of CPFNs. The feasibility down with the prevalence of methodology is illustrated over a genuine-life mathematical statistic and verified by differing their results with many prevalent approaches.

    This analysis is constructed in the shape: Section 2 includes some prevailing concepts of CPFSs and their related properties. Section 3 includes analyzing some new operational laws based on CLs for the CPF setting. Moreover, to demonstrate the closeness between finite numbers of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented. Several significant features of the invented works are also diagnosed. Section 4 investigates the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data. A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works. For massive convenience, the sensitivity analysis and merits of the identified works are also explored with the help of comparative analysis and they're graphically shown. The conclusion is referred to in Section 5.

    Several prevailing studies under the CIFSs, CPFSs, and their related properties. The mathematical symbol $ {\mathcal{U}}_{uni} $, diagnosed the universal set with TG and FG in the shape: $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)} $. For the convenience of the reader, here we reviewed the conception of CIFSs, initiated by Alkouri and Salleh [17].

    Definition 1. [17] A mathematical structure of CIFSs $ {\mathcal{C}\mathfrak{f}}_{ci} $, diagnosed by:

    $ {\mathcal{C}\mathfrak{f}}_{ci} = \left\{\left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{ci}}\left(\mathcal{b}\right), {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{ci}}\left(\mathcal{b}\right)\right)/\mathcal{b}\in {\mathcal{U}}_{uni}\right\} $ (1)

    With a well-known characteristic $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)\le 1 $ and $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\le 1 $. The mathematical shape of CIFN is diagnosed by: $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \mathcal{n}\mathfrak{t} $.

    Definition 2. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs, then

    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\cup {\mathcal{C}\mathfrak{f}\mathfrak{f}}_{ci-2} = \left(max(TCfRT1(b),TCfRT2(b))ei2π(max(TCfIT1(b),TCfIT2(b))),min(FCfRT1(b),FCfRT2(b))ei2π(min(FCfIT1(b),FCfIT2(b)))\right) $ (2)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\cap {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(min(TCfRT1(b),TCfRT2(b))ei2π(min(TCfIT1(b),TCfIT2(b))),max(FCfRT1(b),FCfRT2(b))ei2π(max(FCfIT1(b),FCfIT2(b)))\right) $ (3)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1} \oplus {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(\begin{array}{c}\left(\begin{array}{c}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\\ -{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\end{array}\right){e}^{i2\pi \left(TCfIT1(b)+TCfIT2(b)TCfIT1(b)TCfIT2(b)\right)}, \\ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-2}}\left(\mathcal{b}\right)\right)}\end{array}\right) $ (4)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}\otimes {\mathcal{C}\mathfrak{f}}_{ci-2} = \left(\begin{array}{c}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-1}}\left(\mathcal{b}\right){\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-2}}\left(\mathcal{b}\right)\right)}, \\ \left(\begin{array}{c}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\\ -{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-1}}\left(\mathcal{b}\right){\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-2}}\left(\mathcal{b}\right)\end{array}\right){e}^{i2\pi \left(FCfIT1(b)+FCfIT2(b)FCfIT1(b)FCfIT2(b)\right)}\end{array}\right) $ (5)
    $ {\mathrm{\Theta }}_{sc}{\mathcal{C}\mathfrak{f}}_{ci-1} = \left((1(1TCfRT1(b))Θsc)ei2π(1(1TCfIT1(b))Θsc),FΘscCfRT1(b)ei2π(FΘscCfIT1(b))\right) $ (6)
    $ {\mathcal{C}\mathfrak{f}}_{ci-1}^{{\mathrm{\Theta }}_{sc}} = \left(TΘscCfRT1(b)ei2π(TΘscCfIT1(b)),(1(1FCfRT1(b))Θsc)ei2π(1(1FCfIT1(b))Θsc)\right) $ (7)

    Definition 3. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs. The mathematical structure of score value (SV) is diagnosed by:

    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)}{2} \in \left[-\mathrm{1, 1}\right] $ (8)

    Similarly, the mathematical structure of accuracy value (AV) is diagnosed by:

    $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)}{2} $ (9)

    Definition 4. [17] Assume $ {\mathcal{C}\mathfrak{f}}_{ci-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CIFNs. Then some techniques are diagnosed here, if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right) $ then $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} = {\mathcal{C}\mathfrak{f}}_{cp-2} $.

    For $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right)\in \left[\mathrm{0, 1}\right] $.

    Further, several limitations lie in the technique of CIFSs, for this, here we reviewed the conception of CPFSs, initiated by Ullah et al. [25].

    Definition 5. [25] A mathematical structure of CPFSs $ {\mathcal{C}\mathfrak{f}}_{cp} $, diagnosed by:

    $ {\mathcal{C}\mathfrak{f}}_{cp} = \left\{\left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right), {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{cp}}\left(\mathcal{b}\right)\right)/\mathcal{b}\in {\mathcal{U}}_{uni}\right\} $ (10)

    With a well-known characteristic $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le 1 $ and $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. The mathematical shape of CPFN is diagnosed by: $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \mathcal{n}\mathfrak{t} $. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get FSs, if $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get PFSs, if $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ , with putting "1" instead of "2", in Eq (10), then we get IFSs. Moreover, if $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} = 0 $ in Eq (10), then we get CFSs, by putting "1" instead of "2", in Eq (10), then we get CIFSs. Figure 2, which states the real structure of the unit disc in the complex plane.

    Figure 2.  Stated the geometrical shape of the unit disc.

    Definition 6. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\cup {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(max(TCfRT1(b),TCfRT2(b))ei2π(max(TCfIT1(b),TCfIT2(b))),min(FCfRT1(b),FCfRT2(b))ei2π(min(FCfIT1(b),FCfIT2(b)))\right) $ (11)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\cap {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(min(TCfRT1(b),TCfRT2(b))ei2π(min(TCfIT1(b),TCfIT2(b))),max(FCfRT1(b),FCfRT2(b))ei2π(max(FCfIT1(b),FCfIT2(b)))\right) $ (12)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1} \oplus {\mathcal{C}\mathfrak{f}}_{cp-2} = \left((T2CfRT1(b)+T2CfRT2(b)T2CfRT1(b)T2CfRT2(b))12ei2π(T2CfIT1(b)+T2CfIT2(b)T2CfIT1(b)T2CfIT2(b))12,FCfRT1(b)FCfRT2(b)ei2π(FCfIT1(b)FCfIT2(b))\right) $ (13)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}\otimes {\mathcal{C}\mathfrak{f}}_{cp-2} = \left(TCfRT1(b)TCfRT2(b)ei2π(TCfIT1(b)TCfIT2(b)),(F2CfRT1(b)+F2CfRT2(b)F2CfRT1(b)F2CfRT2(b))12ei2π(F2CfIT1(b)+F2CfIT2(b)F2CfIT1(b)F2CfIT2(b))12\right) $ (14)
    $ {\mathrm{\Theta }}_{sc}{\mathcal{C}\mathfrak{f}}_{cp-1} = \left((1(1T2CfRT1(b))Θsc)12ei2π(1(1T2CfIT1(b))Θsc)12,FΘscCfRT1(b)ei2π(FΘscCfIT1(b))\right) $ (15)
    $ {\mathcal{C}\mathfrak{f}}_{cp-1}^{{\mathrm{\Theta }}_{sc}} = \left(TΘscCfRT1(b)ei2π(TΘscCfIT1(b)),(1(1F2CfRT1(b))Θsc)12ei2π(1(1F2CfIT1(b))Θsc)12\right) $ (16)

    Definition 7. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs. The mathematical structure of SV is diagnosed by:

    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)-{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)}{2} \in \left[-\mathrm{1, 1}\right] $ (17)

    Similarly, the mathematical structure of AV is diagnosed by:

    $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \frac{{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)}{2} $ (18)

    Definition 8. [25] Assume $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2} $, stated two CPFNs. Then some techniques are diagnosed here, if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and if $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right) $ then $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) > {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} > {\mathcal{C}\mathfrak{f}}_{cp-2} $;

    and $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right) = {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp-1} = {\mathcal{C}\mathfrak{f}}_{cp-2} $.

    For $ {\mathcal{H}}_{av}\left({\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right)\in \left[\mathrm{0, 1}\right] $.

    This study includes demonstrating the closeness between a finite number of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented. Several significant features of the invented works are also diagnosed. In this all work, we used the CPFNs by $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right), \mathfrak{j} = \mathrm{1, 2}, \dots , \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $, and $ {\Delta :}_{\mathfrak{j}} $ be the CL of $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} $ with $ 0\le {\Delta :}_{\mathfrak{j}}\le 1 $. The weight vector is diagnosed by: $ {\omega }^{wc} = \left\{{\omega }^{wc-1}, {\omega }^{wc-2}, \dots , {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ with $ \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}} = 1, {\omega }^{wc-\mathfrak{j}}\in \left[\mathrm{0, 1}\right] $.

    Definition 9. The CCPFWA operator is diagnosed by:

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :∎}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) =\\ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) \oplus \dots , \oplus {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right) $ (19)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (19), then we get CPF weighted averaging operator. We got the theory of the CIF weighted averaging operator by changing the value of "2" in Eq (19) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (19), then we get PF weighted averaging operator. We got the theory of IF weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (19) into "1".

    Theorem 1. Under Eq (19), we diagnosed the Eq (20), such that

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = $
    $ \left((1ntj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1ntj=1(1T2CfITj)Δ:jωwcj)12,ntj=1FΔ:jωwcjCfRTjei2π(ntj=1FΔ:jωwcjCfITj)\right) $ (20)

    Proof: Under the consideration of mathematical induction, in Eq (20), we fix $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = 2 $, we gotten

    $ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) = \left((1(1T2CfRT1)Δ:1ωwc1)12ei2π(1(1T2CfIT1)Δ:1ωwc1)12,FΔ:1ωwc1CfRT1ei2π(FΔ:1ωwc1CfIT1)\right) $
    $ {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) = \left((1(1T2CfRT2)Δ:2ωwc2)12ei2π(1(1T2CfIT2)Δ:2ωwc2)12,FΔ:2ωwc2CfRT2ei2π(FΔ:2ωwc2CfIT2)\right) $
    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right)\right) = {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{cp-1}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{cp-2}\right) =\\ \left((12j=1(1T2CfRTj)Δ:jωwcj)12ei2π(12j=1(1T2CfITj)Δ:jωwcj)12,2j=1FΔ:jωwcjCfRTjei2π(2j=1FΔ:jωwcjCfITj)\right) $

    In Eq (20), we fix $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = k $, because for $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = 2 $, hold.

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k}, {\Delta :}_{k}\right)\right) = \\ \left((1kj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1kj=1(1T2CfITj)Δ:jωwcj)12,kj=1FΔ:jωwcjCfRTjei2π(kj=1FΔ:jωwcjCfITj)\right) $

    For $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} = k+1 $, we have gotten

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k+1}, {\Delta :}_{k+1}\right)\right) = \\ CCQROFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-k}, {\Delta :}_{k}\right)\right) \oplus {\omega }^{wc-k+1}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{cp-k+1}\right) = \\ \left((1kj=1(1T2CfRTj)Δ:jωwcj)12ei2π(1kj=1(1T2CfITj)Δ:jωwcj)12,kj=1FΔ:jωwcjCfRTjei2π(kj=1FΔ:jωwcjCfITj)\right) $
    $ \oplus \left((1(1T2CfRTk+1)Δ:k+1ωwck+1)12ei2π(1(1T2CfITk+1)Δ:k+1ωwck+1)12,FΔ:k+1ωwck+1CfRTk+1ei2π(FΔ:k+1ωwck+1CfITk+1)\right) $
    $ = \left((1k+1j=1(1T2CfRTj)Δ:jωwcj)12ei2π(1k+1j=1(1T2CfITj)Δ:jωwcj)12,k+1j=1FΔ:jωwcjCfRTjei2π(k+1j=1FΔ:jωwcjCfITj)\right) $

    Equation (20) holds for all possible values of $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $.

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (20), then we get CPF weighted averaging operator. We got the theory of the CIF weighted averaging operator by changing the value of "2" in Eq (20) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (20), then we get PF weighted averaging operator. We got the theory of IF weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (20) into "1".

    The conception of Idempotency, boundedness and monotonicity are illustrated below.

    Property 1. For fixing the value of $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = {\mathcal{C}\mathfrak{f}}_{cp} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (21)

    Proof: Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = {\mathcal{C}\mathfrak{f}}_{cp} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}\left(\mathcal{b}\right)\right)}\right) $ i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathcal{�}\mathcal{�}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left((1ntj=1(1T2CfRT)Δ:jωwcj)12ei2π(1ntj=1(1T2CfIT)Δ:jωwcj)12,ntj=1FΔ:jωwcjCfRTei2π(ntj=1FΔ:jωwcjCfIT)\right) $
    $ = \left((1(1T2CfRT)Δ:ntj=1ωwcj)12ei2π(1(1T2CfIT)Δ:ntj=1ωwcj)12,FΔ:ntj=1ωwcjCfRTei2π(FΔ:ntj=1ωwcjCfIT)\right) $
    $ = \left((1(1T2CfRT)Δ:)12ei2π(1(1T2CfIT)Δ:)12,FΔ:CfRTei2π(FΔ:CfIT)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $

    Property 2. For fixing the value of

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (22)

    Proof: Assume that

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\le \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}⟹1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2} $
    $ ⟹\prod \limits_{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod\limits _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod\limits _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le \\ {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we have

    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $
    $ \le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we have

    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{max}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{min}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{max}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{max}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\underset{\mathfrak{j}}{\mathrm{min}}\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\underset{\mathfrak{j}}{\mathrm{min}}{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $

    Under Eq (22), we obtained

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $

    Property 3. Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le \\ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (23)

    Proof: Assume that $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ 1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\ge 1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $
    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $

    In the same way, we demonstrated

    $ ⟹{\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}}\le {\left(1-\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\left(1-{{\mathcal{T}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{2}\right)}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\right)}^{\frac{1}{2}} $
    $ ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{i = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{{\mathcal{F}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}, ⟹\prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}}\ge \prod _{i = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{{\mathcal{F}}^{\mathcal{*}}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{{\Delta :}_{\mathfrak{j}}{\omega }^{wc-\mathfrak{j}}} $

    Hence, we demonstrated $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = {\mathcal{C}\mathfrak{f}}_{cp}, CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = {\mathcal{C}\mathfrak{f}}_{cp}^{*} $ and Eq (17), some axioms are illustrated Here:

    1) If $ {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) > {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} > {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) < CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $;

    2) If $ {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) = {\mathbb{S}}_{\mathit{S}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} = {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $, then by considering Eq (18), we demonstrated

    i. If $ {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) > {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} > {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) < CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $;

    ii. If $ {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}^{*}\right) = {\mathbb{H}}_{\mathit{A}\mathit{V}}\left({\mathcal{C}\mathfrak{f}}_{cp}\right)⟹{\mathcal{C}\mathfrak{f}}_{cp}^{*} = {\mathcal{C}\mathfrak{f}}_{cp} $ i.e., $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $.

    In last we determined

    $ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le \\ CCPFWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $

    Definition 10. The CCPFOWA operator is exhibited by:

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = {\omega }^{wc-1}\left({\Delta :}_{\sigma \left(1\right)}{\stackrel{~}{\mathcal{C}\mathfrak{f}}}_{Cp-\sigma \left(1\right)}\right) \oplus {\omega }^{wc-2}\left({\Delta :}_{\sigma \left(2\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(2\right)}\right) \oplus \dots , $
    $ \oplus {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}\right) $ (24)

    where $ \sigma \left(\mathfrak{j}\right) $ of $ \left(\mathfrak{j} = \mathrm{1, 2}, \dots , \stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right) $, invented the permutations with $ \sigma \left(\mathfrak{j}-1\right)\ge \sigma \left(\mathfrak{j}\right) $. Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (24), then we get CPF ordered weighted averaging operator. We got the theory of CIF ordered weighted averaging operator by changing the value of "2" in Eq (24) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (24), then we get PF ordered weighted averaging operator. We got the theory of IF ordered weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (24) into "1".

    Theorem 2: Under Eq (24), we get

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \\ \left((1ntj=1(1T2CfRTσ(j))Δ:σ(j)ωwcj)12ei2π(1ntj=1(1T2CfITσ(j))Δ:σ(j)ωwcj)12,ntj=1FΔ:σ(j)ωwcjCfRTσ(j)ei2π(ntj=1FΔ:σ(j)ωwcjCfITσ(j))\right) $ (25)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (25), then we get CPF ordered weighted averaging operator. We got the theory of CIF ordered weighted averaging operator by changing the value of "2" in Eq (25) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (25), then we get PF ordered weighted averaging operator. We got the theory of IF ordered weighted averaging operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (25) into "1". Idempotency, boundedness, and monotonicity, stated the properties for Eq (26).

    Property 4. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (26)

    Property 5. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (27)

    Property 6. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{\mathfrak{*}} $, i.e., $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFOWA\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (28)

    Definition 11. The CCPFWG operator is proved by:

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) =\\ {\omega }^{wc-1}\left({\Delta :}_{1}{\mathcal{C}\mathfrak{f}}_{Cp-1}\right)\otimes {\omega }^{wc-2}\left({\Delta :}_{2}{\mathcal{C}\mathfrak{f}}_{Cp-2}\right)\otimes , \dots , \otimes {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\mathcal{C}\mathfrak{f}}_{Cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right) $ (29)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (29), then we get CPF weighted geometric operator. We got the theory of CIF weighted geometric operator by changing the value of "2" in Eq (29) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (29), then we get PF weighted geometric operator. We got the theory of IF weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (29) into "1".

    Theorem 3. Under Eq (29), we acquired

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left(ntj=1TΔ:jωwcjCfRTjei2π(ntj=1TΔ:jωwcjCfITj),(1ntj=1(1F2CfRTj)Δ:jωwcj)12ei2π(1ntj=1(1F2CfITj)Δ:jωwcj)12\right) $ (30)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (30), then we get CPF weighted geometric operator. We got the theory of CIF weighted geometric operator by changing the value of "2" in Eq (30) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (30), then we get PF weighted geometric operator. We got the theory of IF weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (30) into "1". Idempotency, boundedness, and monotonicity stated some properties for Eq (30).

    Property 7. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (31)

    Property 8. If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (32)

    Property 9. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (33)

    Definition 12. The CCPFOWG operator is confirmed by:

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \prod _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}}\left({\Delta :}_{\mathfrak{j}}{\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}\right) = \\ {\omega }^{wc-1}\left({\Delta :}_{\sigma \left(1\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(1\right)}\right)\otimes {\omega }^{wc-2}\left({\Delta :}_{\sigma \left(2\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(2\right)}\right)\otimes , \dots , \otimes {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\left({\Delta :}_{\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}{\mathcal{C}\mathfrak{f}}_{Cp-\sigma \left(\stackrel{⏞}{\mathcal{n}\mathfrak{t}}\right)}\right) $ (34)

    Several specific cases are gotten after the implementation of distinct techniques, for instance, if $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (34), then we get CPF ordered weighted geometric operator. We got the theory of CIF ordered weighted geometric operator by changing the value of "2" in Eq (34) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (34), then we get PF ordered weighted geometric operator. We got the theory of IF ordered weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (34) into "1".

    Theorem 4. Under Eq (34), we achieved

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $
    $ = \left(ntj=1TΔ:σ(j)ωwcjCfRTσ(j)ei2π(ntj=1TΔ:σ(j)ωwcjCfITσ(j)),(1ntj=1(1F2CfRTσ(j))Δ:σ(j)ωwcj)12ei2π(1ntj=1(1F2CfITσ(j))Δ:σ(j)ωwcj)12\right) $ (35)

    If $ {\Delta :}_{\mathfrak{j}} = 0 $ in Eq (35), then we get CPF ordered weighted geometric operator. We got the theory of CIF ordered weighted geometric operator by changing the value of "2" in Eq (35) into "1". If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $ in Eq (35), then we get PF ordered weighted geometric operator. We got the theory of IF ordered weighted geometric operator by changing the value of "2" with $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right) = 0 $, in Eq (35) into "1". Idempotency, boundedness, and monotonicity stated some properties for Eq (35).

    Property 10. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}} = {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}} $, and $ \Delta : = {\Delta :}_{\mathfrak{j}} $, then

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) = \Delta :{\mathcal{C}\mathfrak{f}}_{cp} $ (36)

    Property 11.

    If $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-} = \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $ and $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} = \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{max}}{\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, \underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left(\underset{\mathfrak{j}}{\mathrm{min}}{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, then

    $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{-}\le CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}}^{+} $ (37)

    Property 12. If $ {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}^{\mathfrak{*}}, $ and $ {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\ge {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}^{\mathfrak{*}} $ then

    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right)\le $
    $ CCPFOWG\left(\left({\mathcal{C}\mathfrak{f}}_{cp-1}^{*}, {\Delta :}_{1}\right), \left({\mathcal{C}\mathfrak{f}}_{cp-2}^{*}, {\Delta :}_{2}\right), \dots , \left({\mathcal{C}\mathfrak{f}}_{cp-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}^{\mathfrak{*}}, {\Delta :}_{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right)\right) $ (38)

    Ambiguity and intricacy are involved in every region of life like economics, engineering sciences, computer sciences, and medical sciences. A lot of people have investigated the beneficial ways how to evaluate their solutions. But, in the scenario of fuzzy circumstances, a lot of ambiguity has occurred if someone employed MADM techniques in the scenario of IFSs, PFSs, and CIFSs. The major theme of this theory is to demonstrate the beneficial ways for the selection of the most important and convenient optimal. For this, $ \stackrel{⏞}{m} $ alternatives and $ \stackrel{⏞}{\mathcal{n}\mathfrak{t}} $ attributes are stated in the shape: $ \left\{{\mathcal{C}\mathfrak{f}}_{al-1}, {\mathcal{C}\mathfrak{f}}_{al-2}, \dots , {\mathcal{C}\mathfrak{f}}_{al-\stackrel{⏞}{m}}\right\} $ and $ \left\{{\mathcal{C}\mathfrak{f}}_{at-1}, {\mathcal{C}\mathfrak{f}}_{at-2}, \dots , {\mathcal{C}\mathfrak{f}}_{at-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ with weight vectors $ {\omega }^{wc} = \left\{{\omega }^{wc-1}, {\omega }^{wc-2}, \dots , {\omega }^{wc-\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}\right\} $ working under the technique $ \sum _{\mathfrak{j} = 1}^{\stackrel{⏞}{\mathcal{n}\mathfrak{t}}}{\omega }^{wc-\mathfrak{j}} = 1, {\omega }^{wc-\mathfrak{j}}\in \left[\mathrm{0, 1}\right] $. For this, someone implemented the matrix $ D = {\left[{\mathcal{C}\mathfrak{f}}_{al-ij}\right]}_{\stackrel{⏞}{m}\times \stackrel{⏞}{\mathcal{n}\mathfrak{t}}} $, includes the CPFNs with $ 0\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT}}^{2}\left(\mathcal{b}\right)\le \mathrm{1, 0}\le {\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)+{\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT}}^{2}\left(\mathcal{b}\right)\le 1 $. A Mathematical structure $ {\mathcal{C}\mathfrak{f}}_{cp-\mathfrak{j}} = \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{T}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}, {\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{RT-\mathfrak{j}}}\left(\mathcal{b}\right){e}^{i2\pi \left({\mathcal{F}}_{{\mathcal{C}\mathfrak{f}}_{IT-\mathfrak{j}}}\left(\mathcal{b}\right)\right)}\right) $, stated the CPFNs.

    Several beneficial stages are diagnosed for demonstrating the qualitative optimal from the family of alternatives.

    Stage 1: In this, we consider the decision matrix which includes some rows and columns in the shape of CPFNs.

    Stage 2: Under the consideration of Eqs (20) and (30), we try to demonstrate the CPFN from the group of CPFNS given in Stage 1.

    Stage 3: Under the consideration of Eq (17), we try to demonstrate the single value from the CPFNS given in Stage 2.

    Stage 4: Explore some order in the shape of ranking values based on score values.

    Stage 5: Elaborate the beneficial optimal.

    COVID-19 is a novel and typical form of coronavirus that is not been before investigated in persons. The COVID-19 is one of the most intellectual and dangerous parts of the disease which was first diagnosed in December 2019. Up to date a lot of people have been affected by it, and many have passed away. When COVID-19 has discovered a lot of scholars have worked to make the best vaccination for it. Nowadays, a lot of vaccines have been found by different countries, but the Chines vaccine has gotten a lot of attention and several people have used it. Several important symptoms are diagnosed here, for instance, coughing, headache, loss of taste, sore throat, and muscle pain. For this, we suggested several alternatives, and their attributes are diagnosed in the shape of symptoms of the COVID-19, have specified below:

    $ {\mathcal{C}\mathfrak{f}}_{al-1} $: Fever or chills.

    $ {\mathcal{C}\mathfrak{f}}_{al-2} $: A dry hack and windedness.

    $ {\mathcal{C}\mathfrak{f}}_{al-3} $: Feeling extremely drained.

    $ {\mathcal{C}\mathfrak{f}}_{al-4} $: Muscle or body throbs.

    With four criteria in the shape of dangerous symptoms such as:

    $ {\mathcal{C}\mathfrak{f}}_{at-1} $: Inconvenience relaxing.

    $ {\mathcal{C}\mathfrak{f}}_{at-2} $: Steady agony or tension in your chest.

    $ {\mathcal{C}\mathfrak{f}}_{at-3} $: Pale blue lips or face.

    $ {\mathcal{C}\mathfrak{f}}_{at-4} $: Abrupt disarray.

    Several experts are given their opinions in the shape of $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $, stated the weight vectors for four alternative and their four attributes. Several beneficial stages are diagnosed for demonstrating the qualitative optimal from the family of alternatives.

    Stage 1: In this, we consider the decision matrix which includes some rows and columns in the shape of CPFNs, stated in Table 3.

    Table 3.  Expressions of the arrangement of the CPFNs.
    $ {\bf\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-1} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-2} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-3} $ $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{t}-4} $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(\left(0.7ei2π(0.5),0.5ei2π(0.6)\right), 0.8\right) $ $ \left(\left(0.71ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.72ei2π(0.52),0.52ei2π(0.62)\right), 0.82\right) $ $ \left(\left(0.73ei2π(0.53),0.53ei2π(0.63)\right), 0.83\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(\left(0.7ei2π(0.8),0.3ei2π(0.3)\right), 0.7\right) $ $ \left(\left(0.71ei2π(0.81),0.31ei2π(0.31)\right), 0.71\right) $ $ \left(\left(0.72ei2π(0.82),0.32ei2π(0.32)\right), 0.72\right) $ $ \left(\left(0.73ei2π(0.83),0.33ei2π(0.33)\right), 0.73\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(\left(0.6ei2π(0.5),0.5ei2π(0.6)\right), 0.8\right) $ $ \left(\left(0.61ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.61ei2π(0.51),0.51ei2π(0.61)\right), 0.81\right) $ $ \left(\left(0.62ei2π(0.52),0.52ei2π(0.62)\right), 0.82\right) $
    $ {\bf\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(\left(0.5ei2π(0.4),0.2ei2π(0.4)\right), 0.8\right) $ $ \left(\left(0.51ei2π(0.41),0.21ei2π(0.41)\right), 0.81\right) $ $ \left(\left(0.52ei2π(0.42),0.22ei2π(0.42)\right), 0.82\right) $ $ \left(\left(0.53ei2π(0.43),0.23ei2π(0.43)\right), 0.83\right) $

     | Show Table
    DownLoad: CSV

    Stage 2: Under the consideration of Eqs (20) and (30), we try to demonstrate the CPFN from the group of CPFNS given in Stage 1, stated in Table 4.

    Table 4.  Aggregated values of the information are in Table 3.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(0.6587{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4656\right)}, 0.5796{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6701\right)}\right) $ $ \left(0.7578{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5796\right)}, 0.4656{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5607\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(0.6266{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7294\right)}, 0.4354{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4354\right)}\right) $ $ \left(0.7842{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.8611\right)}, 0.2634{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2634\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(0.5568{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4618\right)}, 0.578{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6684\right)}\right) $ $ \left(0.6684{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.578\right)}, 0.4618{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5568\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(0.4656{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.3724\right)}, 0.2824{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4857\right)}\right) $ $ \left(0.5796{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4857\right)}, 0.1898{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.3724\right)}\right) $

     | Show Table
    DownLoad: CSV

    Stage 3: Under the consideration of Eq (17), we try to demonstrate the single value from the CPFNS given in Stage 2, conferred in Table 5.

    Table 5.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $ $ -0.0672 $ $ 0.1895 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $ $ 0.2728 $ $ 0.6089 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $ $ -0.1288 $ $ 0.1288 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-4} $ $ 0.0199 $ $ 0.1986 $

     | Show Table
    DownLoad: CSV

    Stage 4: Explore some order in the shape of ranking values based on score values, conferred in Table 6.

    Table 6.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $

     | Show Table
    DownLoad: CSV

    Stage 5: Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $. Moreover, Figure 3 states the practicality of the data in Table 5.

    Figure 3.  The practicality of the data is in Table 5.

    To evaluate the practicality of the invented works, we suggested several data from [17]. A lot of details are available in the prevailing works [17], for evaluating the feasibility and dominancy of the invented works, we suggested the data in Table 2 from [17], which includes the CIFNs. Then the final accumulated values are available in Table 7, under the weight vector $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $, with the value of $ {\Delta :}_{i}, i = \mathrm{1, 2}, \mathrm{3, 4}, 5 $, stated in the shape $ \left\{\mathrm{0.8, 0.81, 0.82, 0.83}\right\} $. Under the consideration of Eqs (20) and (30), we try to demonstrate the CIFN from the group of CIFNS given in Table 2, stated in Table 7.

    Table 7.  Aggregated values of the information in Table 2 in [17].
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ \left(0.65{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6962\right)}, 0.1735{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2574\right)}\right) $ $ \left(0.7262{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4933\right)}, 0.1145{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2327\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ \left(0.5639{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7074\right)}, 0.3197{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2636\right)}\right) $ $ \left(0.6242{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.7483\right)}, 0.2306{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2185\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ \left(0.5462{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.6148\right)}, 0.3024{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2048\right)}\right) $ $ \left(0.6499{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.702\right)}, 0.2257{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.1426\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ \left(0.4994{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5861\right)}, 0.3709{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2269\right)}\right) $ $ \left(0.4829{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5856\right)}, 0.3421{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2034\right)}\right) $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-5} $ $ \left(0.4804{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2332\right)}, 0.4086{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.5341\right)}\right) $ $ \left(0.5405{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.2888\right)}, 0.3993{\mathrm{e}}^{\mathrm{i}2\mathrm{\pi }\left(0.4592\right)}\right) $

     | Show Table
    DownLoad: CSV

    Under the consideration of Eq (17), we try to demonstrate the single value from the CIFNS, conferred in Table 8.

    Table 8.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $ $ 0.4054 $ $ 0.3517 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-2} $ $ 0.3233 $ $ 0.4243 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $ $ 0.2715 $ $ 0.422 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-4} $ $ 0.202 $ $ 0.2089 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-5} $ $ -0.0835 $ $ 0.0026 $

     | Show Table
    DownLoad: CSV

    Moreover, Figure 4 states the practicality of the data in Table 8.

    Figure 4.  The practicality of the data in Table 8.

    Explore some order in the shape of ranking values based on score values, conferred in Table 9.

    Table 9.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-5} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-5} $

     | Show Table
    DownLoad: CSV

    Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-1} $.

    To evaluate the practicality of the invented works, we suggested several data from [27]. A lot of details are available in the prevailing works [27], for evaluating the feasibility and dominancy of the invented works, we suggested the data in Table 5 from [27], which includes the PFNs. Then the final accumulated values are available in Table 10, under the weight vector $ \left(\mathrm{0.4, 0.3, 0.2, 0.1}\right) $. Under the consideration of Eqs (20) and (30), we try to demonstrate the PFN from the group of PFNS given in Table 5, stated in Table 10.

    Table 10.  Expressions of the score values.
    Method CCPFWA CCPFWG
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-1} $ $ 0.2267 $ $ 0.2741 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-2} $ $ 0.2028 $ $ 0.2496 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-3} $ $ 0.3844 $ $ 0.4194 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-4} $ $ 0.1766 $ $ 0.2029 $
    $ {\mathcal{C}\mathfrak{f}}_{\bf{a}\bf{l}-5} $ $ 0.2605 $ $ 0.2814 $

     | Show Table
    DownLoad: CSV

    Explore some order in the shape of ranking values based on score values, conferred in Table 11. Moreover, Figure 5 stated the practicality of the data in Table 10.

    Table 11.  Expressions of ranking values.
    Method Ranking values
    CCPFWA $ {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-5}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4} $
    CCPFWG $ {\mathcal{C}\mathfrak{f}}_{al-3}\ge {\mathcal{C}\mathfrak{f}}_{al-5}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4} $

     | Show Table
    DownLoad: CSV
    Figure 5.  The practicality of the data in Table 10.

    Elaborate the beneficial optimal, which is $ {\mathcal{C}\mathfrak{f}}_{\mathit{a}\mathit{l}-3} $.

    Achievement without complication is very difficult due to ambiguity and rationality which is involved in genuine life dilemmas. MADM technique is one of the beneficial ways to determine our goal. The key technique of our works is to demonstrate the supremacy and effectiveness of the invented works. For this, several suggested works are discussed here: CLs for IFSs [50], CLs for PFSs [31], AOs for CIFSs [21], AOs for CPFSs [28], geometric AOs for IFSs [32], Hamacher AOs for IFSs [33], AOs for PFSs [41], Heronian AOs for IFSs [45], Bonferroni AOs for PFSs [46], and with several invented works are diagnosed in Table 12, under the consideration of data in Example 1. For more convenience, we illustrated Figure 6, which stated the invented works in Table 12.

    Table 12.  Stated the sensitivity analysis.
    Method Score values Ranking values
    Rahman et al. [50] Cannot be calculated Cannot be calculated
    Garg [31] Cannot be calculated Cannot be calculated
    Garg and Rani [21] Cannot be calculated Cannot be calculated
    Akram et al. [28] $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=-0.0450, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.0506, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=-0.0044, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.0144 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    Wang and Liu [32] Cannot be calculated Cannot be calculated
    Huang [33] Cannot be calculated Cannot be calculated
    Peng and Yuan [41] Cannot be calculated Cannot be calculated
    Li and Wei [45] Cannot be calculated Cannot be calculated
    Liang et al. [46] Cannot be calculated Cannot be calculated
    CCPFWA $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=-0.0672, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.2728, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=-0.1288, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.0199 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $
    CCPFWG $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-1}\right)=0.1895, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-2}\right)=0.6089, $
    $ {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-3}\right)=0.1288, {\mathcal{S}}_{sv}\left({\mathcal{C}\mathfrak{f}}_{cp-4}\right)=0.1986 $
    $ {\mathcal{C}\mathfrak{f}}_{al-2}\ge {\mathcal{C}\mathfrak{f}}_{al-4}\ge {\mathcal{C}\mathfrak{f}}_{al-1}\ge {\mathcal{C}\mathfrak{f}}_{al-3} $

     | Show Table
    DownLoad: CSV
    Figure 6.  The practicality of the data is in Table 12.

    For more convenience, we illustrated Figure 7, which stated the invented works in Table 13.

    Figure 7.  The practicality of the data is in Table 13.
    Table 13.  Stated the sensitivity analysis.
    Method Score Values Ranking Values
    Rahman et al. [50] Cannot be calculated Cannot be calculated
    Garg [31] Cannot be calculated Cannot be calculated
    Garg and Rani [21] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3043, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2122, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.1604, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.101 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.0724 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    Akram et al. [28] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.5165, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4344, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.3826, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.313 $ 1
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.1946 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    Wang and Liu [32] Cannot be calculated Cannot be calculated
    Huang [33] Cannot be calculated Cannot be calculated
    Peng and Yuan [41] Cannot be calculated Cannot be calculated
    Li and Wei [45] Cannot be calculated Cannot be calculated
    Liang et al. [46] Cannot be calculated Cannot be calculated
    CCPFWA $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.4054, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.3233, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.2715, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.202 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=-0.0835 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $
    CCPFWG $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3517, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4243, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.422, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2089 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.0026 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5} $

     | Show Table
    DownLoad: CSV

    Under the data in Table 2 from [17], several analyses are diagnosed in Table 13.

    Under the data in Table 5 from [27], several analyses are diagnosed in Table 14.

    Table 14.  Stated the sensitivity analysis.
    Method Score values Ranking values
    Rahman et al. [50] cannot be calculated cannot be calculated
    Garg [31] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.1156, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.1017, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.2733, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.0655 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.1504 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Garg and Rani [21] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.3367, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.3128, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.4944, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2866 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.3705 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Akram et al. [28] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.4467, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4228, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.5944, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.3966 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.4805 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Wang and Liu [32] cannot be calculated cannot be calculated
    Huang [33] cannot be calculated cannot be calculated
    Peng and Yuan [41] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.6452, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.5817, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.7562, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.4127 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.6677 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Li and Wei [45] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.5561, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.4926, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.6671, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.3236 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.5786 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    Liang et al. [46] $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.7361, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.6726, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.8471, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.5036 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.7586 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    CCPFWA $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.2267, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2028, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.3844, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.1766 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.2605 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $
    CCPFWG $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-1}\right)=0.2741, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-2}\right)=0.2496, $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-3}\right)=0.4194, {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-4}\right)=0.2029 $
    $ {\mathcal{S}}_{\mathrm{s}\mathrm{v}}\left({\mathcal{C}\mathfrak{f}}_{\mathrm{c}\mathrm{p}-5}\right)=0.2814 $
    $ {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-3}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-5}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-1}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-2}\ge {\mathcal{C}\mathfrak{f}}_{\mathrm{a}\mathrm{l}-4} $

     | Show Table
    DownLoad: CSV

    For more convenience, we illustrated Figure 8, which stated the invented works in Table 14.

    Figure 8.  The practicality of the data is in Table 14.

    After a long discussion, we have gotten the result that the invented works are massive feasible, and accurate to demonstrate the value of objects appropriately. Therefore, the invented works under the CPFSs are extensively reliable, and more consistent is compared to existing operators [21,28,31,32,33,41,45,46,50] and in future we will extend to compare with some new works which are discussed in [42,43,44,47,48,49].

    Ambiguity and uncertainty have been involved in several genuine life dilemmas, MADM technique is the most influential part of the decision-making technique to handle inconsistent data which occurred in many scenarios. The major construction of this works is exemplified in the succeeding ways:

    1) We analyzed some new operational laws based on CLs for the CPF setting.

    2) We demonstrated the closeness between a finite number of alternatives, the conception of CCPFWA, CCPFOWA, CCPFWG, and CCPFOWG operators are invented.

    3) Several significant features of the invented works are also diagnosed.

    4) We investigated the beneficial optimal from a large number of alternatives, a MADM analysis is analyzed based on CPF data.

    5) A lot of examples are demonstrated based on invented works to evaluate the supremacy and ability of the initiated works.

    6) For massive convenience, the sensitivity analysis and merits of the identified works are also explored with the help of comparative analysis and they're graphical shown.

    In the upcoming times, we will outspread the idea of complex q-rung orthopair FSs [51,52], complex spherical FSs [53,54], and Spherical fuzzy sets [55,56], etc. to advance the quality of the research works.

    The authors declare that they have no conflicts of interest about the publication of the research article.

    This research was supported by the Researchers Supporting Project number (RSP-2021/244), King Saud University, Riyadh, Saudi Arabia.

    [1] Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2: a000596.
    [2] Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160: 1049–1059. doi: 10.1016/j.cell.2015.02.040
    [3] Miné-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14: 510–517. doi: 10.1038/ncb2472
    [4] Khurana S, Kruhlak MJ, Kim J, et al. (2014) A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep 8: 1049–1062. doi: 10.1016/j.celrep.2014.07.024
    [5] Robinson PJJ, Fairall L, Huynh VAT, et al. (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 103: 6506–6511. doi: 10.1073/pnas.0601212103
    [6] Schalch T, Duda S, Sargent DF, et al. (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436: 138–141. doi: 10.1038/nature03686
    [7] Joti Y, Hikima T, Nishino, et al. (2012) Chromosomes without a 30-nm chromatin fiber. Nucl Austin Tex 3: 404–410.
    [8] Fussner E, Ahmed K, Dehghani, et al. (2010) Changes in chromatin fiber density as a marker for pluripotency. Cold Spring Harb Symp Quant. Biol 75: 245–249. doi: 10.1101/sqb.2010.75.012
    [9] Yokota H, van den Engh G, Hearst JE, et al. (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130: 1239–1249. doi: 10.1083/jcb.130.6.1239
    [10] Petrascheck M, Escher D, Mahmoudi T et al. (2005) DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Res. 33: 3743–3750. doi: 10.1093/nar/gki689
    [11] Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16: 245–257.
    [12] Dixon JR, Selvaraj S, Yue F, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376–380. doi: 10.1038/nature11082
    [13] Nora EP, Lajoie BR, Schulz EG, et al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485: 381–385. doi: 10.1038/nature11049
    [14] Sexton T, Yaffe E, Kenigsberg E, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148: 458–472. doi: 10.1016/j.cell.2012.01.010
    [15] Lieberman-Aiden E, van Berkum NL, Williams L, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289–293. doi: 10.1126/science.1181369
    [16] Bolzer A, Kreth G, Solovei I, et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157. doi: 10.1371/journal.pbio.0030157
    [17] Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2: a003889.
    [18] Kinney NA, Onufriev AV, Sharakhov IV (2015) Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes. Nucl Austin Tex 6: 212–224.
    [19] Heun P, Laroche T, Shimada K, et al. (2001) Chromosome dynamics in the yeast interphase nucleus. Science 294: 2181–2186. doi: 10.1126/science.1065366
    [20] Levi V, Ruan Q, Plutz M, et al. (2005) Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 89: 4275–4285. doi: 10.1529/biophysj.105.066670
    [21] Hubner M, Spector D (2010) Chromatin Dynamics. Annu Rev Biophys 39: 471–489.
    [22] Javer A, Long Z, Nugent E, et al. (2013) Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun. 4: 3003.
    [23] Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49: 773–782. doi: 10.1016/j.molcel.2013.02.011
    [24] Weber SC, Spakowitz AJ, Theriot JA (2012) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci U S A 109: 7338–7343. doi: 10.1073/pnas.1119505109
    [25] Pliss A, Malyavantham KS, Bhattacharya S, et al. (2013) Chromatin dynamics in living cells: identification of oscillatory motion. J Cell Physiol 228, 609–616.
    [26] Gerlich D, Beaudouin J, Kalbfuss B, et al. (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112: 751–764. doi: 10.1016/S0092-8674(03)00189-2
    [27] Walter J, Schermelleh L, Cremer M, et al. (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160: 685–697. doi: 10.1083/jcb.200211103
    [28] Müller I, Boyle S, Singer RH, et al. (2010) Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PloS One 5: e11560. doi: 10.1371/journal.pone.0011560
    [29] Kruhlak MJ, Celeste A, Dellaire G, et al. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172: 823–834. doi: 10.1083/jcb.200510015
    [30] Zink D, Cremer T, Saffrich R, et al. (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102: 241–251. doi: 10.1007/s004390050686
    [31] Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140: 1285–1295. doi: 10.1083/jcb.140.6.1285
    [32] Robinett CC, Straight A, Li G, et al. (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135: 1685–1700. doi: 10.1083/jcb.135.6.1685
    [33] Jacome A, Fernandez-Capetillo O (2011) Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep 12: 1032–1038. doi: 10.1038/embor.2011.158
    [34] Dubarry M, Loïodice I, Chen CL, et al. (2011) Tight protein-DNA interactions favor gene silencing. Genes Dev 25: 1365–1370. doi: 10.1101/gad.611011
    [35] Saad H, Gallardo F, Dalvai M, et al. (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet 10: e1004187. doi: 10.1371/journal.pgen.1004187
    [36] Chen B, Gilbert LA, Cimini BA, et al. (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–1491. doi: 10.1016/j.cell.2013.12.001
    [37] Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20: 1321–1324. doi: 10.1038/nsmb.2680
    [38] Zidovska A, Weitz DA, Mitchison TJ (2013) Micron-scale coherence in interphase chromatin dynamics. Proc Natl Acad Sci U S A 110: 15555–15560. doi: 10.1073/pnas.1220313110
    [39] Hinde E, Kong X, Yokomori K, et al. (2014) Chromatin dynamics during DNA repair revealed by pair correlation analysis of molecular flow in the nucleus. Biophys J 107: 55–65. doi: 10.1016/j.bpj.2014.05.027
    [40] Marshall WF, Straight A, Marko JF, et al. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol CB 7: 930–939. doi: 10.1016/S0960-9822(06)00412-X
    [41] Bornfleth H, Edelmann P, Zink D, et al. (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77: 2871–2886. doi: 10.1016/S0006-3495(99)77119-5
    [42] Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60: 910–921.
    [43] Rosa A, Everaers R (2008) Structure and dynamics of interphase chromosomes. PLoS Comput Biol 4: e1000153. doi: 10.1371/journal.pcbi.1000153
    [44] Hajjoul H, Mathon J, Ranchon H, et al. (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23: 1829–1838.
    [45] Havlin S, Ben-Avraham D (2002) Diffusion in disordered media. Adv Phys 51: 187–292. doi: 10.1080/00018730110116353
    [46] Doi M (1996) Introduction to polymer physics Oxford University Press.
    [47] Bronstein I, Israel Y, Kepten E, et al. (2009) Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett 103: 018102. doi: 10.1103/PhysRevLett.103.018102
    [48] Dion V, Kalck V, Seeber A, et al. (2013) Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep 14: 984–991. doi: 10.1038/embor.2013.142
    [49] Gartenberg MR, Neumann FR, Laroche T, et al. (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119: 955–967. doi: 10.1016/j.cell.2004.11.008
    [50] Hu Y, Kireev I, Plutz M, et al. (2009) Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J Cell Biol 185: 87–100. doi: 10.1083/jcb.200809196
    [51] Neumann FR, Dion V, Gehlen LR, et al. (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 26: 369–383. doi: 10.1101/gad.176156.111
    [52] Chuang C-H, Carpenter AE, Fuchsova B, et al. (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16: 825–831.
    [53] Khanna N, Hu Y, Belmont AS (2014) HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol 24: 1138–1144.
    [54] Chubb JR, Boyle S, Perry P, et al. (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445.
    [55] Lucas JS, Zhang Y, Dudko OK, et al. (2014) 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158: 339–352. doi: 10.1016/j.cell.2014.05.036
    [56] Daley JM, Gaines WA, Kwon Y, et al. (2014) Regulation of DNA pairing in homologous recombination. Cold Spring Harb Perspect Biol 6: a017954. doi: 10.1101/cshperspect.a017954
    [57] Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79: 181–211. doi: 10.1146/annurev.biochem.052308.093131
    [58] Sonoda E, Hochegger H, Saberi A, et al. (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5: 1021–1029. doi: 10.1016/j.dnarep.2006.05.022
    [59] Dion V, Kalck V, Horigome C, et al. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14: 502–509. doi: 10.1038/ncb2465
    [60] Seeber A, Dion V, Gasser SM (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27: 1999–2008. doi: 10.1101/gad.222992.113
    [61] Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5: 572–577. doi: 10.1038/ncb997
    [62] Nagai S, Dubrana K, Tsai-Pflugfelder M, et al. (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322: 597–602. doi: 10.1126/science.1162790
    [63] Kalocsay M, Hiller NJ, Jentsch S (2009) Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 33: 335–343.
    [64] Krawczyk PM, Borovski T, Stap J, et al. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci 125: 2127–2133. doi: 10.1242/jcs.089847
    [65] Aten JA, Stap J, Krawczyk PM, et al. (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303: 92–95. doi: 10.1126/science.1088845
    [66] Dimitrova N, Chen Y-CM, Spector DL, et al. (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456: 524–528. doi: 10.1038/nature07433
    [67] Jakob B, Splinter J, Conrad S, et al. (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39: 6489–6499. doi: 10.1093/nar/gkr230
    [68] Ježková L, Falk M, Falková I, et al. (2014) Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot Data Instrum Methods Use Agric Ind Med 83: 128–136.
    [69] Chiolo I, Minoda A, Colmenares SU, et al. (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144: 732–744. doi: 10.1016/j.cell.2011.02.012
    [70] Nelms BE, Maser RS, MacKay JF, et al. (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280: 590–592. doi: 10.1126/science.280.5363.590
    [71] Jakob B, Splinter J, Durante M, et al. (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 106: 3172–3177. doi: 10.1073/pnas.0810987106
    [72] Soutoglou E, Dorn JF, Sengupta K, et al. (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9: 675–682. doi: 10.1038/ncb1591
    [73] Roukos V, Voss TC, Schmidt CK, et al. (2013) Spatial dynamics of chromosome translocations in living cells. Science 341: 660–664. doi: 10.1126/science.1237150
    [74] Smerdon MJ, Lieberman MW (1978) Nucleosome rearrangement in human chromatin during UV-induced DNA- reapir synthesis. Proc Natl Acad Sci U S A 75: 4238–4241. doi: 10.1073/pnas.75.9.4238
    [75] Ziv Y, Bielopolski D, Galanty Y, et al. (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8: 870–876. doi: 10.1038/ncb1446
    [76] Burgess RC, Burman B, Kruhlak MJ, et al. (2014) Activation of DNA damage response signaling by condensed chromatin. Cell Rep 9: 1703–1717. doi: 10.1016/j.celrep.2014.10.060
    [77] Smeenk G, Wiegant WW, Marteijn JA, et al. (2013) Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci 126: 889–903. doi: 10.1242/jcs.109413
    [78] Baldeyron C, Soria G, Roche D, et al. (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193: 81–95. doi: 10.1083/jcb.201101030
    [79] Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, et al. (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 111: 9169–9174. doi: 10.1073/pnas.1403565111
    [80] Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34: 23–30. doi: 10.1016/j.ceb.2015.04.003
    [81] Chubb JR, Bickmore WA (2003) Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112: 403–406. doi: 10.1016/S0092-8674(03)00078-3
    [82] Lemaître C, Soutoglou E (2015) DSB (Im)mobility and DNA repair compartmentalization in mammalian cells. J Mol Biol 427: 652–658. doi: 10.1016/j.jmb.2014.11.014
    [83] Klein IA, Resch W, Jankovic M, et al. (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147: 95–106. doi: 10.1016/j.cell.2011.07.048
    [84] Murr R, Loizou JI, Yang Y-G, et al. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 8: 91–99. doi: 10.1038/ncb1343
    [85] Verschure PJ, van der Kraan I, Manders EMM, et al. (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4: 861–866. doi: 10.1038/sj.embor.embor922
    [86] Bancaud A, Huet S, Daigle N, et al. (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28: 3785–3798. doi: 10.1038/emboj.2009.340
    [87] Dinant C, de Jager M, Essers J, et al. (2007) Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 120: 2731–2740. doi: 10.1242/jcs.004523
    [88] Kong X, Mohanty SK, Stephens J, et al. (2009) Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res 37: e68. doi: 10.1093/nar/gkp221
    [89] Gilbert N, Allan J (2014) Supercoiling in DNA and chromatin. Curr Opin Genet Dev 25: 15–21. doi: 10.1016/j.gde.2013.10.013
    [90] Elbel T, Langowski J (2015) The effect of DNA supercoiling on nucleosome structure and stability. J Phys Condens Matter Inst Phys J 27: 064105. doi: 10.1088/0953-8984/27/6/064105
    [91] Polo SE (2015) Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 427: 626–636. doi: 10.1016/j.jmb.2014.05.025
    [92] Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001–1004. doi: 10.1038/35050000
    [93] Heo K, Kim H, Choi SH, et al. (2008) FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 30: 86–97. doi: 10.1016/j.molcel.2008.02.029
    [94] Li A, Yu Y, Lee S-C, et al. (2010) Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J Biol Chem 285: 17778–17788.
    [95] Golia B, Singh HR, Timinszky G (2015) Poly-ADP-ribosylation signaling during DNA damage repair. Front Biosci Landmark Ed 20: 440–457. doi: 10.2741/4318
    [96] Poirier GG, de Murcia G, Jongstra-Bilen J, et al. (1982) Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci U S A 79: 3423–3427. doi: 10.1073/pnas.79.11.3423
    [97] de Murcia G, Huletsky A, Lamarre D, et al. (1986) Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem 261: 7011–7017.
    [98] Xu Y, Ayrapetov MK, Xu C, et al. (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48: 723–733.
    [99] Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78: 273–304. doi: 10.1146/annurev.biochem.77.062706.153223
    [100] Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81: 2378–2388. doi: 10.1016/S0006-3495(01)75884-5
    [101] Wombacher R, Heidbreder M, van de Linde S, et al. (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7: 717–719. doi: 10.1038/nmeth.1489
    [102] Benke A, Manley S (2012) Live-cell dSTORM of cellular DNA based on direct DNA labeling. Chembiochem Eur J Chem Biol 13: 298–301. doi: 10.1002/cbic.201100679
    [103] Hihara S, Pack C-G, Kaizu K, et al. (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2: 1645–1656. doi: 10.1016/j.celrep.2012.11.008
    [104] Récamier V, Izeddin I, Bosanac L, et al. (2014) Single cell correlation fractal dimension of chromatin: a framework to interpret 3D single molecule super-resolution. Nucl Austin Tex 5: 75–84.
    [105] Ricci MA, Manzo C, García-Parajo MF, et al. (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160: 1145–1158. doi: 10.1016/j.cell.2015.01.054
    [106] Zhang Y, Máté G, Müller P, et al. (2015) Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory. PloS One 10: e0128555. doi: 10.1371/journal.pone.0128555
    [107] Llères D, James J, Swift S, et al. (2009) Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J Cell Biol 187: 481–496. doi: 10.1083/jcb.200907029
    [108] Emanuel M, Radja NH, Henriksson A, et al. (2009) The physics behind the larger scale organization of DNA in eukaryotes. Phys Biol 6: 025008. doi: 10.1088/1478-3975/6/2/025008
    [109] Rouse P (1953) A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. J Chem Phys 21: 1272–1280. doi: 10.1063/1.1699180
    [110] Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104: 238102. doi: 10.1103/PhysRevLett.104.238102
    [111] Metzler R, Jeon J-H, Cherstvy AG, et al. (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16: 24128–24164.
    [112] Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol 19: 37–51.
    [113] Huet S, Lavelle C, Ranchon H, et al. (2014) Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture. Int Rev Cell Mol Biol 307: 443–479. doi: 10.1016/B978-0-12-800046-5.00013-8
    [114] Barbieri M, Chotalia M, Fraser J, et al. (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 109: 16173–16178. doi: 10.1073/pnas.1204799109
    [115] Mateos-Langerak J, Bohn M, de Leeuw W, et al. (2009) Spatially confined folding of chromatin in the interphase nucleus. Proc Natl Acad Sci U S A 106: 3812–3817. doi: 10.1073/pnas.0809501106
    [116] Bohn M, Heermann DW (2010) Diffusion-driven looping provides a consistent framework for chromatin organization. PloS One 5: e12218. doi: 10.1371/journal.pone.0012218
    [117] Jerabek H, Heermann DW (2014) How chromatin looping and nuclear envelope attachment affect genome organization in eukaryotic cell nuclei. Int Rev Cell Mol Biol 307: 351–381. doi: 10.1016/B978-0-12-800046-5.00010-2
    [118] Cook PR, Marenduzzo D (2009) Entropic organization of interphase chromosomes. J Cell Biol 186: 825–834.
    [119] Bohn M, Heermann DW (2011) Repulsive forces between looping chromosomes induce entropy-driven segregation. PloS One 6: e14428. doi: 10.1371/journal.pone.0014428
    [120] Jost D, Carrivain P, Cavalli G, et al. (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42: 9553–9561. doi: 10.1093/nar/gku698
    [121] Finan K, Cook PR, Marenduzzo D (2011) Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol 19: 53–61. doi: 10.1007/s10577-010-9150-y
    [122] Zhang B, Wolynes PG (2015) Topology, structures, and energy landscapes of human chromosomes. Proc Natl. Acad Sci U S A 112: 6062–6067. doi: 10.1073/pnas.1506257112
  • This article has been cited by:

    1. Janani Selvam, Ashok Vajravelu, Sasitharan Nagapan, Bala Kumaran Arumugham, Analyzing the Flexural Performance of Cold-Formed Steel Sigma Section Using ABAQUS Software, 2023, 15, 2071-1050, 4085, 10.3390/su15054085
    2. Aleksandra M. Pawlak, Piotr Paczos, Michał Grenda, Tomasz A. Górny, Marcin Rodak, Mathematical and numerical analysis of local buckling thin-walled beams with non-standard cross-sections, 2025, 313, 00457949, 107752, 10.1016/j.compstruc.2025.107752
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8955) PDF downloads(1715) Cited by(12)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog