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Abstract: Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates 
the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions 
using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review 
the recent progresses in the understanding of the interplay between chromatin architecture and DNA 
repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation 
of the DNA repair machinery is associated with major changes in the compaction state and the 
mobility of chromatin. We discuss the functional consequences of these changes in yeast and 
mammals in the light of the different repair pathways utilized by these organisms. In the final section 
of this review, we show how future developments in high-resolution light microscopy and chromatin 
modelling by polymer physics should contribute to a better understanding of the relationship between 
the structural changes in chromatin and the activity of the repair processes. 
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1. Introduction  

Chromatin, one of the most complex supramolecular structures in the cell, displays several 
organizational levels spanning over four orders of magnitudes in size from the 2-nm diameter of the 
DNA double helix to the few tens of micrometers of chromosome territories in the nucleus [1]. This 
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packing state of chromatin is thought to influence all cellular functions acting on DNA. For example, 
even though the causal link between these two processes remains unclear, the modulation of 
transcription is associated with major changes in the chromatin organization [2]. While we have a 
relatively good understanding of nucleosome structure and function and that of the chromosome 
territories, the multiple organizational levels between these two extreme structures remain poorly 
understood and are the subject of intense research. 

In the present review, we will focus on the interplay between chromatin and DNA repair, which 
has been receiving growing attention over the last years. Recent studies have shown that major 
chromatin remodeling events occur in the vicinity of DNA lesions [3,4]. However, it is still largely 
unknown whether these remodeling events are a mere consequence of the repair processes or play an 
active role in the resolution of DNA breaks. We will first review our current knowledge about 
chromatin structure and dynamics in the absence of DNA damage and in response to the induction of 
such damage. Second, we will examine the potential functional roles of chromatin dynamics during 
the DNA repair processes. Finally, we will speculate on how recent chromatin polymer models 
combined with high-resolution spatio-temporal data could help to bridge the gap between the 
modifications of the internal organization of the chromatin fiber induced by the DNA repair 
machinery and the changes in chromatin dynamics assessed by light microscopy.  

2. The Organizational Levels of Chromatin: from the Nucleosome to Chromosome Territories 

Similar to proteins, chromatin displays a hierarchical organization [2]. The primary structure 
encompasses the nucleosome architecture and the internal packing of the chromatin fiber, meaning 
the spatial distribution of the nucleosomes along this fiber. For many years, the classical view has 
been that the beads-on-a-string fiber composed of nucleosomes alternating with linker DNA 
spontaneously folds into a thicker 30-nm fiber [5,6]. However, the existence of this folding level was 
recently questioned by several studies that failed to identify the 30-nm fiber in the interphase nucleus 
using different high resolution imaging methods [7,8]. More recently, data obtained in yeast with a 
new chromosome conformation capture approach leading to mono-nucleosome resolution [9] 
suggested the existence of small compact tetranucleosome structures similar to those previously 
observed in-vitro [6], but did not demonstrate the presence of longer regular 30-nm fibers. 

The secondary structuring level of the chromatin fiber relies on the formation of loops due to 
long-distance interactions along this fiber. Although the existence of chromatin loops of kilobase-to-
megabase sizes has been widely documented [9,10], their distribution along the fiber and their 
stability remain debated [11]. These loops may be the elementary component of a recently identified 
structural unit: the topologically associated domains (TADs) [12,13,14], which correspond to 
compact structures encompassing ~1Mb of DNA and characterized by a high probability of contacts 
along the chromatin fiber.  

Finally, the ternary structure of the chromatin corresponds to the spatial distributions of the 
TADs and, at larger scales, of the whole chromosomes, within the nucleus. The TADs associate to 
form larger compartments sharing similar features, such as an opened chromatin state or a defined 
gene density [15], reminiscent of the original definition of euchromatin and heterochromatin areas. 
Studies analyzing the spatial distributions of whole chromosomes showed that they were not 
widespread over the nuclear volume but occupy compact and largely mutually exclusive areas called 
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chromosome territories [16,17]. The positioning of these territories in the nucleus is not random and 
is probably partially defined by interactions with the inner nuclear membranes [18]. 

So far, we only described a snapshot of chromatin architecture. However, several studies have 
reported rapid chromatin motions at scales up to ~1 µm [19–22], which would suggest that chromatin 
architecture is highly dynamic at all the organizational levels below chromosome territories [23]. 
These local chromatin motions probably originate both from passive thermal fluctuations and active 
remodeling mechanisms but the relative contributions of each component is still a subject of 
investigations [24,25]. 

3. Current Methodologies Available to Analyze Chromatin Dynamics 

Chromatin dynamics in the living interphase nucleus can be directly analyzed at multiple scales 
in space and time using different fluorescence-based imaging methods. The main difference between 
these approaches resides in the size of the assessed chromatin area. The movements of chromosome 
territories within the nucleus can be followed by confocal microscopy using fluorescently tagged 
histones [26,27]. Single chromosomes or sub-chromosomal areas can be identified by local 
photobleaching or photoactivation of the fluorescent proteins [28]. This approach can also be used to 
characterize chromatin compaction, in the context of the DNA damage response [29]. The minimal 
chromatin area that can be studied with this approach is defined by the size of the laser spot used to 
photobleach or photoconvert the tagged histones, which probably encompasses several Mb of DNA 
wrapped around thousands of nucleosomes. 

To study the dynamics of smaller chromatin areas, DNA can be directly labeled by the 
incorporation of fluorescent nucleotides during replication [30]. The labeled areas thus correspond to 
replication foci that contain ~0.8Mb of DNA [31]. Another common labeling approach uses repeated 
bacterial sequences, such as the Lac or the Tet operator, integrated into the genome. The binding of 
the associated repressor proteins tagged by fluorescent dyes to this DNA stretch, whose size is 
approximately 100 kb, generates a fluorescent spot whose trajectory can be followed under the 
microscope [32]. Although this strategy has demonstrated its usefulness in analyzing chromatin 
motion (see below), it is known to suffer from several pitfalls. For instance, the integration of these 
DNA arrays containing a large number of repeated sequences tightly bound to repressor proteins 
induce the formation of fragile sites and the transcriptional silencing of the surrounding  
genes [33,34]. Interestingly, it was recently reported that shorter DNA recognition sequences of only 
one kilobase can be used to assess chromatin motions [35]. Moreover, the newly developed tools for 
genome editing such as the TALEs or CRISPR/Cas systems can also be applied to fluorescently tag 
short target DNA sequences in living cells [36,37]. These new approaches would allow not only to 
solve the issues related to the repetitive nature of the Lac or Tet arrays but also to follow the 
dynamics of smaller chromatin regions. The different methods mentioned so far to assess chromatin 
dynamics were based on the local labeling of predefined chromatin regions. An alternative is to label 
uniformly the chromatin, using for example fluorescently tagged core histones, and to use image 
correlation methods to characterize the local chromatin movements [38,39]. 
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4. Chromatin Dynamics in the Absence of DNA Damage 

Although the global architecture of chromatin is stable during interphase [26,27], local 
movements with amplitudes of 0.3 to 1 µm have been reported in multiple organisms: bacteria [22], 
yeast [19] and higher eukaryotes [40,41]. Most of the reports studying chromatin motion are based 
on the analysis of the mean squared displacement (MSD) curves calculated from the tracks of 
fluorescently labeled chromatin foci [42]. Diffusion coefficients derived from these MSDs range 
between 10−5 and 10−3 µm2/s [40,41]. By comparison, the diffusion coefficient of a 30 kD globular 
protein in mammalian nuclei is several magnitudes higher, 10–40 µm2/s. Interestingly, chromatin 
mobility is usually higher in yeast than in mammals, maybe due to the fact that mammalian 
chromosomes are longer than the yeast ones and thus more difficult to move [43]. The analysis of the 
MSD curves also indicates that chromatin dynamics do not correspond to pure diffusion but rather to 
anomalous diffusion or subdiffusion [44] (Figure 1). Such diffusion patterns arise either when 
molecules diffuse in complex heterogeneous media [45] or when studying thermal fluctuations 
within a polymer [46], both of which could explain the observed chromatin dynamics. Interestingly, 
the subdiffusive motion of the chromatin seems homogeneous within a large range of timescale from 
10−2 to 102 s [44,47], suggesting that the components responsible for these chromatin motions act at 
multiple timescales. In rare cases, transient directional chromatin movements have been also  
reported [20]. 

 

Figure 1. (A) Nucleus of a U2OS cell with its DNA labeled using fluorescent 
nucleotides. Bar = 5µm. The inset shows examples of trajectories displayed by the 
labeled chromatin foci. The trajectories were recorded for 30s at 2 frames per 
second. (B) Curves of the mean square displacement (MSD) calculated from the 
trajectories of the labeled foci. Each curve corresponds to the averaged chromatin 
dynamics within one nucleus (21 nuclei, 40 to 180 track per nucleus). The fact that 
the curves show a slope of ~0.5 in the log-log representation indicates that the 
chromatin dynamics is subdiffusive at the studied timescales. 

Although contradictory results have been reported [25,40], several studies indicate that local 
chromatin motions are principally due to ATP-dependent processes rather than thermal  
fluctuations [19,24,38]. Multiple active processes are probably responsible for chromatin dynamics. 
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While the influence of the DNA replication status is unclear [19,25,48], modulations of transcription 
levels correlate with changes in chromatin motions [49,50]. In this context, the ATP-dependent 
chromatin remodeler INO80 is an important regulator of chromatin dynamics [51]. In the case of 
directed motion related to transcription activation, the involvement of actin dependent transport has 
been reported [52,53]. Besides these active processes directly acting on chromatin, the nuclear 
environment surrounding chromatin also influences its movements. The tethering of chromatin to 
stable nuclear structures such as the lamina or the nucleoli reduces chromatin motions [54]. 
Moreover, a recent report revealed that the viscoelastic properties of the complex and heterogeneous 
nuclear environment also modulate chromatin dynamics [55]. 

5. Chromatin Dynamics upon DNA Damage 

Chromatin dynamics in the context of DNA repair mechanisms has been mainly analyzed for 
the most deleterious form of DNA damage: double strand breaks (DSBs). Eukaryotic organisms 
activate two main mechanisms to repair DSBs (Figure 2): homologous recombination (HR) and non-
homologous end joining (NHEJ). HR requires the pairing between the broken DNA and an intact 
homologous sequence, which is used as a template for the faithful repair [56]. Instead, NHEJ directly 
religates the broken ends without the need for an intact template, making this type of repair more 
error-prone [57]. The changes in chromatin architecture associated with the activation of these DSB 
repair pathways have been studied mostly in yeast and mammalian nuclei. While chromatin 
dynamics is in the same range in yeast and mammals in the absence of DNA damage, the induction 
of DSBs is associated with a very different response of the chromatin architecture in the two model 
systems. This observation may be related to the fact that HR is the major DSB repair pathway in 
yeast while NHEJ dominates in differentiated mammalian cell lines [58]. 

5.1. The yeast paradigm 

In yeast, chromatin dynamics was assessed by tracking fluorescently labeled chromosomal loci 
during two different steps of the DSB repair by HR: the early resection process and the later 
homologous pairing phase. During resection, a strong inhibition of the chromatin motions was 
observed [35]. Chromatin dynamics associated with homologous pairing was characterized mainly in 
terms of confinement radius, which corresponds to the size of the region explored by the tracked 
locus. The induction of DSBs by restriction enzymes or pharmacological treatment was associated 
with an expansion of the nuclear area explored by the mobile damaged locus, even if the amplitude 
of this expansion varies depending on the locus of interest and the ploidy of the cell [59,60]. 
Surprisingly, the induction of DNA damage not only affects the dynamics of the damaged site but 
also induces an overall increase of chromatin mobility in diploid cells [3]. The fact that this global 
effect was not observed in haploid cells under similar conditions [59] suggests that it only occurs 
when a damaged chromosome needs to explore the nucleus to find and pair with its homologue. It is 
also important to note that the modulation of chromatin movements at DNA breaks depends on the 
type of DNA damage since spontaneous breaks occurring during DNA replication display decreased 
mobility compared to undamaged DNA [48]. Several members of the DNA repair machinery are 
implicated in the modulation of the chromatin dynamics in relation to DNA damage: the 
recombinase protein Rad51, the ATR mediator Mec1 and the INO80 nucleosome remodeling 
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complex [59,60], but the exact mechanism by which these repair proteins regulate chromatin motions 
remains unknown. 

 

Figure 2. Schematic description of the two main pathways for repairing DNA 
double strand breaks. 

In addition to the increased chromatin mobility, several studies describe the clustering of 
multiple DSBs. Lisby et al. showed the co-localization of DNA lesions in foci containing the repair 
factor Rad52 suggesting that these multiple DSBs are driven to a shared location, the so-called 
“repair centers” or “repair factories” [61]. When no homology is found and DSBs persist, Rad51, a 
protein involved in homology pairing, remains on the broken DNA indicating persistent homology 
search which ultimately leads to the relocation of the DSBs to the nuclear periphery [62,63]. 
Altogether, the different data obtained in yeast thus suggest a global picture in which the 
enhancement of the mobility of DNA breaks is a key step for their efficient repair (Figure 3). 
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5.2. The mammalian paradigm 

While recent publications allowed us to draw a relatively clear picture of the modulation of 
chromatin dynamics in yeast upon induction of DSBs, the situation in mammalian nuclei appears 
much more complex. On the one hand, there are several findings similar to the yeast-like model in 
which damaged DNA gains mobility and, in some cases, relocates to repair-competent areas. After 
irradiation by α-particles, the damaged chromatin displays enhanced mobility compared to 
undamaged DNA [64] and tends to fuse into clusters [65]. Similarly increased dynamics was also 
found for uncapped telomeres, which can be recognized as DSBs [66]. Finally, damaged DNA in 
heterochromatin tends to move into euchromatin where γH2AX foci are formed, suggesting that this 
relocation step is necessary for proper signaling and repair [67,68]. This mechanism, which is also 
observed in Drosophila melanogaster [69], may limit the risk of deleterious chromosomal 
rearrangements within the highly repetitive heterochromatin. However, there are numerous reports 
that do not observe pronounced changes in chromatin mobility upon damage induced by γ or UV-
laser irradiation [29], X-ray irradiation [70], ion irradiation [71] or enzymatically-induced  
DSBs [72,73].  

Besides the analysis of chromatin movements, many publications also investigated the 
modulation of the chromatin compaction state at DNA breaks. Smerdon and Lieberman showed in 
1978 that UV-induced DNA damage gives rise to an increased sensitivity of chromatin to  
nucleases [74]. This higher accessibility at the nucleosomal level upon DNA damage is correlated 
with chromatin decondensation at the micrometer scales accessible by light microscopy [29,75], even 
though the causal link between these two remodeling events occurring at different scales is still 
unclear (Figure 3). Following this initial fast decondensation, the damaged chromatin area slowly 
recondenses [4], potentially reaching higher compaction levels than before damage induction [76]. 

Currently, we have no precise clue about the molecular mechanisms regulating chromatin 
packing upon DNA damage. Multiple proteins are recruited to the DNA breaks. Some of them, such 
as PARP1, promote chromatin decondensation [4,77], while others, such as HP1, induce the 
formation of a closed chromatin state [78,79]. It is unclear how the action of these proteins with 
opposite effects on chromatin packing is coordinated. Khurana and colleagues proposed that 
chromatin decondensation and compaction occur sequentially through a balance between the factors 
intervening in these two processes, this coordination being a key determinant of the choice of the 
repair pathway [4]. Alternatively, Hinde et al. suggested a model in which both chromatin expansion 
and compaction processes happen at the same time but in distinct regions of the chromatin in the 
vicinity of the DNA breaks [39]. 

6. Functional Roles of Chromatin Dynamics at the DNA Breaks 

The data reviewed so far identify major changes in both chromatin mobility and compaction 
state during the DNA damage response. In this section, we will investigate the functional roles of 
these chromatin-remodeling processes. 

Regarding the yeast model, it has been postulated that the increased mobility of DSBs may 
promote homology search, which is the limiting factor in HR (Figure 3). This is supported by the fact 
that the increased chromatin mobility upon DNA damage is absent in yeast depleted for proteins 
involved in homology search [59,60]. The increased chromatin movements may also promote the 
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merging of multiple DSBs in repair foci [61]. The formation of nuclear bodies is a classical cellular 
response to promote different functions due to the local accumulation of specific proteins [80].  

 

Figure 3. Schematic description of the changes in chromatin motions and 
compaction state observed at DNA breaks for yeast and mammals. 

In this context, the DSB clusters may constitute areas highly favorable for efficient repair. 
However, it is interesting to note that increased chromatin mobility at the DNA breaks is not 
generally observed in mammalian nuclei. Two reasons may explain these differences between yeast 
and mammals. The first is the amplitude of the nuclear movements relative to the size of the nucleus. 
In the yeast nucleus characterized by a 2 µm diameter, chromatin loci already explore a significant 
fraction, about 10–20 %, of the nuclear volume in the absence of DNA damage [81]. Following a 
modest increase in chromatin mobility, this value increases to ~50 % upon DNA damage [59], 
allowing the efficient search for the intact homologous sequence required in HR. In mammalian 
nuclei, the amplitude of chromatin motions in the absence of damage is in the same range than in 
yeast but the volume to explore is two orders of magnitude bigger. Consequently, the efficient 
exploration of the nucleus for homologous pairing would require a strong increase in chromatin 
movements, which may only be achieved by major unfolding of the chromatin fiber. Nevertheless, 
long-range chromatin displacements can occur in mammalian nuclei as observed in the case of 
transcriptional activation [52]. Thus, rather than the potential inefficiency of the nuclear exploration 
for homologous pairing, chromatin may not display increased mobility at DNA breaks in mammalian 
cells to limit the risk of deleterious chromosome translocations, which could ultimately lead to 
cancer development [51,73,82]. Indeed, a recent genome-wide analysis of chromosomal 
rearrangements in mammalian nuclei shows that the physical proximity to the DSB is a key 
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determinant in the probability of translocation events [83]. Altogether, the potentially inefficient and 
risky pairing step with the homologous chromosome required for HR in unreplicated genomes may 
explain why mammalian cells rather use NHEJ to repair DSBs in G1 and only switch to HR when a 
close-by sister chromatid is available. It remains however unclear why the risk of ectopic 
translocation inherent to HR might be more tolerable in unicellular organisms such as yeast than in 
multicellular higher eukaryotes. 

In addition to the modulation of chromatin movements, the activation of the DNA repair 
machinery is also associated with changes in chromatin compaction. It is assumed that chromatin 
decondensation following DNA damage is a necessary step and its impairment greatly inhibits the 
repair process [84]. A straightforward model is that chromatin decondensation facilitates DNA 
access to repair proteins (Figure 3) as illustrated by the hypersensitivity of the chromatin to nucleases 
at the DNA breaks. However, this simple model should be considered with caution because several 
studies reported that molecular tracers of sizes up to a few hundred kDa can easily diffuse through 
the nucleus and penetrate even the densely packed heterochromatin [85,86]. It was also proposed that 
the chromatin packing state may influence the way that proteins scan for binding sites, which 
correspond to DNA breaks in the case of repair proteins, along the chromatin fiber [86]. In addition, 
it was recently suggested that it is the over-compaction of chromatin at DNA breaks rather than its 
decondensation that may trigger the recruitment of some repair components [76]. The chromatin 
over-condensation or recondensation following DNA damage in association to the recruitment of 
heterochromatin proteins [4,76,79] may originate from the necessity to both inhibit transcription of 
the damaged DNA and keep the loose broken DNA ends in close proximity to facilitate repair.  

To reconcile these different and sometimes contradictory observations, we will require a better 
understanding of the types of DNA lesions created with the different DNA damaging  
methods [87,88]. Other parameters such as the differential activation of distinct DNA repair 
pathways depending on the cell type or the cell cycle, or the time-window at which the chromatin 
movements are assessed, must be also analyzed carefully. 

7. The Future Step: Relating the Changes in Chromatin Dynamics at DNA Breaks to the 
Activity of the DNA Repair Machinery 

The changes in the chromatin architecture at DNA breaks described in the previous sections 
may be the direct consequence of the modifications of the physical properties of the DNA polymer 
upon damage. DSBs occurring in particular in the linker DNA could dramatically destabilize the 
chromatin fiber. Single and double strand DNA breaks may also lead to a local release of topological 
constraints, a key component of the chromatin packing state [89,90]. However, the fact that the 
chromatin remodeling mechanisms observed at DNA breaks are inhibited when impairing specific 
DNA repair pathways [59,60,77] suggest that these remodeling mechanisms are not the mere 
physical consequences of breaks along the DNA but are rather driven by the activity of the DNA 
repair machinery.  

The DNA repair machinery directly acts on the chromatin fiber via three major mechanisms: i) 
nucleosome destabilization, ii) alteration of the nucleosome-nucleosome interactions within the fiber 
and iii) nucleosome repositioning [91]. These chromatin remodeling processes involve a complex 
choreography of molecular actors. The most canonical post-transcriptional modification found at 
DSBs is the phosphorylation of the H2AX histone variant, which is a major signal controlling the 
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recruitment of several members of the DNA repair machinery. It may also play a structural role by 
promoting chromatin relaxation [92] or nucleosome destabilization [93,94] at DNA breaks. The 
formation of negatively charged chains of poly-ADP-ribose, another post-transcriptional 
modification often found at DNA breaks [95], on the linker histone H1 is thought to induce the 
relaxation of the chromatin fiber due to the repulsion between the neighboring nucleosomes within 
the fiber [96,97]. The histone variant H2A.Z also appears as a key regulator of the nucleosome 
stability at DNA breaks [98]. Finally, multiple ATP-dependent chromatin remodeling enzymes are 
recruited at DNA damage sites. These enzymes are often part of multi-subunits complexes, fuelled 
by the energy provided by ATP hydrolysis to actively alter histone-DNA interactions leading to 
nucleosome sliding, eviction or histone exchange [99]. Altogether, these different molecular actors of 
the DNA repair machinery acting on the nucleosomes will have a major impact on the internal 
organization of the chromatin fiber, which we identified in the first section of this review as the 
primary structure of chromatin. It remains however largely unknown how these changes occurring on 
this primary structure will influence the higher hierarchical folding steps of the chromatin to 
ultimately lead to the modifications of the chromatin movements or compaction levels that were 
reviewed above .In the following, we will show how recent developments in high-resolution 
fluorescence microscopy and in the modeling of chromatin architecture by polymer physics may help 
in building an integrated description of the interplay between chromatin architecture and DNA repair 
mechanisms.  

Chromatin dynamics in living nuclei is usually studied by tracking diffraction-limited 
fluorescent spots corresponding to defined tagged chromatin areas. This approach allows to assess 
chromatin movements as small as a few tens of nanometer, well below the nominal spatial resolution 
of optical microscopy, provided that the signal-to-noise ratio (SNR) of the tracked spots is 
sufficiently high [100]. For many years, reaching high SNR required the labeling of chromatin 
regions containing about 0.1 to 1 Mb of DNA, thus preventing the direct characterization of the 
dynamics of the smaller structural units of chromatin [54]. The recent progress in single-molecule 
imaging abolished this limitation since single fluorescently labeled nucleosomes [101] or single dyes 
incorporated in the DNA [102] can be detected in living cells, allowing to follow their local 
movements [103]. When used in fixed samples for ultrastructure reconstruction, these single-
molecule imaging approaches also further our understanding of the fine-scale organization of 
chromatin [104,105,106]. These new methodologies will refine our description of the dynamic 
chromatin architecture in the absence of and following DNA breaks. To study the dynamic structural 
information of chromatin at an even smaller scale, the analysis of fluorescence resonance energy 
transfer (FRET) signals between fluorophores attached to chromatin components, such as histones, 
appears to be a promising method [107]. Because FRET is sensitive to variations of few nanometers 
in the distance between the two fluorophores, the recording of the variations of FRET signals upon 
DNA damage should help to identify subtle changes in the packing state of chromatin. 

Given the complexity of chromatin architecture and the diversity of experimental approaches to 
study chromatin structure and dynamics, the precise understanding of the interplay between the 
chromatin state and DNA repair mechanisms would clearly benefit from an integrated multiscale 
model describing the spatial organization of chromatin in the interphase nucleus. In 2009, Emanuel 
et al. made the provocative statement that, with the resolution of the experimental methods available 
at the time, any of the structural models could fit the data [108]. Nevertheless, since then, we gained 
significant quantitative understanding about the dynamic chromatin architecture. Based on these new 
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findings, different models have been proposed. A very simple polymer model was introduced by 
Rouse in 1953 [109]. The polymer is modeled as a chain of beads connected with springs and the 
contributions of volume exclusion and hydrodynamic interactions are neglected. Surprisingly, this 
model agrees very well with the experimental data describing chromatin movements in bacteria [110] 
and yeast [44]. Nevertheless, fitting these data with the Rouse model leads to an unrealistic highly 
flexible chromatin fiber with a persistence length of only few nanometer [44]. In addition, while the 
subdiffusive motion displayed by chromatin in bacteria and yeast appears homogeneous over the 
assessed timescales in agreement with the predictions of the Rouse model [44,110], the situation in 
mammalian nuclei is more complex with different subdiffusive regimes depending on the  
timescales [47]. These different results call for polymer models more complex than the Rouse chain 
to describe the subdiffusive chromatin movements [111]. 

In 2009, based on the spatial proximity maps obtained by Hi-C methods (high throughput 
sequencing combined to chromosome conformation capture), it was proposed that chromatin adopts 
a particular metastable compact configuration: the fractal globule [15,112]. Noteworthy, this fractal 
feature nicely agrees with data obtained using different methods [113]. Yet, this model suffers from 
several limitations. In particular, it fails to predict the compact structure of chromosome  
territories [114]. To obtain this compact configuration, multiple models have been proposed to take 
into account the formation of dynamic chromatin loops [114,115,116]. One interesting feature 
associated with the presence of loops is that they allow the generation of chromatin structures that 
agree with the fluorescence in-situ hybridization (FISH) data, while limiting the formation of knots, 
which are thought to be deleterious for the cells [117]. Despite not being a necessary condition [43], 
these loops may also contribute to the spontaneous unmixing of chromosomes, which could explain 
the existence of chromosome territories [118,119]. It remains, however, unclear whether the loop 
formation requires specific interactions along the chromatin fiber [114,120] or if non-specific, 
entropy driven, contacts are sufficient [121]. Very recently, Zhang et al. have used Hi-C contact 
maps to define an effective energy landscape for the chromatin fiber [122]. Based on this energy 
function, they could simulate chromatin architectures that recapitulate the formation of loops and 
their assembling into topologically associated domains. Besides the chromatin polymer itself, a 
global model should also include its surrounding heterogeneous environment. For example, the 
crowding induced by the numerous macromolecules (proteins, RNA...) diffusing through the nucleus 
seems to have a major impact on chromatin architecture [113]. 

8. Conclusion 

Even though if it is now clear that complex chromatin remodeling events occur at DNA breaks, 
we still have some difficulties to draw a clear picture of the interplay between the DNA repair 
processes and the dynamic chromatin architecture. Among others, two elements would help to make 
significant progress in this direction. First, we would need a global and integrated description of the 
chromatin architecture in the absence and upon DNA damage. Second, we should investigate more 
precisely the impact of the multiscale chromatin organization on the ability of DNA repair proteins 
navigating through the nucleus to find their target and bind to it. The recent technical breakthroughs 
achieved to investigate chromatin structure at high resolution and the development of complex 
polymer models of the chromatin will definitely help to answer these questions in the future. 
Altogether, we foresee that advances in the establishment of an integrated chromatin polymer model 
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together with the improving spatial and temporal resolution of the methods used to analyze 
chromatin architecture should greatly refine the description of chromatin organization. Once such a 
refined picture will be available, it will perhaps be possible to better understand how remodeling 
events occurring at the fiber level such as those induced by molecular actors of the DNA repair 
machinery, can influence chromatin architecture at multiple space scales. 
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