Citation: Edward N Trifonov. Columnar structure of SV40 minichromosome[J]. AIMS Biophysics, 2015, 2(3): 274-283. doi: 10.3934/biophy.2015.3.274
[1] | Hiroshi Nishiura . Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49 |
[2] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[3] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[4] | Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451 |
[5] | Boqiang Chen, Zhizhou Zhu, Qiong Li, Daihai He . Resurgence of different influenza types in China and the US in 2021. Mathematical Biosciences and Engineering, 2023, 20(4): 6327-6333. doi: 10.3934/mbe.2023273 |
[6] | Eunha Shim . Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 95-112. doi: 10.3934/mbe.2011.8.95 |
[7] | Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312 |
[8] | Dennis L. Chao, Dobromir T. Dimitrov . Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001 |
[9] | Junyuan Yang, Guoqiang Wang, Shuo Zhang . Impact of household quarantine on SARS-Cov-2 infection in mainland China: A mean-field modelling approach. Mathematical Biosciences and Engineering, 2020, 17(5): 4500-4512. doi: 10.3934/mbe.2020248 |
[10] | Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413 |
Stochastic homogenization is a subject broadly studied starting from '80 since the seminal papers by Kozlov [11] and Papanicolaou-Varadhan [18] who studied boundary value problems for second order linear PDEs. We prove here an abstract homogenization result for the graph of a random maximal monotone operator
$ v(x, \omega) \in \alpha_\varepsilon (x, \omega, u(x, \omega)), $ |
where
$ \label{eq:alphaintro} \alpha_\varepsilon (x, \omega, \cdot): = \alpha\left(T_{x/\varepsilon }\omega, \cdot\right). $ | (1) |
The aim of this paper is to extend existing results where
The outline of the proof is the following: Let
$ Under\ \ \ which\ \ assumptions\ \ can\ \ we\ \ conclude\ \ that\ \ \ y=Ax? $ |
A classical answer (see, e.g., [3]) is: If we can produce an auxiliary sequence of points on the graph of
$ \label{eq:schemeaux} \text{$(\xi_n, \eta_n)\in X \times X'$ such that $\eta_n = A_n \xi_n$, $(\xi_n, \eta_n) \rightharpoonup (\xi, \eta)$ and $\eta = A \xi$}, $ | (2) |
then, denoting by
$ \langle y_n - \eta_n, x_n-\xi_n\rangle \geq 0. $ |
In order to pass to the limit as
$ \label{eq:schemecomp} \limsup\limits_{n \to \infty}\, \langle g_n, f_n\rangle \leq\langle g, f \rangle \;\;\;\;\; \forall\, (f_n, g_n)\rightharpoonup (f, g)\ \text{in }X \times X', $ | (3) |
which, together with the weak convergence of
$ \langle y - \eta, x-\xi\rangle \geq 0. $ |
By maximal monotonicity of
1. Existence and weak compactness of solutions
2. A condition for the convergence of the duality pairing (3);
3. Existence of a recovery sequence (2) for all points in the limit graph.
The first step depends on the well-posedness of the application; the second step is ensured, e.g., by compensated compactness (in the sense of Murat-Tartar [15,23]), and, like the first one, it depends on the character of the differential operators that appear in the application, rather than on the homogenization procedure. In the present paper we focus on the third step: in the context of stochastic homogenization, we prove that the scale integration/disintegration idea introduced by Visintin [25], combined with Birkhoff's ergodic theorem (Theorem 2.4) yields the desired recovery sequence. We obtain an explicit formula for the limit operator
$ \alpha\ \stackrel{a)}{\longrightarrow}\ f\ \stackrel{b)}{\longrightarrow}\ f_0\ \stackrel{c)}{\longrightarrow}\ \alpha_0, $ |
where a) the random operator
In Section 2.1 we review the properties of maximal monotone operators and their variational formulation due to Fitzpatrick. In Section 2.2 we recall the basis of ergodic theory that we need in order to state our first main tool: Birkhoff's Ergodic Theorem. Section 3 is devoted to the translation to the stochastic setting of Visintin's scale integration-disintegration theory, which paves the way to our main result, Theorem 3.8. The applications we provide in the last section are: Ohmic electric conduction with Hall effect (Section 4.1), and nonlinear elasticity, (Section 4.2).
We use the notation
In this section we summarize the variational representation of maximal monotone operators introduced in [8]. Further details and proofs of the statements can be found, e.g., in [27]. Let
$ \mathcal{G}_\alpha : = \{ (x, y) \in B\times B':y\in\alpha(x)\} $ |
be its graph. (We will equivalently write
$ \label{mon} (x, y) \in \mathcal{G}_\alpha \;\;\;\;\;\Rightarrow \;\;\;\;\; \langle y-y_0, x-x_0\rangle \ge 0,\;\;\;\;\; \forall (x_0, y_0)\in \mathcal{G}_\alpha $ | (4) |
and strictly monotone if there is
$ \label{mon-strict} (x, y) \in \mathcal{G}_\alpha \;\;\;\;\;\Rightarrow \;\;\;\;\;\langle y-y_0, x-x_0\rangle \ge \theta \|x-x_0\|^2, \;\;\;\;\;\forall (x_0, y_0)\in \mathcal{G}_\alpha. $ | (5) |
We denote by
$ x \in \alpha^{-1}(y)\;\;\;\;\; \Leftrightarrow \;\;\;\;\;y\in \alpha(x). $ |
The monotone operator
$ \langle y-y_0, x-x_0\rangle \ge 0 \;\;\;\;\; \forall (x_0, y_0)\in \mathcal{G}_\alpha \;\;\;\;\; \Leftrightarrow \;\;\;\;\; (x, y) \in \mathcal{G}_\alpha. $ |
An operator
$fα(x,y):=⟨y,x⟩+sup{⟨y−y0,x0−x⟩:(x0,y0)∈Gα}=sup{⟨y,x0⟩+⟨y0,x⟩−⟨y0,x0⟩:(x0,y0)∈Gα}.$ |
As a supremum of a family of linear functions, the Fitzpatrick function
Lemma 2.1. An operator
$ (x, y) \in \mathcal{G}_\alpha \;\;\;\;\;\Rightarrow \;\;\;\;\; f_{\alpha}(x, y) = \langle y, x \rangle, $ |
while
$ \left\{ fα(x,y)≥⟨y,x⟩ ∀(x,y)∈B×B′fα(x,y)=⟨y,x⟩⟺(x,y)∈Gα. \right. $ |
In the case
1. Let
$ f_\alpha(x, y) = \frac{(y-b+ax)^2}{4a} +bx. $ |
2. Let
$ \alpha(x) = \left\{ 1if x>0,[0,1]if x=0,−1if x<0. \right. $ |
Then
$ f_\alpha(x, y) = \left\{ |x|if |y|≤1,+∞if |y|>1. \right. $ |
and in both cases
We define
$ f(x, y)\ge \langle y, x \rangle \;\;\;\;\;\forall (x, y)\in B\times B'. $ |
We call
$ \label{def:graph} (x, y) \in \mathcal G_{\alpha_f} \Leftrightarrow f(x, y) = \langle y, x \rangle. $ | (6) |
A crucial point is whether
Lemma 2.2. Let
(i) the operator
(ii) the class of maximal monotone operators is strictly contained in the class of operators representable by functions in
Proof. (ⅰ) If
$g(P1+P22)−g(P1)+g(P2)2=14(⟨y1+y2,x1+x2⟩)−12(⟨y1,x1⟩+⟨y2,x2⟩)=14(⟨y1,x2⟩+⟨y2,x1⟩−⟨y1,x1⟩−⟨y2,x2⟩)=−14(⟨y2−y1,x2−x1⟩)>0.$ |
Since
$ f\left( \frac{P_1+P_2}{2}\right) > \frac{f(P_1) +f(P_2)}{2}, $ |
which contradicts the convexity of
(ⅱ) Maximal monotone operators are representable by Lemma 2.1. To see that the inclusion is strict, assume that
$ h(x, y) = \max\{c, f(x, y)\} $ |
clearly belongs to
$ h(x_0, y_0) \geq c > f(x_0, y_0) = \langle y_0, x_0 \rangle, $ |
and thus
Remark 1. When
$ \varphi(x) + \varphi^*(y) \geq \langle y, x \rangle \;\;\;\;\;\forall\, (x, y)\in B \times B', $ |
$ y \in \alpha(x)\;\;\;\;\; \Leftrightarrow \;\;\;\;\; \varphi(x) + \varphi^*(y) = \langle y, x \rangle. $ |
Thus, Fitzpatrick's representative function
$ f_\alpha(x, y) = \frac{(x+y)^2}{4} \neq \frac{x^2}{2}+\frac{y^2}{2} = \varphi(x)+\varphi^*(y). $ |
We need to introduce also parameter-dependent operators. For any measurable space
$ g^{-1}(R) : = \{ x \in X : g(x) \cap R \neq \emptyset \} $ |
is measurable.
Let
$ \alpha \ \ \text{is }\ \mathcal{B}(\text{B})\otimes \mathcal{A}\text{-measurable}, $ | (7) |
$ \alpha (x,\omega )\ \ \text{is}\ \ \text{closed}\ \ \text{for}\ \ \text{any }x\in B\ \ \text{and}\ \ \text{for }\mu \text{-a}.\text{e}.\ \ \omega \in \Omega , $ | (8) |
$\alpha (\cdot ,\omega )\ \ \text{is}\ (\text{maximal})\ \text{monotone}\ \ \text{for }\mu \text{-a}.\text{e}.\ \ \omega \in \Omega . $ | (9) |
If
(a)
(b)
(c)
As above,
$ \label{eq:represent} y \in \alpha(x, \omega)\ \Leftrightarrow \ f(x, y, \omega) = \langle y, x\rangle \;\;\;\;\; \forall (x, y) \in B\times B', \, \text{for $\mu$-a.e. }\omega \in \Omega. $ | (10) |
Precisely, any measurable representative function
In this subsection we review the basic notions and results of stochastic analysis that we need in Section 3. For more details see [10,Chapter 7]. Let
(a)
(b) for every
$\mu(T_xE) = \mu(E)$ | (11) |
(c) for any measurable function
$ \tilde f(x, \omega) = f(T_x\omega) $ |
is measurable.
Given an
$ {\mathbb E}(f): = \int_\Omega f\, d\mu. $ |
In the context of stochastic homogenization, it is useful to provide an orthogonal decomposition of
$ \int \bigg( v^{i}\frac{\partial\varphi}{\partial x_{j}}-v^{j}\frac{\partial \varphi}{\partial x_{i}}\bigg)\, dx = 0, \ \ \ \ \forall i, j = 1, \dots, n, \, \;\;\;\;\;\forall \varphi \in \mathcal {D}(\mathbb{R}^{n}) $ |
and we say that
$ \sum\limits_{i = 1}^{n}\int v^{i}\frac{\partial\varphi}{\partial x_{i}}\, dx = 0, \ \ \ \forall \varphi \in \mathcal {D}(\mathbb{R}^{n}). $ |
Next we consider a vector field on
Lemma 2.3. Define the spaces
$Vppot(Ω;Rn):={f∈Lppot(Ω;Rn):E(f)=0},Vpsol(Ω;Rn):={f∈Lpsol(Ω;Rn):E(f)=0}.$ |
The spaces
$ \label{ort} \mathbb E(u \cdot v) = \mathbb E(u) \cdot \mathbb E(v) $ | (12) |
and the relations
$ (\mathcal{V}^{p}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}))^\perp = \mathcal{V}^{p'}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}) \oplus {{\mathbb{R}}^{n}}, \;\;\;\;\;(\mathcal{V}^{p}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}))^\perp = \mathcal{V}^{p'}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}) \oplus {{\mathbb{R}}^{n}} $ |
hold in the sense of duality pairing between the spaces
One of the most important results regarding stochastic homogenization is Birk-hoff's Ergodic Theorem. We report the statement given in [10,Theorem 7.2].
Theorem 2.4. (Birkhoff's Ergodic Theorem) Let
$ \mathbb E(f) = \lim\limits_{\varepsilon \to 0}\frac{1}{|K|}\int_K f\big(T_{x/\varepsilon }\omega\big)\, dx $ |
for
Remark 2. Birkhoff's theorem implies that
$ \lim\limits_{\varepsilon \to 0} \frac{1}{|K|}\int_K \tilde f_\varepsilon (x, \omega)\, dx = \mathbb{E}(f). $ |
Since this holds for every measurable bounded set
$ {{\tilde{f}}_{\varepsilon }}\rightharpoonup \mathbb{E}(f)\ \ \text{weakly}\ \ \text{in }L_{\text{loc}}^{p}({{\mathbb{R}}^{\text{n}}};{{\mathbb{R}}^{\text{m}}})\ \text{for }\mu \text{-a}.\text{e}.\text{ }\ \ \omega \in \Omega . $ | (13) |
In what follows, the dynamical system
Let be given a probability space
We rephrase here Visintin's scale integration/disintegration [25,26] to the stochastic homogenization setting.
Remark 3. While most of this subsection's statements are Visintin's results written in a different notation, some others contain a small, but original contribution. Namely: Lemma 3.1 can be found in [26,Lemma 4.1], where the assumption of boundedness for
For every fixed
$ f(\xi, \eta, \omega) \ge c\left(|\xi |^p+|\eta |^{p'}\right)+k(\omega). $ | (14) |
We define the homogenised representation
$ f_0(\xi, \eta): = \inf \bigg\{ \int_\Omega f(\xi+v(\omega), \eta+u(\omega), \omega) \, d\mu :u \in \mathcal V^p_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}), v\in \mathcal V^{p'}_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}) \bigg\}. $ | (15) |
Lemma 3.1. Let
1i.e., for all
$ h(x): = \inf\limits_{y\in K}g(x, y) $ |
is weakly lower semicontinuous and coercive. Moreover, if
Proof. Let
$ \label{eq2} \liminf\limits_{j \to +\infty} h(x_j) \geq h(x). $ | (16) |
Let
$ \ell: = \liminf\limits_{j \to +\infty} h(x_j). $ |
If
$ \label{eq3} h(x_j) = \inf\limits_{y \in K} g(x_j, y) \geq g(x_j, y_j)-\varepsilon . $ | (17) |
Therefore
$ g(x_j, y_j) \leq 2\ell +\varepsilon \;\;\;\;\;\forall\, j\in \mathbb N. $ |
By the coercivity assumption on
$ \label{eq:4} \liminf\limits_{k \to +\infty} h(x_{j_k}) \geq \liminf\limits_{k \to +\infty} g(x_{j_k}, y_{j_k})-\varepsilon \geq g(x, y) -\varepsilon \geq h(x)-\varepsilon . $ | (18) |
By arbitrariness of
$ h(\lambda x_1+(1-\lambda)x_2)\le g(\lambda x_1+(1-\lambda)x_2, \lambda y_1+(1-\lambda)y_2)\le \lambda g(x_1, y_1) +(1-\lambda)g(x_2, y_2). $ |
Passing to the infimum with respect to
$ h(\lambda x_1+(1-\lambda)x_2)\le \lambda h(x_1) +(1-\lambda)h(x_2). $ |
Regarding the coercivity of
$ B_t: = \{x \in X : h(x) \leq t\}, \;\;\;\;\;A_t: = \{x\in X : g(x, y)\leq t, \text{ for some }y\in K\}. $ |
Let
In the proof of Proposition 1 we need the following estimate
Lemma 3.2. For all
$ \int_\Omega |\xi + u(\omega)|^p\, d\mu \geq C \int_\Omega |\xi|^p + |u(\omega)|^p\, d\mu $ |
for all
Proof. Consider the operator
$Φ:Lp(Ω;Rn)→Lp(Ω;Rn)×Lp(Ω;Rn)u↦(E(u),u−E(u)).$ |
Clearly,
$∫Ω|E(u)|pdμ+∫Ω|u(ω)−E(u)|pdμ≤(‖E(u)‖Lp+‖u−E(u)‖Lp)p≤2p/2(‖E(u)‖2Lp+‖u−E(u)‖2Lp)p/2=2p/2‖Φ(u)‖pLp×Lp≤C‖u‖pLp=C∫Ω|u(ω)|pdμ.$ |
Apply now the last inequality to
$ \int_\Omega |\xi|^p + |\tilde u(\omega)|^p\, d\mu \leq C\int_\Omega |\xi +\tilde u(\omega)|^p\, d\mu. $ |
Proposition 1. For all
$ \label{ineq:f0} f_0(\xi, \eta)\ge \xi\cdot \eta \;\;\;\;\; \forall (\xi, \eta)\in {{\mathbb{R}}^{n}}\times {{\mathbb{R}}^{n}}. $ | (19) |
Proof. Let
$ F_{\xi, \eta}(u, v): = \int_\Omega f(\xi+v(\omega), \eta+u(\omega), \omega) \, d\mu. $ |
We prove that the problem
$ F_{\xi, \eta}(u, v)\leq \liminf\limits_{h \to \infty}F_{\xi, \eta}(u_h, v_h) = \inf\limits_K F_{\xi, \eta}. $ |
This concludes the first part of the statement. We now want to show that
$Fξ,η(u,v)≥c∫Ω|ξ+v(ω)|p+|η+u(ω)|p′+k(ω)dμ≥C∫Ω|ξ|p+|u(ω)|p+|η|p′+|v(ω)|p′dμ+E(k)≥C(|ξ|p+‖u‖pLp(Ω)+|η|p′+‖v‖p′Lp′(Ω))−‖k‖L1(Ω).$ |
Thus, for any
$ \left\{(\xi, \eta, (u, v))\in R^n\times {{\mathbb{R}}^{n}} \times K : F_{\xi, \eta}(u, v) \leq M\right\} $ |
is bounded in
$ f0(ξ,η)=∫Ωf(ξ+˜u(ω),η+˜v(ω),ω)dμ≥∫Ω(ξ+˜u(ω))⋅(η+˜v(ω))dμ=E(ξ+˜u)⋅E(η+˜v)=ξ⋅η, $ |
which yields the conclusion.
We denote by
$ \eta \in \alpha_0(\xi) \;\;\;\;\; \Leftrightarrow\;\;\;\;\; f_0(\xi, \eta) = \xi \cdot \eta. $ |
We refer to
Lemma 3.3. Let
$ \label{auxiliary} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\; for \;\;\;\;\; \mu -a.e. \omega\in\Omega. $ | (20) |
Moreover,
$ \mathbb E( v) \in \alpha_0(\mathbb E( u)). $ | (21) |
Proof. Since
$ \label{eq:f0repr} f_0(\xi, \eta) = \xi \cdot \eta. $ | (22) |
Take now
$ \label{eq:hyp1} f_0(\xi, \eta) = \int_\Omega f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega) \, d\mu. $ | (23) |
Since
$ξ⋅η=E(ξ+˜u)⋅E(η+˜v)(12)=∫Ω(ξ+˜u(ω))⋅(η+˜v(ω))dμf∈F(Rn)≤∫Ωf(ξ+˜u(ω),η+˜v(ω),ω)dμ(23)=f0(ξ,η)(22)=ξ⋅η$ |
from which we obtain
$ \label{eq:312} (\xi+\widetilde{u}(\omega))\cdot (\eta+\widetilde{v}(\omega)) = f(\xi+\widetilde{u}(\omega), \eta+\widetilde{v}(\omega), \omega), \;\;\;\;\; \text{$\mu$-a.e. }\omega\in\Omega. $ | (24) |
Let
Lemma 3.3 is also referred to as scale disintegration (see [26,Theorem 4.4]), as it shows that given a solution
Lemma 3.4. Let
$ \label{auxiliary:int} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\;for\;\;\;\;\; \mu-a.e. \omega\in\Omega, $ | (25) |
then
$ \label{eq:integrated} \mathbb E(v) \in \alpha_0(\mathbb E(u)). $ | (26) |
Proof. By (25) and (12)
$ \int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu = \int_\Omega u(\omega)\cdot v(\omega)\, d\mu = \mathbb E(u)\cdot \mathbb E(v). $ |
On the other hand, by definition of
$ \int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu \geq f_0(\mathbb E(u), \mathbb E(v)) \geq \mathbb E(u)\cdot \mathbb E(v). $ |
We conclude that
How the properties of
Theorem 3.5. If
$ \int_\Omega f(u(\omega), v(\omega), \omega)\, d\mu < +\infty, $ |
In order to obtain strict monotonicity of
Lemma 3.6. Let
Proof. For all
$ \label{smon1} v_i(\omega)\in \alpha(u_i(\omega), \omega), \;\;\;\;\; \text{for $\mu$-a.e. }\omega\in\Omega $ | (27) |
and
$(η2−η1)⋅(ξ2−ξ1)=∫Ω(v2(ω)−v1(ω))⋅(u2(ω)−u1(ω))dμ≥θ∫Ω|u2(ω)−u1(ω)|2dμ≥θ|∫Ωu2(ω)−u1(ω)dμ|2=θ|ξ2−ξ1|2.$ |
Let
Lemma 3.7 (Div-Curl lemma, [15]). Let
$ v^n \rightharpoonup v \;\;\;\;\;weakly\;\;\;\;\; in L^{p'}(D;{\mathbb{R}}^m), \;\;\;\;\; u^n \rightharpoonup u \;\;\;\;\;weakly\;\;\;\;\; in \;\;\;\;\;L^p(D;{\mathbb{R}}^m). $ |
In addition, assume that
$ \{\text{curl}{{v}^{n}}\}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,{p}'}}(D;{{\mathbb{R}}^{m\times m}}),\ \ \ \ \ \{\text{div}\ {{u}^{n}}\}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,p}}(D). $ |
Then
$ v^n \cdot u^n \stackrel{*}{\rightharpoonup} v \cdot u \;\;\;\;\;\mbox{in }\mathcal D'(D). $ |
We are now ready to prove our main result concerning the stochastic homogenization of a maximal monotone relation.
Theorem 3.8. Let
Let
$ (J_\omega^\varepsilon, E_\omega^\varepsilon)\in L^p(D;{{\mathbb{R}}^{n}})\times L^{p'}(D;{{\mathbb{R}}^{n}}) $ |
such that
$ {{\{\text{div}J_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,p}}(D),{{\{\text{curl}E_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ }is\text{ }compact\text{ }in\text{ }{{W}^{-1,{p}'}}(D;{{\mathbb{R}}^{n\times n}}), $ | (28a) |
$ \label{e:convergence} \lim\limits_{\varepsilon \to 0} J_\omega^\varepsilon = J_\omega^0 \;\;\;\;\; weakly \;\;\;\;\;in \;\;\;\;\;L^p(D;{{\mathbb{R}}^{n}}), \;\;\;\;\; \lim\limits_{\varepsilon \to 0} E_\omega^\varepsilon = E_\omega^0 \;\;\;\;\; weakly \;\;\;\;\;in \;\;\;\;\;L^{p'}(D;{{\mathbb{R}}^{n}}), $ | (28b) |
$ \label{e:inclusion} E_\omega^\varepsilon(x) \in \alpha(J_\omega^\varepsilon(x), T_{x/\varepsilon }\omega) \;\;\;\;\; a.e. \;\;\;in \;\;\;\;\;D. $ | (28c) |
Then, for
$ \label{hom1} E_\omega^0(x) \in \alpha_0(J_\omega^0(x)) \;\;\;\;\; a.e. \;\;\;in \;\;\;\;\;D, $ | (29) |
where
$ f_0(\xi, \eta): = \inf \bigg\{ \int_\Omega f(\xi+u(\omega), \eta+v(\omega), \omega) \, d\mu :u \in \mathcal V^p_{\rm sol}(\Omega;{{\mathbb{R}}^{n}}), v\in \mathcal V^{p'}_{\rm pot}(\Omega;{{\mathbb{R}}^{n}}) \bigg\}. $ |
Proof. By Lemma 3.3 for all
$ \label{auxiliary2} v(\omega)\in \alpha(u(\omega), \omega), \;\;\;\;\; \text{for $\mu$-a.e. }\omega\in\Omega. $ | (30) |
Define the stationary random fields
$ u_\varepsilon(x, \omega): = u(T_{x/\varepsilon }\omega), \;\;\;\;\; v_\varepsilon(x, \omega): = v(T_{x/\varepsilon }\omega). $ |
For
$ x \mapsto u_\varepsilon(x, \omega) \in L^p_{\rm loc}({{\mathbb{R}}^{n}};{{\mathbb{R}}^{n}}), \;\;\;\;\; x \mapsto v_\varepsilon(x, \omega) \in L^{p'}_{\rm loc}({{\mathbb{R}}^{n}};{{\mathbb{R}}^{n}}). $ |
Equation (30) implies
$ \label{eq:318} v_\varepsilon(x, \omega) \in \alpha(u_\varepsilon(x, \omega), T_{x/\varepsilon }\omega), \;\;\;\;\; \textrm{for a.e. }x\in D, \ \mu\textrm{-a.e. }\omega\in \Omega. $ | (31) |
By Birkhoff's Theorem (and (13), in particular), for
$ \label{weak} u_\varepsilon(\cdot, \omega) \rightharpoonup \mathbb E(u) \;\;\;\;\;\textrm{weakly in }L^p(D;{{\mathbb{R}}^{n}}), \;\;\;\;\;v_\varepsilon(\cdot, \omega) \rightharpoonup \mathbb E(v) \;\;\;\;\; \textrm{weakly in }L^{p'}(D;{{\mathbb{R}}^{n}}). $ | (32) |
Since
$ \label{ineq} \int_D (E_\omega^\varepsilon(x)- v_\varepsilon(x, \omega))\cdot (J_\omega^\varepsilon(x)- u_\varepsilon(x, \omega))\phi(x)\, dx \ge 0, $ | (33) |
for any
${curl(Eεω−vε(⋅,ω))}ε is compact in W−1,p′(D;Rn×n),{div(Jεω−uε(⋅,ω))}ε is compact in W−1,p(D).$ |
By (28b), (32), and Lemma 3.7, we can thus pass to the limit as
$ \int_D (E_\omega^0(x) -\mathbb E( v))\cdot (J_\omega^0(x) -\mathbb E( u))\phi(x)\, dx \ge 0, \;\;\;\;\; \textrm{for $\mu$-a.e. }\omega \in \Omega. $ |
Since the last inequality holds for all nonnegative
$ (E_\omega^0(x) -\mathbb E( v))\cdot (J_\omega^0(x) -\mathbb E( u)) \ge 0, \;\;\;\;\;\textrm{for $\mu$-a.e. }\omega \in \Omega. $ |
To conclude, since
$ E_\omega^0(x) \in \alpha_0(J_\omega^0(x)) $ |
for a.e.
Remark 4. In this section's results, the function spaces
$ \mathcal U\subset L^p(\Omega;{{\mathbb{R}}^{n}}), \;\;\;\;\; \mathcal V\subset L^{p'}(\Omega;{{\mathbb{R}}^{n}}) $ |
such that
$ \mathbb E(u \cdot v) = \mathbb E(u)\cdot \mathbb E(v), \;\;\;\;\; \forall (u, v)\in \mathcal U \times \mathcal V. $ |
Furthermore, Proposition 1 and Lemma 3.3 remain valid if the previous equality is replaced by the inequality
$ \mathbb E(u \cdot v) \geq \mathbb E(u)\cdot \mathbb E(v), \;\;\;\;\; \forall (u, v)\in \mathcal U \times \mathcal V. $ |
In this subsection we address the homogenization problem for the Ohm-Hall model for an electric conductor. For further information about the Ohm-Hall effect we refer the reader to [1,pp. 11-15], [12,Section 22] and we also follow [26] for the suitable mathematical formulation in terms of maximal monotone operators. We consider a non-homogeneous electric conductor, that occupies a bounded Lipschitz domain
$ \label{eq:ohmhall} E(x) \in \alpha(J(x), x) +h(x)J(x) \times B(x) + E_a(x) \;\;\;\;\; \textrm{in }D, $ | (34) |
where
$curlE=g,divJ=0,$ |
where the vector field
$ \beta(J, x): = \alpha(J, x) +h(x)J \times B(x) + E_a(x). $ |
A single-valued parameter-dependent operator
$ \label{eq:smon} (\beta(v_1, x) - \beta(v_2, x))\cdot (v_1-v_2) \geq \theta{\| v_1-v_2\|}^2 \;\;\;\;\;\forall\, v_1, v_2\in {\mathbb{R}}^3. $ | (35) |
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.1. Let
$ |β(x,v)|≤c(1+|v|), $ | (36) |
$ β(x,v)⋅v≥a|v|2−b. $ | (37) |
Let
$ \label{eq:estimates} {\|E\|}_{L^2} +{\|J\|}_{L^2}\leq C\left(1+{\|g\|}_{L^2}\right) $ | (38) |
and, denoting by
$ E(x)=β(J(x),x) inD, $ | (39) |
$ curlE(x)=g(x) inD, $ | (40) |
$ divJ(x)=0 inD, $ | (41) |
$ E(x)×ν(x)=0 on∂D. $ | (42) |
Moreover, if
Remark 5. Conditions (40)-(41) have to be intended in the weak sense -see below -while (42) holds in
Let
$ \label{hyp:data} h \in L^\infty(\Omega), \;\;\;\;\; B \in L^\infty(\Omega;{\mathbb{R}}^3), \;\;\;\;\; E_a\in L^2(\Omega;{\mathbb{R}}^3). $ | (43) |
For any
$ \label{hyp:beta} \beta(J, \omega): = \alpha(J, \omega)+h(\omega)J \times B(\omega)+E_a(\omega). $ | (44) |
In order to apply the scale integration procedure, we assume that
$ \label{hyp:fsc} \text{the representative function $f$ of $\beta$ is coercive, in the sense of (14), } $ | (45) |
moreover, to ensure uniqueness of a solution
$ \label{hyp:smon} \beta\text{ and }\beta^{-1} \text{ are strictly monotone, uniformly with respect to }x\in D. $ | (46) |
As in the previous section
$ \beta_\varepsilon (\cdot, x, \omega): = \beta(\cdot, T_{x/\varepsilon }\omega). $ |
Then
$ \label{hyp:divge} div\, g_\varepsilon = 0, \;\;\;\;\; \text{in }\mathcal D'(D), \text{ for $\mu$-a.e. }\omega\in\Omega. $ | (47) |
We are ready to state and prove the homogenization result for the Ohm-Hall model.
Theorem 4.2. Assume that (43)-(47) are fulfilled. Then
1. For
$ Eεω(x)=βε(Jεω(x),x,ω)inD, $ | (48) |
$ curlEεω(x)=gε(x,ω)inD, $ | (49) |
$ divJεω(x)=0inD, $ | (50) |
$ Eεω(x)×ν(x)=0on∂D. $ | (51) |
2. There exists
$ \label{eq:conv} E_\omega^\varepsilon \rightharpoonup E \;\;\;\;\;and\;\;\;\;\; J_\omega^\varepsilon \rightharpoonup J $ | (52) |
as
3. The limit couple
$ E(x)=β0(J(x))inD, $ | (53) |
$ curlE(x)=g(x)inD, $ | (54) |
$ divJ(x)=0inD, $ | (55) |
$ E(x)×ν(x)=0on∂D. $ | (56) |
Proof. 1. Assumption (46) implies that
2. Let
3. The weak formulation of (49)-(51) is:
$ \label{eq:weak} \int_D E_\omega^\varepsilon \cdot \text{curl}\, \phi + J_\omega^\varepsilon \cdot \nabla \psi\, dx = \int_D g_\varepsilon \cdot \phi\, dx, $ | (57) |
for all
$ \int_D E_\omega \cdot \text{curl}\, \phi + J_\omega \cdot \nabla \psi\, dx = \int_D g \cdot \phi\, dx, $ |
which is exactly the weak formulation of (54)-(56). Equations (49) and (50) imply that
$ E_\omega(x) = \beta_0(J_\omega(x)). $ |
We have thus proved that
4. By Lemma 3.6 and assumption (46),
Another straightforward application of the homogenization theorem 3.8 is given in the framework of deformations in continuum mechanics (see, e.g., [4,Chapter 3]). Elastic materials are usually described through the deformation vector
$ \label{eq:nlelastic} \sigma(x, t) = \beta(\nabla u(x, t), x), $ | (58) |
where
$ \rho \partial _{t}^{2}u-\text{div}\sigma =F, $ |
where
The following existence and uniqueness result is a classical consequence of the maximal monotonicity of
Theorem 4.3. Let
$ \label{Q:estimates} {\|u\|}_{H^1} +{\|\sigma\|}_{L^2}\leq C\left(1+{\|F\|}_{L^2}\right) $ | (59) |
and, denoting by
$ σ(x)=β(∇u(x),x)inD, $ | (60) |
$ −divσ(x)=F(x)inD, $ | (61) |
$ u(x)=0on∂D. $ | (62) |
Moreover, if
As above, we consider a family of maximal monotone operators
$ \beta_\varepsilon (\cdot, x, \omega): = \beta(\cdot, T_{x/\varepsilon }\omega) $ |
defines a family of maximal monotone operators on
Theorem 4.4. Assume that (45) and (46) are fulfilled. Then
1. For
$ σεω(x)=βε(∇uεω(x),x,ω)inD, $ | (63) |
$ −divσεω(x)=Fε(x,ω)inD, $ | (64) |
$ uεω(x)=0on∂D. $ | (65) |
2. There exist
$ \label{Q:conv} u_\omega^\varepsilon \rightharpoonup u \;\;\;\;\;and\;\;\;\;\; \sigma_\omega^\varepsilon \rightharpoonup \sigma $ | (66) |
as
3. The limit couple
$ σ(x)=β0(∇u(x))inD, $ | (67) |
$ −divσ(x)=F(x)inD, $ | (68) |
$ u(x)=0on∂D. $ | (69) |
Proof. Steps 1. and 2. follow exactly as in the proof of Theorem 4.2.
3. The weak formulation of (64)-(65) is the following:
$ \label{Q:weak} \int_D \sigma_\omega^\varepsilon \cdot \nabla \phi\, dx = \int_D F_\varepsilon \phi\, dx, $ | (70) |
for all
$ \int_D \sigma_\omega \cdot \nabla \phi\, dx = \int_D F \phi\, dx, $ |
which is exactly the weak formulation of (68)-(69). Equation (64) and estimate (59) imply that
$ {{\{\text{div}\sigma _{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3}}), $ |
$ {{\{\text{curl}\nabla u_{\omega }^{\varepsilon }\}}_{\varepsilon \ge 0}}\text{ is compact in }{{W}^{-1,2}}(D;{{\mathbb{R}}^{3\times 3}}). $ |
Therefore, we can apply the abstract stochastic homogenization Theorem 3.8, (with
$ \sigma_\omega(x) = \beta_0(\nabla u_\omega(x)). $ |
Finally, the strict monotonicity of the limit operators
We would like to thank the anonymous referees for their valuable comments and remarks.
[1] |
Griffith JD (1975) Chromatin structure: deduced from a minichromosome. Science 187: 1202-1203. doi: 10.1126/science.187.4182.1202
![]() |
[2] |
Bellard M, Oudet P, Germond JE, et al. (1976) Subunit structure of simian-virus-40 minichromosome. Eur J Biochem 70: 543-553. doi: 10.1111/j.1432-1033.1976.tb11046.x
![]() |
[3] |
Mengeritsky G, Trifonov EN (1984) Nucleotide sequence-directed mapping of the nucleosomes of SV40 chromatin. Cell Bioph 6: 1-9. doi: 10.1007/BF02788576
![]() |
[4] |
Ambrose C, Lowman H, Rajadhyaksha A, et al. (1990) Location of nucleosomes in simian virus 40 chromatin. J Mol Biol 214: 875-884. doi: 10.1016/0022-2836(90)90342-J
![]() |
[5] | Tatchell K, van Holde KE (1978) Compact oligomers and nucleosome phasing. Proc Natl Acad Sci USA 75: 3583-3587. |
[6] |
Fajkus J, Trifonov EN (2001) Columnar packing of telomeric nucleosomes. Biochem Biophys Res Comm 280: 961-963. doi: 10.1006/bbrc.2000.4208
![]() |
[7] | Salih B, Trifonov EN (2015) Strong nucleosomes of A. thaliana concentrate in centromere regions. J Biomol Str Dyn 33: 10-13. |
[8] |
Salih B, Trifonov EN (2015). Strong nucleosomes reside in meiotic centromeres of C. elegans. J Biomol Str Dyn 33: 365-373. doi: 10.1080/07391102.2013.879263
![]() |
[9] |
Nibhani R, Trifonov EN (2015) Reading sequence-directed computational nucleosome maps. J Biomol Str Dyn 33:1558-1566. doi: 10.1080/07391102.2014.958877
![]() |
[10] |
Gu SG, Goszczynski B, McGhee JD, et al. (2013) Unusual DNA packaging characteristics in endoreduplicated Caenorhabditis elegans oocytes defined by in vivo accessibility to an endogenous nuclease activity. Epigenet Chromatin 6: 37. doi: 10.1186/1756-8935-6-37
![]() |
[11] |
Ponder BAJ, Crawford LV (1977) Arrangement of nucleosomes in nucleoprotein complexes from polyoma-virus and SV40. Cell 11: 35-49. doi: 10.1016/0092-8674(77)90315-4
![]() |
[12] | Zhang T, Talbert PB, Zhang W, et al. (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 110: E4875-4883. |
[13] | Rattner JB, Hamkalo BA (1978) Higher-order structure in metaphase chromosomes Chromosoma 69: 373-379. |
[14] | Dubochet J, Adrian M, Schultz P, et al. (1986) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5: 519-528. |
[15] |
Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132: 147-161. doi: 10.1006/jsbi.2000.4310
![]() |
[16] |
Karpov VL, Bavykin SG, Preobrazhenskaya OV, et al. (1982) Alignment of nucleosomes along DNA and organization of spacer DNA in drosophila chromatin. Nucl Acids Res 10: 4321-4337. doi: 10.1093/nar/10.14.4321
![]() |
[17] | Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A 89:1095-1099. |
[18] |
Rapoport AE, Frenkel ZM, Trifonov EN (2011) Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Str Dyn 28: 567-574. doi: 10.1080/07391102.2011.10531243
![]() |
[19] |
Frenkel ZM, Bettecken T, Trifonov EN (2011) Nucleosome DNA sequence structure of isochores. BMC Genomics 12: 203. doi: 10.1186/1471-2164-12-203
![]() |
[20] |
Tripathi V, Salih B, Trifonov EN (2015) Universal full-length nucleosome mapping sequence probe. J Biomol Str Dyn 33: 666-673. doi: 10.1080/07391102.2014.891262
![]() |
[21] |
Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence directed nucleosome positioning. J Mol Biol 276: 19-42. doi: 10.1006/jmbi.1997.1494
![]() |
[22] |
Trifonov EN, Nibhani R (2015) Review fifteen years of search for strong nucleosomes. Biopolymers, 103: 432-437. doi: 10.1002/bip.22604
![]() |
[23] | Nibhani R, Trifonov EN, TA-periodic (“601”-like) centromeric nucleosomes of A.thaliana. J Biomol Str Dyn [in press]. |
[24] |
Vasudevan D, Chua EYD, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403: 1-10. doi: 10.1016/j.jmb.2010.08.039
![]() |
[25] | Zhurkin VB (1982) Periodicity in DNA primary structure and specific alignment of nucleosomes. Stud Biophys 87: 151-152. |
[26] |
Zhurkin VB (1983) Specific alignment of nucleosomes on DNA correlates with periodic distribution of purine pyrimidine and pyrimidine purine dimers. FEBS Lett 158: 293-297. doi: 10.1016/0014-5793(83)80598-5
![]() |
[27] |
Zhurkin VB, Lysov YP, Ivanov VI (1979) Anisotropic flexibility of DNA and the nucleosomal structure. Nucl Acids Res 6: 1081-1096. doi: 10.1093/nar/6.3.1081
![]() |
[28] |
Wang D, Ulyanov NB, Zhurkin VB (2010) Sequence-dependent kink-and-slide deformations of nucleosomal DNA facilitated by histone arginines bound in the minor groove. J Biomol Str Dyn 27: 843-859. doi: 10.1080/07391102.2010.10508586
![]() |
[29] | McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5: 1395-1402. |
[30] | Trifonov EN Nucleosome repeat lengths and columnar chromatin structure. J Biomol Str Dyn [in press]. |