Research article

Columnar structure of SV40 minichromosome

Edward N Trifonov

Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel; Email: trifonov@research.haifa.ac.il; Tel: +972-4-828-8096.

Abstract

Like the sequence of the strongest 601 clone nucleosome of Lowary and Widom, the SV40 genome sequence contains tracks of YR dinucleotides separated by small integers of the 10.4 n base series ($10,11,21$ and 30 bases). The tracks, however, substantially exceed the nucleosome DNA size and, thus, correspond to more extended structure - columnar chromatin. The micrococcal nuclease digests of the SV40 chromatin do not show uniquely positioned individual nucleosomes. This confirms the columnar structure of the minichromosome, as well as earlier electron microscopy studies.

Keywords: nucleosome; sequence periodicity; YR dinucleotides; YR tracks; stacked nucleosomes; rotational positioning; nucleosome sliding; nucleosome mapping

1. Introduction

SV40 minichromosome is classical object for chromatin structure studies that, in particular, provided convincing EM pictures of the nucleosomes organized in the beads-on-string manner [1,2]. The efforts towards determination of the expected unique positions of the nucleosomes along the 5243 bases long genome of the virus gave inconclusive results, both by computational mapping [3], and by cloning of the micrococcal nuclease (MNase) digest nucleosome DNA size fragments [4]. It was found that 22 of 41 cloned and mapped fragments overlap with other fragments sharing from ~ 25 to ~ 125 bases. "Nucleosomes do not occupy unique positions in SV40 minichromosomes" [4]. It appears, thus, that the nucleosomes of SV40 are sliding, so that each individual pattern of the beads is different, and no specific nucleosome repeat length, as in eukaryotes in general, is observed.

There is an alternative view at the chromatin structure-organization of the "nucleosomes" in tight oligonucleosomes [5], also called columnar structures [6-9], or meganucleosomes [10]. In this case, the nucleosomes excised by MNase from the columns in the process of their disintegration
would slide like in SV40 minichromosome, occupying many nearly equivalent alternative positions shifted by $10-11$ bases. Such separation (i.e., overlapping) has been first observed by Ponder \& Crawford [11].

What we call columnar structures, as referred above, is manifested in the extended ~ 10 base ladder of nuclease digestion of chromatin [5,10,12], well beyond the nucleosome DNA size. The columns are also seen directly by various versions of electron microscopy of the minimally perturbed samples. They appear as smooth 10 nm fibers [13-15]. Nucleosomes in the fibers seem to be "closely packed forming a continuous $100 \AA$ filament" [13]. The existence of the columns is suggested by observation of long, far exceeding nucleosome size $10-11$ base periodic sequence regions in various chromatins [7-9]. Finally, the nucleosome repeat lengths of various eukaryotic organisms, derived by MNase digestion of the chromatins, display discrete values, with increments of ~ 10 base-pairs [16,17]. The lengths, actually, closely follow $10.4 x n$ series (Trifonov, in press).

The nucleosomes can be mapped on genome sequences by matching to standard periodic consensus pattern (RRRRRYYYYY) ${ }_{\mathrm{n}}$ [18-20]. In case of the columns the mapping reveals RR/YY oscillations significantly beyond the nucleosome DNA size [9]. Apart from the RR/YY oscillation the pattern contains also the periodic YR dinucleotides which appear to make significant contribution, especially due to TA periodicity [21,22]. There is no mapping algorithm available which would take into account the corresponding (unknown) weights of the RR/YY and YR components. One can apply, however, for the nucleosome (column) mapping purposes two separate algorithms based on the above (RRRRRYYYYY) $)_{n}$ consensus (which includes YR as a part of the signal) and on the YRperiodic tracks [23]. The prominent strong nucleosome forming sequence, clone 601 [21], is good example of both components present [22].

In this study we used both algorithms, combining the data in one map, with conclusion that the SV40 minichromosome consists of several connected columnar structures, rather than of solitary beads of the nucleosomes.

2. Materials and Methods

The 5243 base sequence of the SV-40 genome is taken from NCBI Genbank.
The construction of the YR tracks follows the rule suggested by the crystal structure of the 601 clone nucleosome [24]: The sequence bound by histone octamers consists of 10 -mers or 11 -mers starting with YR dinucleotides, occasionally separated by ordinary sequence $10-11$ mers (up to three 10-11 base period separations). Such succession of YR 10-11-mers makes a YR track.

The nucleosome mapping by the (RRRRRYYYYY) ${ }_{n}$ probe is described in [20] and can be implemented via server http://strn-nuc.haifa.ac.il:8080/mapping/home.jsf

3. Results and Discussion

3.1. Sequence evidence in favor of columns in SV40 chromatin

As it follows from crystal data on the 601 clone nucleosomes [24], the YR•YR stacks of the nucleosome DNA are located in positions "minor groove in". They interact with arginines of the histones and, thus, serve as "anchors" uniquely determining the inner side of the bound nucleosome

DNA. The special role the YR dinucleotides should play in the nucleosome positioning has been advocated by Zhurkin and his colleagues since 1979 [25-28].

The YR elements of the clone 601 form a "track" of CG, 5 TA and 3 TG separated from one another by integer number of bases corresponding to one to three periods of nucleosome DNA of average value 10.4 bases ($10,11,21$ and 30 bases). Such YR track, if found in DNA sequence, would correspond to region bound to histone octamers. The periodically arranged YR elements would keep DNA in specific rotational setting and provide stability to the nucleosomes and columns, in addition to the contribution of the alternating RRRRRYYYYY pattern.

Sequence Position

Figure 1. Nucleosome map of SV40 chromosome calculated with the (RRRRRYYYYY)n probe (Tripathi et al., 2015, http://strnnuc.haifa.ac.il:8080/mapping/home.jsf). The amplitudes correspond to the simple dinucleotide match counts of respective sequence segments to the sequence probe.

In Figure 1 the map of the SV40 chromatin DNA periodicity is shown derived by the application of the (RRRRRYYYYY) mapping to the sequence. The regions with $10-11$ base oscillations correspond to either nucleosomes or to their tight oligomers, columns. The largest RR/YY periodic region spans ~ 540 bases (sequence coordinates $4800-5243$ and further to ~ 100, over the circular genome sequence start). Numerous peaks of the map indicate the locations of the pseudodyads, central points of the calculated nucleosome positions, separated one from another by

10-11 bases. These are positions "minor groove out" [9]. Respectively, the minima indicate positions "minor groove in" where the YR elements would be preferentially located. The sections of the map where the RR/YY periodicity is not obvious, however, still show the periodic distribution of YR dinucleotides following one another at one- to three-period distances, as in the clone 601. Altogether, the periodically distributed RR/YY and YR elements make long regions, which would correspond to the columnar chromatin structures.

In Figure 2 the full map of the YR-tracks identified in the SV40 genome is shown. The tracks are of various sizes, from 31 bases (track 17) to 725 bases (track 9). The tracks longer than tight dinucleosome DNA size, ~ 250 bases [5], occupy together about half of the SV40 genome (2564 bases). The longest track 9 would correspond to the tight oligonucleosomes involving 5 to 6 units ~ 125 bases each [5], stacked together in one column.

The construction of the tracks from the sequence positions of YR elements and their match to positions of minima in the RR/YY nucleosome map allowed for the gaps between the YR 10-11mers of the size two or three periods (20-22 and 30-33 bases) as in the 601 clone nucleosome. The larger gaps between the tracks would mean the discontinuity in the columnar organization. Remarkably, however, there seems to be no discontinuity, since the sizes of the observed gaps are all combinations of the 10 -mers and 11 -mers (see Table 1). That is, although the $10-11$-mers of the gaps are not decorated by the YR elements at their starts, length-wise they can be accommodated to the column, thus, fusing the YR tracks in a single long structure - a continuous genome size column.

Table 1. Gaps of ordinary sequences between the YR tracks in SV40.

Gap size(bases)	Number of cases
$40(4 \times 10)$	7
$41(3 \times 10+11)$	1
$42(2 \times 10+2 \times 11)$	2
$43(10+3 \times 11)$	2
$44(4 \times 11)$	2
$54(10+4 \times 11)$	1
$55(5 \times 11)$	3
$60(6 \times 10)$	3
$66(6 \times 11)$	2

Perhaps it is not a mere coincidence that the starting 8 bases of the Figure 2 and ending 3 bases together make 11 bases, which means that the whole genome consists of 10 -mers and 11 -mers, as the continuous columnar structure would suggest. It is quite possible that the long smooth 10 nm filaments observed by electron microscopy in vitrified samples of SV40 chromatin [14], indeed, correspond to the columns as suggested by periodic distribution of the YR elements in the nucleotide sequence (this work). Moreover, as EM of vitrified samples of metaphase arrested eukaryotic cells suggests, chromosomes seem to be "formed by the compact association of 11 nm filaments, or
portions thereof" [29]. In other words, it may well be that the columnar organization of chromatin is common feature of eukaryotic chromosomes in general, not just of the SV40 minichromosomes.

3.2. Relation to experimental nucleosome mapping data

The overlapping nucleosome positions in [4] are all confined to the long YR track regions (Figure 2), though few are located in approximate nucleosome size tracks: track 1 which actually contains 2 overlapping MNase nucleosomes (at positions 221 and 247), track 7 (nucleosome at 1768), track 12 (3762), track 14 (4374 and 4392) and track 16 (4876). The frequent overlapping of the nucleosomes defined by ~ 145 base fragments resulting from MNase digest suggests that the "nucleosomes" may center at any peak of the RR/YY map with as many alternative positions as number of the peaks. In this sense they may slide, in discrete steps, all along the DNA sequence of the column, making series of overlapping "nucleosomes". The longest YR track 9 harbors at least three pairs of such sliding nucleosomes (2198, 2274; 2495, 2588; and 2734, 2752). The authors of [4] conclude: "nucleosomes do not occupy unique positions in SV40 minichromosomes".

Since practically all sequence territory of the SV40 minichromosome is covered by the periodic YR-tracks (and RR/YY oscillations) it is not surprising that practically all nucleosomes experimentally identified in [4] are located within the periodic regions. The experimental accuracy (\pm ~ 5 bases) does not allow to observe all the alternative positions of the nucleosome centers which should be separated by 10-11 bases. More accurate mapping does show the alternatives [11] for the nucleosomes which cover the unique BamHI restriction site. The site is, indeed, located within the periodic YR track 11. The corresponding RR/YY map shows about 10 alternative center positions for the nucleosomes covering the site (coordinates 2450-2600). In view of the above the term "nucleosome", actually, describes any one of the particles, products of MNase digestion of the columnar structure, centered at one of ~ 400 sequence locations (according to the peaks of the nucleosome map).

4. Conclusion

The RR/YY nucleosome map of the SV40 ninichromosome and the periodic distribution of YR dinucleotides along the SV40 genome, similar to the distribution of these elements in the strongest known 601 clone nucleosome, suggests that the SV40 chromatin consists of long (perhaps, even fulllength) continuous columnar structures, rather than of individual beads-on-string nucleosomes.

1-GCCTCGGC	GCTGCAATtT	CCAGGAATGGC	gtgantttat
Ctctgcatana	452-TGTGAAGGGG	921-TGTagatttg	TGAAAAATTTG
Track 18	hagatactgt	931-TAATAGGCCAG	AGGctcctge
TAAAAAAAAT	472-TGACGGGAAA	atgattacta	TGGTGCAAATC
TAGTCAGCCA	482-CGCAAAAAAC	951-TGATATtttat	AAAGAACTGCT
TGGGGCgGaga	CAGAAAGGTT	ttcctggagta	CCtcagtgat
ATGGGCGGAAC	AACTGAAAAAC	973-СААААССтtтGT	gttgcctttac
62-TGGGcgGagt	CAGAAAGTTA	tCACAGTGTT	ttctageccta
[AGGGGCGGGA	ACtGgtangt	CAgtatcttg	Track 5
83-TGGGCGGAGT	ttagtcttt	ACCCCAGACAT	1468-TAGTGTCGGAA
TAGGGGcgeg	[GTCttttat -	1015-TGGGGTCCAA	TACttctgcta
actatgettg	tTCAGGTCCA	CActittita	1490-TAAAAGCtTAT
CtGACtantt	[GGGTGCTGC	\#Gccatttct	GAAGATGGCCC
gagatgcatg	tttancactg	САААССтtttt	CAACAAAAAGA
Сtttgcatac	584-TGGGGGACCT	GgCgtatahta	AAAGGAAGTtG -
tтCtgcctg	anttgctactg	CAAAATGACA	tCCAGGGGCAG
Track 1	605-TGTCTGAAGC	тtcctaggctc	CTCCCAAAAAA
TGGGgagcct	615-TGCtGctgct	acctcacagga -	CCAAAGGAACC
GGGGACTtTC	ACTGGATtTT	GCTTGAAAGAA	AGTGCAAGTGC
173-CACACCTGGT	635-CAGTAGCTGA	GAACCCAAAGA	Track 6
183-TGCTGACTAAT	AAttgctgctg	Track 4	1578-CAAAGCTCGT
194-TGAGATGCAT	gagaggccgc o	TATttangeca	CATAAAAGGA -
gСtttgcata	666-TGctgcantig	CAgtttcgea	gGAAtagahg
Сттстgcctac •	AAGTGCAACT	AGgtttttaga	ttctaggagt
225-TGGGGAGCCT	687-TGCATCTGTT	GGAAACTACT	[¢ААААСтGgag o
GGGGACtttc	gctactettg	TGGachatas	[\#GACAGCttc
САСАСССТААС -	AAGGCCtaAC	ttantgctcc	ACtGAgGTGG
TGACACACAT	AACCtctgag	[GTtattge	AGTGCttttt
tccacagctg	gCAAttgctg	1192-TATAACTCTT	AAATCCTCAAA
Gтtctttcce	Сtataggcct	1202-TACAAGATtAC	tGgGcaticc
ССtcagang -	САСтССасаG	тАстстастt	Track 7
TACCTAACCA	cctatgctgtg	1223-TGTCTCCCAT	1681-TGATGAACAT
AGтtcctctt	ATATCTGGGGC	1233-TAGGCCTACAA	1691-CAAAAAGGCTT
tcagagetta	тсстGctgcta	1244-TGGTGAGACA	AAGTAAAAGCT
tttcaggcca	Track 3	AGtagccaica	1713-TAGCAGCTGAA
Track 2	TAgctgeatt -	GGGAAGGGTTG -	AAACAGttta
TGGTgctgcg	[Gcagctttac	CAAATATCATT	1734-CAGATGACTCT
ccgectatca	812-TGCAAACtGtG	1287-¢GGGCACACC -	CCAGACAAAG
356-CGccagecctc	ACtGGTGTGAg	1297-TATGATAATAT	AACAACTGCCT
367-CGTTAAGGTT	834-CGCtGTtGct -	1308-TGATGAAGCA	mGctacagtg -
CGtagetcatg -	CAAGTGGGGTA	gacagtattc	TGgctagatt
gactganagta		agcamgtanc	ССтtтGCCtaA -
AAAAAACAGCT	GTGACTGGGAT	1338-TGAGAGGTGG	tttanatgag
410-САААСGССтtтT	CACAAAGTtTC	AAGCTCAAAGC	ACTtaACCtG
421-TGTGTtTGTTT	[ACtgrtgett	1360-CAAAGTCCTAA -	Track 8
432-TAGAGCtttT	899-TATATCAACAA	[GTgCAGTCAG	TGGAAATATtT

AIMS Biophysics
Volume 2, Issue 3, 274-283.

TGATGTGGGAA
GCTGTTACTGT
TAAAACTGAG
GTTATTGGGG
1872-TAACTGCTATG
TTAAACTTGCA
TTCAGGGACA
CAAAAAACTCA
TGAAAATGGTG
CTGGAAAACC
CATTCAAGGGT
1947-CAAATTTTCAT
TTTTTTGCTGI
TGGTGGGGAAC
CTTTGGAGCTG
1991-CAGGGTGTGTT
AGCAAACTACA
GGACCAAATAT
CCTGCTCAAAC
Track 9
2035-TGTAACCCCA
AAAAATGCTA
2055-CAGTTGACAGT
2066-CAGCAGATGAA
2077-CACTGACCAC
AAGGCTGTTT
TGGATAAGGA
2107-TAATGCTTATC
CAGTGGAGTGC
2129-TGCCTGAGGTI
TCCAAGTAAA
AATGAAAACAC
TAgATATTTT
GGAACCTACA
2181-CAGGTGGGGA
AAATGTGCCT
CCTGTTTTGCA
2212-CATTACTAAC
ACAGCAACCA
2232-CAGTGCTTCTI
GATGAGCAGGG
2254-TGTTGGGCCCI
2265-TGTGCAAAGC
2275-TGACAGCTTG
2285-TATGTTTCTGC

TGTTGACATT	GACTGTGAGGA
TGTGGGCTGTT	CTGAGGGGCCT
2317-TACCAACACTT	GAAATGAGCCT
CTGGAACACAG	Track 10
CAGTGGAAGG	2815-TGGGACTGTG
GACTTCCCAGA	AATCAATGCC
TATTTTAAAAT \circ	2835-TGTTTCATGCC
TACCCTTAGA	CTGAGTCTTC
AAGCGGTCTG	2856-CATGTTCTTCT
TGAAAAACCCC	CCCCACCATCT
TACCCAATTT	TCATTTTTAT
CCTTTTTGTTA	2888-CAGCATTTTC
AGTGACCTAAT	CTGGCTGTCT
TAACAGGAGG	TCATCATCAT
ACACAGAGGG	2918-CATCACTGTTT
TGGATGGGCA	CTTAGCCAATC
GCCTATGATTG	2940-TAAAACTCCAA
GAATGTCCTCT	TTCCCATAGC
2486-CAAGTAGAGG ○	CACATTAAACT
AGGTTAGGGTT	TCATTTTTTGA
2507-TATGAGGACAG	TACACTGACAA
2517-CAGAGGAGCT	ACTAAACTCTT
TCCTGGGGATC	TGTCCAATCT
CAGACATGATA	CTCTTTCCAC
AGATACATTGA	TCCACAATTC ○
2560-TGAGTTTGGA	TGCTCTGAAT
CAAACCACAAC	ACTTTGAGCA
2581-TAGAATGCAG ○	AACTCAGCCA
TGAAAAAAATG	CAGGTCTGTAC
CTTTATTTGT	CAAATTAACAT
GAAATTTGTGA	AAGAAGCAAAG
TGCTATTGCTT	CAATGCCACTT
TATTTGTAACC	3109-TGAATTATTC
ATTATAAGCTG	TCTTTTCTAA
CAATAAACAAG	CAAAAACTCAC
TTAACAACAA	3140-TGCGTTCCAGG
2677-CAATTGCATT	CAATGCTTTAA
2687-CATTTTATGT	ATAATCTTTG ○
TTCAGGTTCA	GGCCTAAAATC
GGGGGAGGTG	3183-TATTTGTTTTA
TGGGAGGTTT	CAAATCTGGCC
TTTAAAGCAAG \bigcirc	TGCAGTGTTT
TAAAACCTCTA	TAGGCACACTG
CAAATGTGGTA ○	tActcattca
TGGCTGATTAT	TGGTGACTATT
GATCATGAACA	CCAGGGGGAAA

AACTCAGCCA

CAAATTAACAT
AAGAAGCAAAG
CAATGCCACTT
3109-TGAATTATTC
TCTTTTCTAA
CAAAAACTCAC

CAATGCTTTAA
ATAATCTTTG \circ
GGCCTAAAATC

CAAATCTGGCC
TGCAGTGTTT
TAGGCACACTG
TACTCATTCA

CCAGGGGGAAA

```
        TATTTGAGTTC
        TTTTATTTAGG
        TGTTTCTTTTC
        TAAGTTTACCT
        TAACACTGCCA
        TCCAAATAATC
        CCTTAAATTGT ○
        CCAGGTTATTA
        ATTCCCTGACC
        TGAAGGCAAAT
        CTCTGGACTCC
        CCTCCAGTGCC
        CTTTACATCCT
        Track 11
        CAAAAACTAC
3411-TAAAAACTGGT
3422-CAATAGCTAC
        TCCTAGCTCA O
        AAGTTCAGCC
3452-TGTCCAAGGG
        CAAATTAACA
        TTTAAAGCTT ○
        TCCCCCCACA
        TAATTCAAGC
        AAAGCAGCTGC
        TAATGTAGTTT
3524-TACCACTATCA
        ATTGGTCCTT
        TAAACAGCCAG
        TATCTTTTTT
        TAGGAATGTTG
3577-TACACCATGCA
        TTTTAAAAAGT
        CATACACCAC
        TGAATCCATTT
3620-TGGGCAACAAA
3631-CAGTGTAGCC
        AAGCAACTCC
        AGCCATCCAT
        TCTTCTATGT ○
        Track }1
3671-CAGCAGAGCC
    TGTAGAACCA
    AACATTATAT
    CCATCCTATC
    CAAAAGATCAT
```

Volume 2, Issue 3, 274-283.

TAAATCtGt	tatatagcaga	Atctctatagg	AGAAGGTCCAT
TGTtAACATT	CACTCTAtGCC	TAGtttgtc	Track 18
3743-TGTTCTCTAGT	TGTGTGGAGTA	AATtATGTCA	TAGCTGCAAA
TAAttgtagac ○	AGAAAAAACAG	CACCCAGAAGA	GATTCCTCTCT
TATCAACCCG	4236-TATGTtATGAT	TAAGGttcctt	Gtttanaicti
Ctttttagct	4247-TATAACTGTTA	CACAAAGATC	- 5157-TATCCATCTTT
AAAACAGTAT	4258-TGССтАСтTA	AAGTCCAAAC	GCAAAGCTtTT
CAACAGCCTGT	4268-TAAAGGTTAC	CACATTCTAAA	5179-TGCAAAAGCC
TGGCATATGG	AgAATATtTT	GCAATCGAAG	TAGGCCTCCA
ttttttgett	tccatantt	CAGTAGCAAT	- AAAAAGCCTC
tttgctatca	tcttgtatag	САААСССАСАС	СТСАСТАСтTC
GCAAATATAG	Track 14	AAGTGGATCTT	5220-TGGAATAGCT
Track 13	CAGTGCAGCT	tCctgtatant	5230-CAGAGGCCGAG
CAGCATtTGCA	ttttcctttg	tttctattit	GCG-5243
3856-TAATGCTTTT	TGGTGTAAAT	Track 16	
CATGGTACTTA	AGCAAAGCAA	CATGCTtcat	
3877-TAGTGGCTGGG	GCAAGAGTTC	CCTCAGTAAG	
CtGttctittt ○	tattactana	CACAGCAAGCA	
3899-TAATACATTT	4368-CACAGCATGA	4828-TATGCAGTTAG	
3909-TAAACACATTT	CTCAAAAAACT	CAgACAttttc	
3920-CAAAACTGTA	4389-TAGCAATTCTG •	TTTGCACACT	
CTGAAATTCC	AAGGAAAGTCC	4860-CAGGCCATTG	
AAGTACATCC	tTGGGGTCTTC	tttgcagtac	\bullet
3950-CAAGCAATAA	4422-TАсСтттСтСт	Attgcatcan	
3960-СААСАСАТСАТ	tctttttigg	4890-CACCAGGATT	
3971-CACATTTTGT	AGGAGTAGAA	TAAGGAAGAAG	
TTCCATTGCA	TGTtGAGAGT	4911-САААТАССТС	
TACTCTGTTA	CAGCAGTAGC	AGTTGCATCC	
CAAGCttcca	СTCATCATCA	4931-CAGAAGCCTC	
GGACACTTGTT ○	CTAGATGGCA	CAAAGTCAGGT	
TAGTtTCCTC	tttctictga	4952-TGATGAGCATA	
TGCtTCtTCT	GCAAAACAGG	тtttactcca	
GGATTAAAAT	ttttcctcat	tcttccatttt	
4052-CATGCTCCTTT	Track 15	CTTGTACAGAG	
AACCCACCTGG	TAAAGGCATT	TATtCAttttc	
4074-САААСТТТССТ	CCACCACTGC	ttcattittte	
CAATAACAGAA ○	tCCCATTCAT	ttcatctcctc	
AATGGATCTCT ○	4553-CAGTTCCATAG	CTtTAtcaga	
AGTCAAGGCAC	GTTGGAATCTA	Track 17	
TATACATCAAA	AAATACACAAA	TGAAACTCCT	
TATtCCttat	CAATTAGAAT	TGCATTTTTT	
TAACCCCTTTA	CAGTAGTtTAA	TAAATATGCCT	
CAAATTAAAA	CACATtataca	ttctcatcaga	
AGCTAAAGGTA	CTTAAAAATTT	GGAATATTCCC	
CACAATtTtTG	TATATtTACCT	CCAGGCACTCC	
AGCATAGTtAT	TAgAGCtttan ○	TTTCAAGACCT	

AIMS Biophysics
Volume 2, Issue 3, 274-283.

Figure 2. The YR tracks of the SV40 genome, in format 10 or 11 bases in line. The numbers on the left correspond to the sequence positions of the map minima, i. e., positions "minor groove in". Small circles on the right show approximate positions (centers) of strong (\bullet) and moderate (\odot) nucleosomes experimentally mapped in (Ambrose et al., 1990). Note that some 10-11-mers start with YR, while others are ordinary sequence segments of the same lengths.

Conflict of Interest

All authors declare that there are no conflicts of interest.

References

1. Griffith JD (1975) Chromatin structure: deduced from a minichromosome. Science 187: 12021203.
2. Bellard M, Oudet P, Germond JE, et al. (1976) Subunit structure of simian-virus-40 minichromosome. Eur J Biochem 70: 543-553.
3. Mengeritsky G, Trifonov EN (1984) Nucleotide sequence-directed mapping of the nucleosomes of SV40 chromatin. Cell Bioph 6: 1-9.
4. Ambrose C, Lowman H, Rajadhyaksha A, et al. (1990) Location of nucleosomes in simian virus 40 chromatin. J Mol Biol 214: 875-884.
5. Tatchell K, van Holde KE (1978) Compact oligomers and nucleosome phasing. Proc Natl Acad Sci USA 75: 3583-3587.
6. Fajkus J, Trifonov EN (2001) Columnar packing of telomeric nucleosomes. Biochem Biophys Res Comm 280: 961-963.
7. Salih B, Trifonov EN (2015) Strong nucleosomes of A. thaliana concentrate in centromere regions. J Biomol Str Dyn 33: 10-13.
8. Salih B, Trifonov EN (2015). Strong nucleosomes reside in meiotic centromeres of C. elegans. J Biomol Str Dyn 33: 365-373.
9. Nibhani R, Trifonov EN (2015) Reading sequence-directed computational nucleosome maps. J Biomol Str Dyn 33:1558-1566.
10. Gu SG, Goszczynski B, McGhee JD, et al. (2013) Unusual DNA packaging characteristics in endoreduplicated Caenorhabditis elegans oocytes defined by in vivo accessibility to an endogenous nuclease activity. Epigenet Chromatin 6: 37.
11. Ponder BAJ, Crawford LV (1977) Arrangement of nucleosomes in nucleoprotein complexes from polyoma-virus and SV40. Cell 11: 35-49.
12. Zhang T, Talbert PB, Zhang W, et al. (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 110: E4875-4883.
13. Rattner JB, Hamkalo BA (1978) Higher-order structure in metaphase chromosomes Chromosoma 69: 373-379.
14. Dubochet J, Adrian M, Schultz P, et al. (1986) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5: 519-528.
15. Wanner G, Formanek H (2000) A new chromosome model. J Struct Biol 132: 147-161.
16. Karpov VL, Bavykin SG, Preobrazhenskaya OV, et al. (1982) Alignment of nucleosomes along DNA and organization of spacer DNA in drosophila chromatin. Nucl Acids Res 10: 4321-4337.
17. Widom J (1992) A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A 89:1095-1099.
18. Rapoport AE, Frenkel ZM, Trifonov EN (2011) Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Str Dyn 28: 567-574.
19. Frenkel ZM, Bettecken T, Trifonov EN (2011) Nucleosome DNA sequence structure of isochores. BMC Genomics 12: 203.
20. Tripathi V, Salih B, Trifonov EN (2015) Universal full-length nucleosome mapping sequence probe. J Biomol Str Dyn 33: 666-673.
21. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence directed nucleosome positioning. J Mol Biol 276: 19-42.
22. Trifonov EN, Nibhani R (2015) Review fifteen years of search for strong nucleosomes. Biopolymers, 103: 432-437.
23. Nibhani R, Trifonov EN, TA-periodic (" 601 "-like) centromeric nucleosomes of A.thaliana. J Biomol Str Dyn [in press].
24. Vasudevan D, Chua EYD, Davey CA (2010) Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. J Mol Biol 403: 1-10.
25. Zhurkin VB (1982) Periodicity in DNA primary structure and specific alignment of nucleosomes. Stud Biophys 87: 151-152.
26. Zhurkin VB (1983) Specific alignment of nucleosomes on DNA correlates with periodic distribution of purine pyrimidine and pyrimidine purine dimers. FEBS Lett 158: 293-297.
27. Zhurkin VB, Lysov YP, Ivanov VI (1979) Anisotropic flexibility of DNA and the nucleosomal structure. Nucl Acids Res 6: 1081-1096.
28. Wang D, Ulyanov NB, Zhurkin VB (2010) Sequence-dependent kink-and-slide deformations of nucleosomal DNA facilitated by histone arginines bound in the minor groove. J Biomol Str Dyn 27: 843-859.
29. McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5: 1395-1402.
30. Trifonov EN Nucleosome repeat lengths and columnar chromatin structure. J Biomol Str Dyn [in press].

© 2015 Edward N Trifonov, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
