Research article Special Issues

Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

  • Received: 02 March 2015 Accepted: 17 May 2015 Published: 21 May 2015
  • A unique biological safety level (BSL)-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB) to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector) in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2) decontamination cycles.

    Citation: Michael B. Sherman, Juan Trujillo, Benjamin E. Bammes, Liang Jin, Matthias W. Stumpf, Scott C. Weaver. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment[J]. AIMS Biophysics, 2015, 2(2): 153-162. doi: 10.3934/biophy.2015.2.153

    Related Papers:

  • A unique biological safety level (BSL)-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB) to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector) in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2) decontamination cycles.


    加载中
    [1] Sherman MB, Freiberg AN, Razmus D, et al. (2010) A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB. Appl Biosaf 15: 130-136.
    [2] Sherman MB, Trujillo J, Leahy I, et al. (2013) Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB. J Struct Biol 181: 223-233. doi: 10.1016/j.jsb.2012.12.007
    [3] Sherman MB, Weaver SC (2010) Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy. J Virol 84: 9775-9782. doi: 10.1128/JVI.00876-10
    [4] Wang Z, Hryc CF, Bammes B, et al. (2014) An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 5: 4808. doi: 10.1038/ncomms5808
    [5] Bammes B, Chen D, Jin L, et al. (2013) Visualizing and correcting dynamic specimen processes in TEM using a Direct Detection Device. Microsc Microanal 19: 1320-1321. doi: 10.1017/S1431927613008593
    [6] Clare DK, Orlova EV (2010) 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera. J Struct Biol 171: 303-308.
    [7] Fromm SA, Bharat TAM, Jakobi AJ, et al. (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189: 87-97. doi: 10.1016/j.jsb.2014.12.002
    [8] Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128: 82-97. doi: 10.1006/jsbi.1999.4174
    [9] Tang G, Peng L, Baldwin PR, et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157: 38-46. doi: 10.1016/j.jsb.2006.05.009
    [10] van Heel M, Harauz G, Orlova EV, et al. (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116: 17-24. doi: 10.1006/jsbi.1996.0004
    [11] Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol 208: 307-325.
    [12] Holmes KC, Franklin RE (1958) The radial density distribution in some strains of tobacco mosaic virus. Virology 6: 328-336. doi: 10.1016/0042-6822(58)90086-2
    [13] Henderson R, Sali A, Baker Matthew L, et al. (2012) Outcome of the First Electron Microscopy Validation Task Force Meeting. Structure (London, England:1993) 20-330: 205-214.
    [14] Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612. doi: 10.1002/jcc.20084
    [15] Czarneski MA, Lorcheim P (2005) Isolator decontamination using chlorine dioxide gas. Pharm Tech 29: 124-133.
    [16] Eylath A, Wilson D, Thatcher D, et al. (2003) Successful sterilization using chlorine dioxide gas: Part one- Sanitizing an aseptic fill isolator. BioProcess Int 1: 52-56.
    [17] Eylath AS, Madhogarhia ER, P. L, et al. (2003) Successful sterilization using chlorine dioxide gas: Part two-Cleaning process vessels. Bio-Process Int 1: 54-56.
    [18] Leo F, Poisson P, Sinclair CS, et al. (2005) Design, development, and qualification of a microbiological challenge facility to assess the effectiveness of BFS aseptic processing. PDA J Pharm Sci Tech 59: 33-48.
    [19] Czarneski MA (2009) Microbial decontamination of a 65- room new pharmaceutical research facility. Appl Biosafety: J Amer Biolog Safety Association 14 81-88.
    [20] Spotts Whitney EA, Beatty ME, Taylor TH, et al. (2003) Inactivation of Bacillus anthracis spores. Emerg Infect Dis 9: 623-627. doi: 10.3201/eid0906.020377
    [21] Agalloco J, Carleton P, Frederick J (2008) Validation of pharmaceutical processes. New York: Informa Healthcare USA Inc.
    [22] Westphal AJ, Price PB, Leighton TJ, et al. (2003) Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc Natl Acad Sci 100: 3461-3466. doi: 10.1073/pnas.232710999
    [23] Meyer RR, Kirkland AI, Dunin-Borkowski RE, et al. (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85: 9-13. doi: 10.1016/S0304-3991(00)00046-2
    [24] Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49: 269-280.
    [25] Derkits GE, Mandich ML, Reents WD, et al. (2010) Reliability of electronic equipment exposed to chlorine dioxide used for biological decontamination. 879-880.
    [26] Namba K, Stubbs G (1986) Structure of TMV at 3.6Å resolution: implications for assembly. Science 231: 1401-1406.
    [27] Champness JN, Bloomer AC, Bricogne G, et al. (1976) The structure of the protein disk of tobacco mosaic virus to 5A resolution. Nature 259: 20-24. doi: 10.1038/259020a0
    [28] Sachse C, Chen JZ, Coureux PD, et al. (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371: 812-835. doi: 10.1016/j.jmb.2007.05.088
    [29] Ge P, Zhou ZH (2011) Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Proc Natl Acad Sci U S A 108: 9637-9642. doi: 10.1073/pnas.1018104108
    [30] Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333: 721-745. doi: 10.1016/j.jmb.2003.07.013
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6635) PDF downloads(1228) Cited by(1)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog