Review Special Issues

Intrinsic blue-green fluorescence in amyloyd fibrils

  • Received: 10 May 2018 Accepted: 14 June 2018 Published: 22 June 2018
  • Proteins and polypeptides containing a high proportion of β-sheets have been recently reported to exhibit, in their amyloid aggregated states, an intrinsic fluorescence in the blue-green range of wavelength where the aromatic residues do not emit. Lately, growing attention has been devoted to the identification of a specific, structure-related fluorophore for the detection of amyloid aggregates due to their implications in the physio-pathology of neurodegenerative diseases and other aggregation-related diseases. Indeed, the appearance of blue-green fluorescence could be used as an alternative method for the investigation and the detection of the aggregation state without using external probes. Several hypotheses have been suggested to explain the molecular bases of this rather unusual intrinsic emission. In particular, it has been related to an expansion of the electronic delocalization of π-electrons of peptide bonds through the backbone-to-backbone hydrogen bonds connecting the β-sheets. Alternatively, the formation of the intrinsic chromophore has been associated to chemical modifications of the aromatic residues or arising from dipolar coupling between excited states of aromatic amino acids densely packed in the fibril structures. More recently, it has been proposed that the blue-green amyloid fluorophore does not require neither the presence of aromatic residues nor multiple bond conjugation. In this study, we critically review the above hypotheses with particular attention to the electronic transitions responsible for the appearance of blue-green fluorescence in amyloid fibrils.

    Citation: Ivana Sirangelo, Margherita Borriello, Gaetano Irace, Clara Iannuzzi. Intrinsic blue-green fluorescence in amyloyd fibrils[J]. AIMS Biophysics, 2018, 5(2): 155-165. doi: 10.3934/biophy.2018.2.155

    Related Papers:

    [1] Valentin Duruisseaux, Melvin Leok . Time-adaptive Lagrangian variational integrators for accelerated optimization. Journal of Geometric Mechanics, 2023, 15(1): 224-255. doi: 10.3934/jgm.2023010
    [2] Jordi Gaset, Arnau Mas . A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian. Journal of Geometric Mechanics, 2023, 15(1): 357-374. doi: 10.3934/jgm.2023014
    [3] Robert I McLachlan, Christian Offen . Backward error analysis for conjugate symplectic methods. Journal of Geometric Mechanics, 2023, 15(1): 98-115. doi: 10.3934/jgm.2023005
    [4] Álvaro Rodríguez Abella, Melvin Leok . Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups. Journal of Geometric Mechanics, 2023, 15(1): 319-356. doi: 10.3934/jgm.2023013
    [5] Maulik Bhatt, Amit K. Sanyal, Srikant Sukumar . Asymptotically stable optimal multi-rate rigid body attitude estimation based on lagrange-d'alembert principle. Journal of Geometric Mechanics, 2023, 15(1): 73-97. doi: 10.3934/jgm.2023004
    [6] Elias Maciel, Inocencio Ortiz, Christian E. Schaerer . A Herglotz-based integrator for nonholonomic mechanical systems. Journal of Geometric Mechanics, 2023, 15(1): 287-318. doi: 10.3934/jgm.2023012
    [7] William Clark, Anthony Bloch . Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints. Journal of Geometric Mechanics, 2023, 15(1): 256-286. doi: 10.3934/jgm.2023011
    [8] Francesco Bonechi, Jian Qiu, Marco Tarlini . Generalised Kähler structure on $ \mathbb{C}P^2 $ and elliptic functions. Journal of Geometric Mechanics, 2023, 15(1): 188-223. doi: 10.3934/jgm.2023009
    [9] Marcin Zając . The dressing field method in gauge theories - geometric approach. Journal of Geometric Mechanics, 2023, 15(1): 128-146. doi: 10.3934/jgm.2023007
    [10] Yunhe Sheng . Categorification of $ \mathsf{VB} $-Lie algebroids and $ \mathsf{VB} $-Courant algebroids. Journal of Geometric Mechanics, 2023, 15(1): 27-58. doi: 10.3934/jgm.2023002
  • Proteins and polypeptides containing a high proportion of β-sheets have been recently reported to exhibit, in their amyloid aggregated states, an intrinsic fluorescence in the blue-green range of wavelength where the aromatic residues do not emit. Lately, growing attention has been devoted to the identification of a specific, structure-related fluorophore for the detection of amyloid aggregates due to their implications in the physio-pathology of neurodegenerative diseases and other aggregation-related diseases. Indeed, the appearance of blue-green fluorescence could be used as an alternative method for the investigation and the detection of the aggregation state without using external probes. Several hypotheses have been suggested to explain the molecular bases of this rather unusual intrinsic emission. In particular, it has been related to an expansion of the electronic delocalization of π-electrons of peptide bonds through the backbone-to-backbone hydrogen bonds connecting the β-sheets. Alternatively, the formation of the intrinsic chromophore has been associated to chemical modifications of the aromatic residues or arising from dipolar coupling between excited states of aromatic amino acids densely packed in the fibril structures. More recently, it has been proposed that the blue-green amyloid fluorophore does not require neither the presence of aromatic residues nor multiple bond conjugation. In this study, we critically review the above hypotheses with particular attention to the electronic transitions responsible for the appearance of blue-green fluorescence in amyloid fibrils.


    The Skinner–Rusk formalism was introduced by R. Skinner and R. Rusk in 1983 [1] (although a previous description in local coordinates had been developed by K. Kamimura in [2]) in order to deal with mechanical systems described by singular Lagrangian functions. This formulation combines both the Lagrangian and Hamiltonian formalism and this is why it is sometimes called unified formalism. The Skinner–Rusk formalism has been extended to time-dependent systems [3,4,5], nonholonomic and vakonomic mechanics [6], higher-order mechanical systems [7,8,9,10], control systems [11,12] and field theory [13,14,15,16,17,18]. Recently, the Skinner–Rusk unified formalism was extended to contact [19] and $ k $-contact [20] systems. The Skinner–Rusk unified formalism has several advantages. In first place, we recover the second-order condition even if the Lagrangian of the system is singular. We also recover the definition of the Legendre map from the constraint algorithm. Also, both the Lagrangian and Hamiltonian formulations can be recovered from the Skinner–Rusk formalism by projecting onto their respective phase spaces.

    The use of contact geometry [21,22,23] to model geometrically the time-dependence in mechanical systems is very well-known [24,25,26] and it is, alongside with cosymplectic geometry [27], the natural way to do it. However, in the last decade, the application of contact geometry to the study of dynamical systems has grown significantly [28,29]. This is due to the fact that one can use contact structures to describe many different types of dynamical systems which cannot be described by means of symplectic geometry and standard Hamiltonian dynamics in a natural way. The dynamical systems which can be modelled using contact structures include mechanical systems with certain types of damping [30,31,32], some systems in quantum mechanics [33], circuit theory [34], control theory [35] and thermodynamics [36,37], among many others [23,25,38,39,40,41,42,43].

    Although contact geometry is a suitable framework when working with systems of ordinary differential equations, a generalisation is required in order to deal with systems of partial differential equations describing classical field theories. This generalisation is the so-called $ k $-contact structure [20,44,45]. This formulation allows to describe many types of field theories both in the Lagrangian and in the Hamiltonian formalisms. The $ k $-contact framework allows us to describe geometrically field theories with damping, some equations from circuit theory, such as the so-called telegrapher's equation, or the Burgers' equation. Recently, a geometric framework has been developed [46] in order to deal with time-dependent mechanical systems with dissipation using the so-called cocontact geometry. It is still an open problem to find a geometric setting to describe non-autonomous field theories with damping.

    The main goal of this paper is to extend the Skinner–Rusk formalism to time-dependent contact systems, studying the dynamical equations and the submanifold where they are consistent, and showing that the Lagrangian and Hamiltonian formalisms can be recovered from this mixed formalism. In first place, we introduce the phase space of this formulation: the Pontryagin bundle $ \mathcal{W} = \mathbb{R}\times \mathrm{T} Q\times \mathrm{T}^\ast Q\times \mathbb{R} $ endowed with natural coordinates $ (t, q^i, v^i, p_i, s) $. This manifold has a natural precocontact structure $ ({\mathrm{d}} t, \eta) $ inherited from the natural cocontact structure of $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ (see [46]). The Hamiltonian function associated to a Lagrangian function $ L\in \mathscr{C}^\infty(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ is defined as

    $ \mathcal{H} = p_iv^i - L(t, q^i, v^i, s)\, . $

    Since the Hamiltonian system $ (\mathcal{W}, {\mathrm{d}} t, \eta, \mathcal{H}) $ is singular, we need to implement a constraint algorithm in order to find a submanifold where the Hamiltonian equations are consistent. In the first iteration of the constraint algorithm we recover the second-order condition, even if the Lagrangian function is singular (in the Lagrangian formalism, we only recover the $\text{SODE}$ condition if the Lagrangian is regular). The first constraint submanifold is the graph of the Legendre map $ \mathcal{F} L $. If the Lagrangian function is regular the constraint algorithm ends in one step and we obtain the usual results by projecting the dynamics onto the Lagrangian and Hamiltonian phase spaces. If the Lagrangian function is singular, the constraint algorithm is related to the usual Lagrangian and Hamiltonian constraint algorithms (imposing the $\text{SODE}$ condition in the Lagrangian case).

    The structure of the present paper is as follows. In Section 2, we review the basics on cocontact geometry, which is an extension of both contact and cosymplectic geometry. This geometric framework allows us to develop a Hamiltonian and a Lagrangian formulation for time-dependent contact systems [46]. Section 3 is devoted to present the Skinner–Rusk unified formulation for cocontact systems. We begin by introducing the Pontryagin bundle and its natural precocontact structure and state the Lagrangian–Hamiltonian problem. In Section 4 we recover both the Lagrangian and Hamiltonian formalisms and see that they are equivalent to the Skinner–Rusk formalisms (imposing the second order-condition if the Lagrangian is singular). Finally, in Section 5 some examples are studied in full detail. These examples are the Duffing equation [47,48], an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint.

    Throughout this paper, all the manifolds are real, second countable and of class $ \mathscr{C}^\infty $. Mappings are assumed to be smooth and the sum over crossed repeated indices is understood.

    In this first section we will briefly review the basics on cocontact manifolds introduced in [46] and how this structure can be used to geometrically describe time-dependent contact mechanical systems.

    Definition 2.1. A cocontact structure on a $ (2n+2) $-dimensional manifold $ M $ is a couple of 1-forms $ (\tau, \eta) $ on $ M $ such that $ {\mathrm{d}}\tau = 0 $ and $ \tau\wedge\eta\wedge({\mathrm{d}}{\eta})^n\neq 0 $. In this case, $ (M, \tau, \eta) $ is said to be a cocontact manifold.

    Example 2.2. Let $ Q $ be an $ n $-dimensional smooth manifold with local coordinates $ (q^i) $. Let $ (q^i, p_i) $ be the induced natural coordinates on its cotangent bundle $ \mathrm{T}^\ast Q $. Consider the product manifolds $ \mathbb{R}\times \mathrm{T}^\ast Q $, $ \mathrm{T}^\ast Q\times \mathbb{R} $ and $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ with natural coordinates $ (t, q^i, p_i) $, $ (q^i, p_i, s) $ and $ (t, q^i, p_i, s) $ respectively. Let us also define the following projections:

    Now consider $ \theta_0\in\Omega^1(\mathrm{T}^\ast Q) $ be the canonical 1-form of the cotangent bundle with local expression $ \theta_0 = p_i{\mathrm{d}} q^i $ and let $ \theta_1 = \pi_1^*\theta_0 $ and $ \theta_2 = \pi_2^*\theta_0 $.

    Then we have that $ ({\mathrm{d}} t, \theta_2) $ is a cosymplectic structure in $ \mathbb{R}\times \mathrm{T}^\ast Q $ and $ \eta_1 = {\mathrm{d}} s - \theta_1 $ is a contact form on $ \mathrm{T}^\ast Q\times \mathbb{R} $. Furthermore, considering the one-forms in $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ given by $ \theta = \rho_1^*\theta_2 = \rho_2^*\theta_1 = \pi^*\theta_0 $, $ \tau = {\mathrm{d}} t $ and $ \eta = {\mathrm{d}} s - \theta $, we have that $ (\tau, \eta) $ is a cocontact structure in $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ with local expression:

    $ \tau = {\mathrm{d}} t\, , \qquad \eta = {\mathrm{d}} s - p_i{\mathrm{d}} q^i\, . $

    In a cocontact manifold $ (M, \tau, \eta) $ we have the so called flat isomorphism

    $ :TMTMv(i(v)τ)τ+i(v)dη+(i(v)η)η,
    $

    which can be extended to a morphism of $ \mathscr{C}^\infty(M) $-modules:

    $ \flat:X\in \mathfrak{X}(M)\longmapsto (i(X)\tau)\tau + i(X){\mathrm{d}}\eta + \left(i(X)\eta\right)\eta\in\Omega^1(M)\, . $

    Proposition 2.3. Given a cocontact manifold $ (M, \tau, \eta) $ there exist two vector fields $ R_t $, $ R_s $ on $ M $ such that

    $ {i(Rt)τ=1,i(Rt)η=0,i(Rt)dη=0,{i(Rs)τ=0,i(Rs)η=1,i(Rs)dη=0.
    $
    (2.1)

    Equivalently, they can be defined as $ R_t = \flat^{-1}(\tau) $ and $ R_s = \flat^{-1}(\eta) $. The vector fields $ R_t $ and $ R_s $ are called time and contact Reeb vector fields respectively.

    Moreover, on a cocontact manifold we also have the canonical or Darboux coordinates, as the following theorem establishes:

    Theorem 2.4 (Darboux theorem for cocontact manifolds). Given a cocontact manifold $ (M, \tau, \eta) $, for every $ p\in M $ exists a local chart $ (U; t, q^i, p_i, s) $ containing $ p $ such that

    $ { \left. {\tau} \right|_{{U}} } = {\mathrm{d}} t\, , \qquad { \left. {\eta} \right|_{{U}} } = {\mathrm{d}} s - p_i{\mathrm{d}} q^i\, . $

    In Darboux coordinates, the Reeb vector fields read $ R_t = \partial {}/\partial {t} $, $ R_s = \partial {}/\partial {s} $.

    Definition 2.5. A cocontact Hamiltonian system is family $ (M, \tau, \eta, H) $ where $ (\tau, \eta) $ is a cocontact structure on $ M $ and $ H:M\to \mathbb{R} $ is a Hamiltonian function. The cocontact Hamilton equations for a curve $ \psi\colon I\subset \mathbb{R}\to M $ are

    $ \left\{ i(ψ)dη=dH(LRsH)η(LRtH)τ,i(ψ)η=H,i(ψ)τ=1,
    \right. $
    (2.2)

    where $ \psi'\colon I\subset \mathbb{R}\to \mathrm{T} M $ is the canonical lift of $ \psi $ to the tangent bundle $ \mathrm{T} M $. The cocontact Hamiltonian equations for a vector field $ X\in \mathfrak{X}(M) $ are:

    $ \left\{ i(X)dη=dH(LRsH)η(LRtH)τ,i(X)η=H,i(X)τ=1,
    \right. $
    (2.3)

    or equivalently, $ \flat(X) = {\mathrm{d}} H-\left(\mathscr{L}_{R_s}H+H\right)\eta+\left(1- \mathscr{L}_{R_t}H\right)\tau $. The unique solution to this equations is called the cocontact Hamiltonian vector field.

    Given a curve $ \psi $ with local expression $ \psi(r) = (f(r), q^i(r), p_i(r), s(r)) $, the third equation in (2.2) imposes that $ f(r) = r + cnt $, thus we will denote $ r\equiv t $, while the other equations read:

    $ \left\{ ˙qi=Hpi,˙pi=(Hqi+piHs),˙s=piHpiH.
    \right. $
    (2.4)

    On the other hand, the local expression of the cocontact Hamiltonian vector field is

    $ X = \frac{\partial {}}{\partial {t}} + \frac{\partial {H}}{\partial {p_i}}\frac{\partial {}}{\partial {q^i}} - \left(\frac{\partial {H}}{\partial {q^i}} + p_i\frac{\partial {H}}{\partial {s}}\right)\frac{\partial {}}{\partial {p_i}} + \left(p_i\frac{\partial {H}}{\partial {p_i}} - H\right)\frac{\partial {}}{\partial {s}}\, . $

    Given a smooth $ n $-dimensional manifold $ Q $, consider the product manifold $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ equipped with canonical coordinates $ (t, q^i, v^i, s) $. We have the canonical projections

    $ τ1:R×TQ×RR ,τ1(t,vq,s)=t,τ2:R×TQ×RTQ ,τ2(t,vq,s)=vq,τ3:R×TQ×RR ,τ3(t,vq,s)=s,τ0:R×TQ×RR×Q×R ,τ0(t,vq,s)=(t,q,s),
    $

    which are summarized in the following diagram:

    The usual geometric structures of the tangent bundle can be naturally extended to the cocontact Lagrangian phase space $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $. In particular, the vertical endomorphism of $ \mathrm{T}(\mathrm{T} Q) $ yields a vertical endomorphism $ \mathcal{J}\colon \mathrm{T}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R})\to \mathrm{T}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $. In the same way, the Liouville vector field on the fibre bundle $ \mathrm{T} Q $ gives a Liouville vector field $ \Delta\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $. The local expressions of these objects in Darboux coordinates are

    $ \mathcal{J} = \frac{\partial}{\partial v^i} \otimes {\mathrm{d}} q^i \, , \quad \Delta = v^i\, \frac{\partial}{\partial v^i} \, . $

    Definition 2.6. Given a path $ {\bf c} \colon \mathbb{R} \rightarrow \mathbb{R}\times Q\times \mathbb{R} $ with $ {\bf c} = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3) $, the prolongation of $ {\bf c} $ to $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ is the path $ {\bf \tilde c} = (\mathbf{c}_1, \mathbf{c}_2', \mathbf{c}_3) \colon \mathbb{R} \longrightarrow \mathbb{R}\times \mathrm{T} Q \times \mathbb{R} $, where $ \mathbf{c}_2' $ is the velocity of $ \mathbf{c}_2 $. Every path $ {\bf \tilde c} $ which is the prolongation of a path $ {\bf c} \colon \mathbb{R} \rightarrow \mathbb{R}\times Q\times \mathbb{R} $ is called holonomic. A vector field $ \Gamma \in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q \times \mathbb{R}) $ satisfies the second-order condition (it is a $\text{SODE}$) if all of its integral curves are holonomic.

    The vector fields satisfying the second-order condition can be characterized by means of the canonical structures $ \Delta $ and $ \mathcal{J} $ introduced above, since $ X $ is a $\text{SODE}$ if and only if $ \mathcal{J}(\Gamma) = \Delta $.

    Taking canonical coordinates, if $ {\bf c}(r) = (t(r), c^i(r), s(r)) $, its prolongation to $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ is

    $ {\bf \tilde c}(r) = \left(t(r), c^i(r), \frac{{\mathrm{d}} c^i}{{\mathrm{d}} r}(r), s(r) \right) \, . $

    The local expression of a $\text{SODE}$ in natural coordinates $ (t, q^i, v^i, s) $ is

    $ Γ=ft+viqi+Givi+gs.
    $
    (2.5)

    Thus, a $\text{SODE}$ defines a system of differential equations of the form

    $ \frac{{\mathrm{d}} t}{{\mathrm{d}} r} = f(t, q, \dot q, s)\, , \quad \frac{{\mathrm{d}}^2 q^i}{{\mathrm{d}} r^2} = G^i(t, q, \dot q, s) \, , \quad \frac{{\mathrm{d}} s}{{\mathrm{d}} r} = g(t, q, \dot q, s) \:. $

    Definition 2.7. A Lagrangian function is a function $ \mathcal{L}\in \mathscr{C}^\infty(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $. The Lagrangian energy associated to $ \mathcal{L} $ is the function $ E_ \mathcal{L} = \Delta(\mathcal{L})- \mathcal{L} $. The Cartan forms associated to $ \mathcal{L} $ are

    $ θL=tJdLΩ1(R×TQ×R),ωL=dθLΩ2(R×TQ×R),
    $
    (2.6)

    where $ ^\text{t}{\mathcal{J}} $ denotes the transpose of the canonical endomorphism introduced above. The contact Lagrangian form is

    $ \eta_ \mathcal{L} = {\mathrm{d}} s-\theta_ \mathcal{L}\in\Omega^1( \mathbb{R}\times \mathrm{T} Q\times \mathbb{R})\, . $

    Notice that $ {\mathrm{d}}\eta_ \mathcal{L} = \omega_ \mathcal{L} $. The couple $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \mathcal{L}) $ is a cocontact Lagrangian system.

    The local expressions of these objects are

    $ EL=viLviL,ηL=dsLvidqi,dηL=2Ltvidtdqi2Lqjvidqjdqi2Lvjvidvjdqi2Lsvidsdqi.
    $

    Not all cocontact Lagrangian systems $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \mathcal{L}) $ result in the family $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \tau = {\mathrm{d}} t, \eta_ \mathcal{L}, E_ \mathcal{L}) $ being a cocontact Hamiltonian system because the condition $ \tau\wedge\eta\wedge({\mathrm{d}}\eta_ \mathcal{L})^n\neq 0 $ is not always fulfilled. The Legendre map characterizes which Lagrangian functions will result in cocontact Hamiltonian systems.

    Definition 2.8. Given a Lagrangian function $ \mathcal{L} \in \mathscr{C}^\infty(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $, the Legendre map associated to $ \mathcal{L} $ is its fibre derivative, considered as a function on the vector bundle $ \tau_0 \colon \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} \to \mathbb{R}\times Q \times \mathbb{R} $; that is, the map $ \mathcal{F} \mathcal{L} \colon \mathbb{R}\times \mathrm{T} Q \times \mathbb{R} \to \mathbb{R}\times \mathrm{T}^\ast Q \times \mathbb{R} $ with expression

    $ \mathcal{F} \mathcal{L} (t, q, v, s) = \left( t, \mathcal{F} L_{t, s}(q, v), s \right)\, , $

    where $ v \in \mathrm{T}_qQ $ and $ \mathcal{F} L_{t, s}: \mathrm{T} Q \to \mathrm{T}^\ast Q $ is the usual Legendre map associated to the Lagrangian function $ L_{t, s} = \mathcal{L}(t, \cdot, s)\colon \mathrm{T} Q\to \mathbb{R} $ with $ t $ and $ s $ freezed.

    The Cartan forms can also be defined as $ \theta_ \mathcal{L} = \mathcal{F} \mathcal{L}^{\; *}(\pi^*\theta_0) $ and $ \omega_ \mathcal{L} = { \mathcal{F} \mathcal{L}}^{\; *}(\pi^*\omega_0) $, where $ \theta_0 $ and $ \omega_0 = -{\mathrm{d}}\theta_0 $ are the canonical one- and two-forms of the cotangent bundle and $ \pi $ is the natural projection $ \pi\colon \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}\to \mathrm{T}^\ast Q $ (see Example 2.2).

    Proposition 2.9. Given a Lagrangian function $ \mathcal{L} $ the following statements are equivalent:

    ${{\rm(i)}}$ The Legendre map $ \mathcal{F} \mathcal{L} $ is a local diffeomorphism.

    ${{\rm(ii)}}$ The fibre Hessian $ \mathcal{F}^2 \mathcal{L} \colon \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} \longrightarrow (\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R})\otimes (\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}) $ of $ \mathcal{L} $ is everywhere nondegenerate (the tensor product is understood to be of vector bundles over $ \mathbb{R}\times Q \times \mathbb{R} $).

    ${{\rm(iii)}}$ The family $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, {\mathrm{d}} t, \eta_ \mathcal{L}) $ is a cocontact manifold.

    This can be checked using that $ \mathcal{F} \mathcal{L}(t, q^i, v^i, s) = \left(t, q^i, \partial { \mathcal{L}}/\partial {v^i}, s\right) $ and $ \mathcal{F}^2 \mathcal{L}(t, q^i, v^i, s) = (t, q^i, W_{ij}, s) $, where $ W_{ij} = \left(\partial^2 { \mathcal{L}}/\partial {v^i}\partial {v^j}\right) $.

    A Lagrangian function $ \mathcal{L} $ is regular if the equivalent statements in the previous proposition hold. Otherwise $ \mathcal{L} $ is singular. Moreover, $ \mathcal{L} $ is hyperregular if $ \mathcal{F} \mathcal{L} $ is a global diffeomorphism. Thus, every regular cocontact Lagrangian system yields the cocontact Hamiltonian system $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, {\mathrm{d}} t, \eta_ \mathcal{L}, E_ \mathcal{L}) $.

    Given a regular cocontact Lagrangian system $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \mathcal{L}) $, the Reeb vector fields $ R_t^ \mathcal{L}, R_s^ \mathcal{L}\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ are uniquely determined by the relations

    $ \left\{ i(RLt)dt=1,i(RLt)ηL=0,i(RLt)dηL=0,
    \right. \qquad \left\{ i(RLs)dt=0,i(RLs)ηL=1,i(RLs)dηL=0,
    \right. $

    and their local expressions are

    $ RLt=tWij2Ltvjvi,RLs=sWij2Lsvjvi,
    $

    where $ W^{ij} $ is the inverse of the Hessian matrix of the Lagrangian $ \mathcal{L} $, namely $ W^{ij}W_{jk} = \delta^i_k $.

    If the Lagrangian $ \mathcal{L} $ is singular, the Reeb vector fields are not uniquely determined, actually, they may not even exist [46].

    Definition 2.10. Given a regular cocontact Lagrangian system $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \mathcal{L}) $ the Herglotz–Euler–Lagrange equations for a holonomic curve $ {\bf\tilde c}\colon I\subset \mathbb{R} \to \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ are

    $ \left\{ i(˜c)dηL=(dEL(LRLtEL)dt(LRLsEL)ηL)˜c,i(˜c)ηL=EL˜c,i(˜c)dt=1,
    \right. $
    (2.7)

    where $ {\bf\tilde c}'\colon I\subset \mathbb{R}\to \mathrm{T}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ is the canonical lift of $ {\bf\tilde c} $ to $ \mathrm{T}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $. The cocontact Lagrangian equations for a vector field $ X_ \mathcal{L}\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ are

    $ {i(XL)dηL=dEL(LRLtEL)dt(LRLsEL)ηL,i(XL)ηL=EL,i(XL)dt=1.
    $
    (2.8)

    The only vector field solution to these equations is the cocontact Lagrangian vector field.

    Remark 2.11. The cocontact Lagrangian vector field of a regular cocontact Lagrangian system $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, \mathcal{L}) $ is the cocontact Hamiltonian vector field of the cocontact Hamiltonian system $ (\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}, {\mathrm{d}} t, \eta_ \mathcal{L}, E_ \mathcal{L}) $.

    Given a holonomic curve $ {\bf\tilde c}(r) = (t(r), q^i(r), \dot q^i(r), s(r)) $, equations (2.7) read

    $ ˙t=1,
    $
    (2.9)
    $ ˙s=L,
    $
    (2.10)
    $ ˙t2Ltvi+˙qj2Lqjvi+¨qj2Lvjvi+˙s2LsviLqi=ddr(Lvi)Lqi=LsLvi.
    $
    (2.11)

    The fact that $ \dot t = 1 $ justifies the usual identification $ t\equiv r $. For a vector field $ X_ \mathcal{L} $ with local expression $ X_ \mathcal{L} = f\dfrac{\partial {}}{\partial {t}} + F^i\dfrac{\partial {}}{\partial {q^i}} + G^i\dfrac{\partial {}}{\partial {v^i}} + g\dfrac{\partial {}}{\partial {s}} $, equations (2.8) are

    $ (Fjvj)2Ltvj=0,
    $
    (2.12)
    $ f2Ltvi+Fj2Lqjvi+Gj2Lvjvi+g2LsviLqi(Fjvj)2Lqivj=LsLvi,
    $
    (2.13)
    $ (Fjvj)2Lvivj=0,
    $
    (2.14)
    $ (Fjvj)2Lsvj=0,
    $
    (2.15)
    $ L+Lvj(Fjvj)g=0,
    $
    (2.16)
    $ f=1.
    $
    (2.17)

    Theorem 2.12. If $ \mathcal{L} $ is a regular Lagrangian, $ X_ \mathcal{L} $ is a $\text{SODE}$ and equations (2.12)–(2.17) become

    $ f=1,g=L,2Ltvi+vj2Lqjvi+Gj2Lvjvi+L2LsviLqi=LsLvi,
    $

    which, for the integral curves of $ X_ \mathcal{L} $, are the Herglotz–Euler–Lagrange equations (2.9), (2.10) and (2.11). This $\text{SODE}$ $ X_ \mathcal{L}\equiv\Gamma_ \mathcal{L} $ is the Herglotz–Euler–Lagrange vector field for the Lagrangian $ \mathcal{L} $.

    The coordinate expression of the Herglotz–Euler–Lagrange vector field is

    $ ΓL=t+viqi+Wji(Lqj2Ltvjvk2LqkvjL2Lsvj+LsLvj)vi+Ls.
    $

    An integral curve of $ \Gamma_ \mathcal{L} $ fulfills the Herglotz–Euler–Lagrange equation for dissipative systems:

    $ \frac{{\mathrm{d}}}{{\mathrm{d}} t}\left(\frac{\partial { \mathcal{L}}}{\partial {v^i}}\right) - \frac{\partial { \mathcal{L}}}{\partial {q^i}} = \frac{\partial { \mathcal{L}}}{\partial {s}}\frac{\partial { \mathcal{L}}}{\partial {v^i}}\, , \qquad \dot s = \mathcal{L}\, . $

    Consider a cocontact Lagrangian system with configuration space $ \mathbb{R}\times Q\times \mathbb{R} $, where $ Q $ is an $ n $-dimensional manifold, equipped with coordinates $ (t, q^i, s) $. Consider the product bundles $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ with natural coordinates $ (t, q^i, v^i, s) $ and $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ with natural coordinates $ (t, q^i, p_i, s) $, and the natural projections

    $ τ2:R×TQ×RTQ ,τ0:R×TQ×RR×Q×R,π2:R×TQ×RTQ ,π0:R×TQ×RR×Q×R.
    $

    Let $ \theta_0\in\Omega^1(\mathrm{T}^\ast Q) $ denote the Liouville 1-form of the cotangent bundle and let $ \omega_0 = -{\mathrm{d}}\theta_0\in\Omega^2(\mathrm{T}^\ast Q) $ be the canonical symplectic form of $ \mathrm{T}^\ast Q $. The local expressions of $ \theta_0 $ and $ \omega_0 $ are

    $ \theta_0 = p_i{\mathrm{d}} q^i\ , \qquad \omega_0 = {\mathrm{d}} q^i\wedge{\mathrm{d}} p_i\, . $

    We will denote by $ \theta = \pi_2^\ast\theta_0\in\Omega^1(\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}) $ and $ \omega = \pi_2^\ast\omega_0\in\Omega^2(\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}) $ the pull-backs of $ \theta_0 $ and $ \omega_0 $ to $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $.

    Definition 3.1. The extended Pontryagin bundle is the Whitney sum

    $ \mathcal{W} = \mathbb{R}\times \mathrm{T} Q\times_Q \mathrm{T}^\ast Q\times \mathbb{R} $

    equipped with the natural submersions

    $ ρ1:WR×TQ×R,ρ2:WR×TQ×R,ρ0:WR×Q×R.
    $

    The extended Pontryagin bundle is endowed with natural coordinates $ (t, q^i, v^i, p_i, s) $.

    Definition 3.2. A path $ \gamma\colon \mathbb{R}\to \mathcal{W} $ is holonomic if the path $ \rho_1\circ\gamma\colon \mathbb{R}\to \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ is holonomic, i.e., it is the prolongation to $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ of a path $ \mathbb{R}\to \mathbb{R}\times Q\times \mathbb{R} $.

    A vector field $ X\in \mathfrak{X}(\mathcal{W}) $ satisfies the second-order condition (or it is a $\text{SODE}$) if its integral curves are holonomic in $ \mathcal{W} $.

    A holonomic path in $ \mathcal{W} $ has local expression

    $ \gamma(\tau) = \left( t(\tau), q^i(\tau), \dot q^i(\tau), p_i(\tau), s(\tau) \right)\, . $

    The local expression of a $\text{SODE}$ in $ \mathcal{W} $ is

    $ X = f\frac{\partial {}}{\partial {t}} + v^i\frac{\partial {}}{\partial {q^i}} + F^i\frac{\partial {}}{\partial {v^i}} + G_i\frac{\partial {}}{\partial {p_i}} + g\frac{\partial {}}{\partial {s}}\, . $

    In the extended Pontryagin bundle $ \mathcal{W} $ we have the following canonical structures:

    Definition 3.3.

    1. The coupling function in $ \mathcal{W} $ is the map $ \mathcal{C}\colon \mathcal{W}\to \mathbb{R} $ given by

    $ \mathcal{C}(w) = i({\rm v}_q){\rm p}_q\, , $

    where $ w = (t, {\rm v}_q, {\rm p}_q, s)\in \mathcal{W} $, $ q\in Q $, $ {\rm v}_q\in \mathrm{T} Q $ and $ {\rm p}_q\in \mathrm{T}^\ast Q $.

    2. The canonical 1-form is the $ \rho_0 $-semibasic form $ \Theta = \rho_2^\ast\theta \in \Omega^1(\mathcal{W}) $. The canonical 2-form is $ \Omega = -{\mathrm{d}}\Theta = \rho_2^\ast\omega \in \Omega^2(\mathcal{W}) $.

    3. The canonical precontact 1-form is the $ \rho_0 $-semibasic form $ \eta = {\mathrm{d}} s - \Theta \in \Omega^1(\mathcal{W}) $.

    In natural coordinates,

    $ \Theta = p_i{\mathrm{d}} q^i\ , \quad \eta = {\mathrm{d}} s - p_i{\mathrm{d}} q^i\ , \quad {\mathrm{d}}\eta = {\mathrm{d}} q^i\wedge{\mathrm{d}} p_i = \Omega\, . $

    Definition 3.4. Let $ L\in \mathscr{C}^\infty(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ be a Lagrangian function and consider $ \mathcal{L} = \rho^*_1L\in \mathscr{C}^\infty(\mathcal{W}) $. The Hamiltonian function associated to $ \mathcal{L} $ is the function

    $ \mathcal{H} = \mathcal{C} - \mathcal{L} = p_iv^i - \mathcal{L}(t, q^j, v^j, s) \in \mathscr{C}^\infty( \mathcal{W}) $

    Remark 3.5. In [46] the authors introduce the notion of characteristic distribution of a couple of one-forms $ (\tau, \eta)\in\Omega^1(M) $ as $ \mathfrak{C} = \ker\tau\cap\ker\eta\cap\ker{\mathrm{d}}\eta $. If $ \mathfrak{C} $ has constant rank, we say that the couple $ (\tau, \eta) $ is of class $ \mathfrak{cl}(\tau, \eta) = \dim M - \mathfrak{C} $.

    The couple $ (\tau, \eta) $ defines a precocontact structure on $ M $ if $ {\mathrm{d}}\tau = 0 $, the characteristic distribution of the couple $ (\tau, \eta) $ has constant rank and $ \mathfrak{cl}(\tau, \eta) = 2r+2\geq 2 $. The triple $ (M, \tau, \eta) $ is called a precocontact manifold. It is important to point out that if $ \mathfrak{C} = 0 $, we have a cocontact manifold.

    Notice that the couple $ ({\mathrm{d}} t, \eta) $ is a precocontact structure in the Pontryagin bundle $ \mathcal{W} $. Hence, $ (\mathcal{W}, {\mathrm{d}} t, \eta) $ is a precocontact manifold and $ (\mathcal{W}, {\mathrm{d}} t, \eta, \mathcal{H}) $ is a precocontact Hamiltonian system. Thus, we do not have a unique couple $ (R_t, R_s) $ of Reeb vector fields. In fact, in natural coordinates, the general solution to (2.1) is

    $ Rt=t+Fivi,Rs=s+Givi,
    $

    where $ F^i, G^i\in \mathscr{C}^\infty(\mathcal{W}) $ are arbitrary functions. Despite this fact, the formalism is independent on the choice of the Reeb vector fields, as proved in Theorem 5.9 and Corollary 5.10 in [46]. Since the extended Pontryagin bundle $ \mathcal{W} $ is trivial over $ \mathbb{R}\times \mathbb{R} $, the vector fields $ \partial {}/\partial {t}, \partial {}/\partial {s} $ can be canonically lifted to $ \mathcal{W} $ and used as Reeb vector fields.

    Definition 3.6. The Lagrangian–Hamiltonian problem associated to the precocontact Hamiltonian system $ (\mathcal{W}, {\mathrm{d}} t, \eta, \mathcal{H}) $ consists in finding the integral curves of a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ such that

    $ \flat(Z) = {\mathrm{d}} \mathcal{H} - ( \mathscr{L}_{ R_s} \mathcal{H} + \mathcal{H})\eta + (1 - \mathscr{L}_{ R_t} \mathcal{H}){\mathrm{d}} t\, . $

    Equivalently,

    $ {i(Z)dη=dH(LRsH)η(LRtH)dt,i(Z)η=H,i(Z)dt=1.
    $
    (3.1)

    Thus, the integral curves $ \gamma\colon I\subset \mathbb{R}\rightarrow \mathcal{W} $ of $ Z $ are solutions to the system of equations

    $ {i(γ)dη=(dH(LRsH)η(LRtH)dt)γ,i(γ)η=Hγ,i(γ)dt=1.
    $
    (3.2)

    Since $ (\mathcal{W}, {\mathrm{d}} t, \eta, \mathcal{H}) $ is a precocontact system, equations (3.1) may not be consistent everywhere in $ \mathcal{W} $. In order to find a submanifold $ \mathcal{W}_f\hookrightarrow \mathcal{W} $ (if possible) where equations (3.1) have consistent solutions, a constraint algorithm is needed. The implementation of this algorithm is described below.

    Consider the natural coordinates $ (t, q^i, v^i, p_i, s) $ in $ \mathcal{W} $ and the vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ with local expression

    $ Z = A\frac{\partial {}}{\partial {t}} + B^i\frac{\partial {}}{\partial {q^i}} + C^i\frac{\partial {}}{\partial {v^i}} + D_i\frac{\partial {}}{\partial {p_i}} + E\frac{\partial {}}{\partial {s}}\, . $

    The left-hand side of equations (3.1) read

    $ i(Z)dη=BidpiDidqi,i(Z)η=EpiBi,i(Z)dt=A.
    $

    On the other hand, we have

    $ dH=vidpi+(piLvi)dviLtdtLqidqiLsds,(LRsH)η=Ls(dspidqi),(LRtH)dt=Ltdt.
    $

    Thus, the second equation in (3.1) gives

    $ E=(Bivi)pi+L,
    $
    (3.3)

    the third equation in (3.1) reads

    $ A=1,
    $
    (3.4)

    and the first equation in (3.1) gives the conditions

    $ Bi=vi(coefficients in dpi),
    $
    (3.5)
    $ pi=Lvi(coefficients in dvi),
    $
    (3.6)
    $ Di=Lqi+piLs(coefficients in dqi).
    $
    (3.7)

    Notice that

    ● Equations (3.5) are the $\text{SODE}$ conditions. Hence, the vector field $ Z $ is a $\text{SODE}$. Then, it is clear that the holonomy condition arises straightforwardly from the Skinner–Rusk formalism.

    ● Conditions (3.6) are constraint functions defining the first constraint submanifold $ \mathcal{W}_1\hookrightarrow \mathcal{W} $. It is important to notice that the submanifold $ \mathcal{W}_1 $ is the graph of the Legendre map $ \mathcal{F} L $ defined previously 2.8:

    $ \mathcal{W}_1 = \{({\rm v}_q, \mathcal{F} L(t, {\rm v}_q, s))\in \mathcal{W}\mid({t, \rm v}_q, s)\in \mathbb{R}\times \mathrm{T} Q\times \mathbb{R}\}\, . $

    This implies that the Skinner–Rusk formalism implies the definition of the Legendre map.

    In virtue of conditions (3.5), (3.6), (3.7), the vector fields $ Z $ solution to equations (3.1) have the local expression

    $ Z = \frac{\partial {}}{\partial {t}} + v^i\frac{\partial {}}{\partial {q^i}} + C^i\frac{\partial {}}{\partial {v^i}} + \left(\frac{\partial { \mathcal{L}}}{\partial {q^i}} + p_i\frac{\partial { \mathcal{L}}}{\partial {s}}\right)\frac{\partial {}}{\partial {p_i}} + \mathcal{L}\frac{\partial {}}{\partial {s}} $

    on the submanifold $ \mathcal{W}_1 $, where $ C^i $ are arbitrary function.

    The constraint algorithm continues by demanding the tangency of $ Z $ to the first constraint submanifold $ \mathcal{W}_1 $, in order to ensure that the solutions to the Lagrangian–Hamiltonian problem (the integral curves of $ Z $) remain in the submanifold $ \mathcal{W}_1 $. The constraint functions defining $ \mathcal{W}_1 $ are

    $ \xi^1_j = p_j - \frac{\partial { \mathcal{L}}}{\partial {v^j}}\in \mathscr{C}^\infty( \mathcal{W})\, . $

    Imposing the tangency condition $ \mathscr{L}_Z\xi^1_j = 0 $ on $ \mathcal{W}_1 $, we get

    $ Ci2Lvivj=2Ltvjvi2LqivjL2Lsvj+Lqj+pjLs
    $
    (3.8)

    on $ \mathcal{W}_1 $. At this point, we have to consider two different cases:

    ● When the Lagrangian function $ L $ is regular, from (3.8) we can determine all the coefficients $ C^i $. In this case, we have a unique solution and the algorithm finishes in just one step.

    ● In case the Lagrangian $ L $ is singular, equations (3.8) establish some relations among the functions $ C^i $. In this some of them may remain undetermined and the solutions may not be unique. In addition, new constraint functions $ \xi^2_j\in \mathscr{C}^\infty(\mathcal{W}_1) $ may arise. These new constraint function define a submanifold $ \mathcal{W}_2\hookrightarrow \mathcal{W}_1\hookrightarrow \mathcal{W} $. The constraint algorithm continues by imposing that $ Z $ is tangent to $ \mathcal{W}_2 $ and so on until we get a final constraint submanifold $ \mathcal{W}_f $ (if possible) where we can find solutions to (3.1) tangent to $ \mathcal{W}_f $.

    Consider an integral curve $ \gamma(r) = (t(r), q^i(r), v^i(r), p_i(r), s(r)) $ of the vector field $ Z\in \mathfrak{X}(\mathcal{W}) $. We have that $ A = \dot t $, $ B^i = \dot q^i $, $ C^i = \dot v^i $, $ D_i = \dot p_i $ and $ E = \dot s $. Then, equations (3.3), (3.4), (3.5), (3.6) and (3.7) lead to the local expression of (3.2). In particular,

    ● Equation (3.5) gives $ v^i = \dot q^i $, namely the holonomy condition.

    ● Combining equations (3.3) and (3.5), we see that

    $ ˙s=L,
    $
    (3.9)

    which corresponds to equation (2.10).

    ● Equations (3.7) give

    $ \dot p_i = \frac{\partial { \mathcal{L}}}{\partial {q^i}} + p_i\frac{\partial { \mathcal{L}}}{\partial {s}} = -\left(\frac{\partial { \mathcal{H}}}{\partial {q^i}} + p_i\frac{\partial { \mathcal{H}}}{\partial {s}}\right)\, , $

    which are the second set of Hamilton's equations (2.4). These equations, on the first constraint submanifold $ \mathcal{W}_1 $, read

    $ \frac{{\mathrm{d}}}{{\mathrm{d}} t}\left(\frac{\partial { \mathcal{L}}}{\partial {v^i}}\right) - \frac{\partial { \mathcal{L}}}{\partial {q^i}} = \frac{\partial { \mathcal{L}}}{\partial {v^i}}\frac{\partial { \mathcal{L}}}{\partial {s}}\, , $

    which are the Herglotz–Euler–Lagrange equations (2.11). Also, the first set of Hamilton's equations (2.4) comes from the definition of the Hamiltonian function 3.4 taking into account the holonomy condition.

    ● Combining equations (3.6) and (3.9), the tangency condition (3.8) yields the Herglotz–Euler–Lagrange equations (2.11). It is important to point out that, if the Lagrangian function $ L $ is singular, the Herglotz–Euler–Lagrange equations may be incompatible.

    The aim of this section is to show the equivalence between the Skinner–Rusk formalism, presented above, and the Lagrangian and Hamiltonian formalisms.

    Let us denote $ \jmath_1\colon \mathcal{W}_1 \hookrightarrow \mathcal{W} $ as the natural embedding. Then

    $ \rho_1\circ\jmath_1 \colon \mathcal{W}_1 \rightarrow \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} \qquad \mbox{ and } \qquad \rho_2\circ\jmath_1\colon \mathcal{W}_1 \rightarrow \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $

    where

    $ (\rho_1\circ\jmath_1)( \mathcal{W}_1) = \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} \qquad \mbox{ and } \qquad (\rho_2\circ\jmath_1)( \mathcal{W}_1) = P_1 \subset \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}\, . $

    Also $ P_1 $ is a submanifold of $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ whenever $ L $ is an almost regular Lagrangian (see [46] for a precise definition of this concept in the cocontact setting) and we have the equality $ P_1 = \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ when $ L $ is regular. Since $ \mathcal{W}_1 = \text{graph}(\mathcal{F} L) $, it is diffeomorphic to $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ and $ (\rho_1\circ\jmath_1) $ is a diffeomorphism. Similarly, under the assumption $ L $ is almost-regular, we have

    $ (\rho_1\circ\jmath_\alpha)( \mathcal{W}_\alpha) = S_\alpha \subset \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} \qquad \mbox{ and } \qquad (\rho_2\circ\jmath_\alpha)( \mathcal{W}_\alpha) = P_\alpha \subset P_1 \subset \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}\, . $

    for every $ \mathcal{W}_\alpha $ submanifold obtained from the constraint algorithm. Let us denote by $ \mathcal{W}_f $ the final constraint submanifold

    $ \mathcal{W}_f \hookrightarrow \dots \hookrightarrow \mathcal{W}_\alpha \hookrightarrow \dots \hookrightarrow \mathcal{W}_1 \hookrightarrow \mathcal{W}\, . $

    Figure 1 summarizes all the applications we have just introduced.

    Figure 1.  Recovering the Lagrangian and Hamiltonian formalisms.

    Theorem 4.1. Consider a path $ \sigma\colon I\subset \mathbb{R}\rightarrow \mathcal{W}_1 $. Therefore $ \sigma = (\sigma_L, \sigma_H) $ where $ \sigma_L = \rho_1\circ\sigma $ and $ \sigma_H = \mathcal{F} L\circ\sigma_L $. Denote also $ \sigma_0 = \rho_0\circ\sigma: I\subset \mathbb{R}\rightarrow \mathbb{R}\times Q\times \mathbb{R} $. Then:

    If $ \sigma\colon I \subset \mathbb{R} \rightarrow \mathcal{W}_1 $ fulfills equations (3.2) on $ \mathcal{W}_f $ then $ \sigma_L $ is the prolongation of the curve $ \sigma_0 = \rho_0\circ\sigma $, which is a solution of (2.7) on $ S_f $. Also the path $ \sigma_H = \mathcal{F} L\circ\widetilde\sigma_0 $ is a solution to (2.2) on $ P_f $.

    Conversely, let the path $ \sigma_0: I\subset \mathbb{R} \rightarrow \mathbb{R}\times Q\times \mathbb{R} $ be a solution of (2.7) on $ S_f $. Then, the curve $ \sigma = (\sigma_L, \sigma_H) $ is a solution of (3.2), where $ \sigma_L : = \widetilde\sigma_0 $ and $ \sigma_H : = \mathcal{F} L\circ\widetilde\sigma_0 $. Also path $ \sigma_H $ is a solution to (2.2) on $ P_f $.

    Proof. The proof of this theorem can be easily worked out by using natural coordinates and taking into account equations (3.3)–(3.8).

    As a consequence, we obtain the following recovering theorems:

    Theorem 4.2. Let $ Z\in \mathfrak{X}(\mathcal{W}) $ be a solution of (3.1) at least on $ \mathcal{W}_f $ and tangent to $ \mathcal{W}_f $. Then:

    The vector field $ X\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ defined by $ X\circ\rho_1 = \mathrm{T}\rho_1\circ Z $ is a holonomic vector field (tangent to $ S_f $) which is a solution to the equations (2.8) with $ \mathcal{H} = \rho_1^*E_L $.

    Conversely, every holonomic vector field solution of the equations (2.8) can be recovered in this way from a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ solution of (3.1) on $ \mathcal{W}_f $ and tangent to $ \mathcal{W}_f $.

    Proof. Let $ Z\in \mathfrak{X}(\mathcal{W}) $ be a solution to equations (3.1) with local expression

    $ Z = \frac{\partial {}}{\partial {t}} + v^i\frac{\partial {}}{\partial {q^i}} + C^i\frac{\partial {}}{\partial {v^i}} + \left(\frac{\partial { \mathcal{L}}}{\partial {q^i}} + p_i\frac{\partial { \mathcal{L}}}{\partial {s}}\right)\frac{\partial {}}{\partial {p_i}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, , $

    where the functions $ C^i $ satisfy the relations (3.8). Thus, the vector field $ X\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ has local expression

    $ X = \frac{\partial {}}{\partial {t}} + v^i\frac{\partial {}}{\partial {q^i}} + C^i\frac{\partial {}}{\partial {v^i}} + L\frac{\partial {}}{\partial {s}}\, , $

    where the functions $ C^i $ satisfy the relations (3.8). It is clear that $ X $ is a holonomic vector field and that it satisfies equations (2.8) with $ \mathcal{H} = v^i\dfrac{\partial {L}}{\partial {v^i}} - L $, where $ \rho_1^\ast L = \mathcal{L} $.

    Moreover, every holonomic vector field $ X\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ solution to (2.8) comes from a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ by considering that $ p_i = \dfrac{\partial { \mathcal{L}}}{\partial {v^i}} $.

    Similarly, we also recover the Hamiltonian formalism:

    Theorem 4.3. Let $ Z\in \mathfrak{X}(\mathcal{W}) $ be a solution of (3.1) at least on $ \mathcal{W}_f $ and tangent to $ \mathcal{W}_f $. Then, the vector field $ Y\in \mathfrak{X}(\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}) $ defined by $ Y\circ\rho_2 = \mathrm{T}\rho_2\circ Z $ is a solution to the equations (2.3) on $ P_f $ and tangent to $ P_f $, assuming that $ \rho_2^\ast H = \mathcal{H} $.

    Conversely, every vector field solution of the equations (2.3) can be recovered in this way from a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ solution of (3.1) on $ \mathcal{W}_f $ and tangent to $ \mathcal{W}_f $, assuming that $ \rho_2^\ast H = \mathcal{H} $.

    The proof of this theorem is straightforward by taking natural coordinates in $ \mathcal{W} $ and in $ \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $.

    Remark 4.4. The results presented in this section are analogous to those obtained for the Skinner–Rusk formalism for time-dependent dynamical systems. Intrinsic proves of the corresponding theorems can be found in [3] (see also [4]).

    Remark 4.5. It is important to remark that in the case of singular Lagrangians, the two constraint algorithms are equivalent only when the second-order condition is imposed as an additional condition in the Lagrangian side [1,49].

    The Duffing equation [47,48], named after G. Duffing, is a non-linear second-order differential equation which can be used to model certain damped and forced oscillators. The Duffing equation is

    $ ¨x+δ˙x+αx+βx3=γcosωt,
    $
    (5.1)

    where $ \alpha, \beta, \gamma, \delta, \omega $ are constant parameters. Notice that if $ \gamma = 0 $, which means that the system does not depend on time, we are in the case of contact mechanics. On the other hand if $ \delta = 0 $, namely there is no damping, we have a cosymplectic system. Finally, if $ \beta = \delta = \gamma = 0 $, we obtain the equation of a simple harmonic oscillator. In physical terms, equation (5.1) models a damped forced oscillator with a stiffness different from the one obtained by Hooke's law.

    It is clear that this system is not Hamiltonian nor Lagrangian in a standard sense. However, we will see that we can provide a geometric description of it as a time-dependent contact Hamiltonian system.

    Consider the configuration space $ Q = \mathbb{R} $ with canonical coordinate $ (x) $. Consider now the product bundle $ \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ with natural coordinates $ (t, x, v, s) $ and the Lagrangian function

    $ \mathcal{L}\colon \mathbb{R}\times \mathrm{T} Q\times \mathbb{R}\longrightarrow \mathbb{R} $

    given by

    $ L(t,x,v,s)=12v212αx214βx4δs+γxcosωt.
    $
    (5.2)

    Let $ \mathcal{W} $ be the extended Pontryagin bundle

    $ \mathcal{W} = \mathbb{R}\times \mathrm{T} Q\times_Q \mathrm{T}^\ast Q\times \mathbb{R} $

    equipped with natural coordinates $ (t, x, v, p, s) $. The coupling function is $ \mathcal{C}(t, x, v, p, s) = pv $. The couple of one-forms $ ({\mathrm{d}} t, \eta = {\mathrm{d}} s - p{\mathrm{d}} x) $ define a precocontact structure on $ \mathcal{W} $. The dissipative Reeb vector field is $ R_s = \partial {}/\partial {s} $ and the time Reeb vector field is $ R_t = \partial {}/\partial {t} $. We also have that $ {\mathrm{d}}\eta = {\mathrm{d}} x\wedge{\mathrm{d}} p $. The Hamiltonian function associated to the Lagrangian function (5.2) is the function

    $ \mathcal{H} = \mathcal{C} - \mathcal{L} = pv - \frac{1}{2}v^2 + \frac{1}{2}\alpha x^2 + \frac{1}{4}\beta x^4 + \delta s - \gamma x\cos \omega t\ \in \mathscr{C}^\infty( \mathcal{W})\, . $

    We have that

    $ {\mathrm{d}} \mathcal{H} = \gamma\omega x\sin(\omega t){\mathrm{d}} t + (\alpha x + \beta x^3 - \gamma\cos\omega t){\mathrm{d}} x + (p - v){\mathrm{d}} v + v{\mathrm{d}} p + \delta{\mathrm{d}} s\, , $

    and hence

    $ {\mathrm{d}} \mathcal{H} - R_s( \mathcal{H})\eta - R_t( \mathcal{H}){\mathrm{d}} t = (\alpha x + \beta x^3 + \delta p - \gamma\cos\omega t){\mathrm{d}} x + (p-v){\mathrm{d}} v + v{\mathrm{d}} p\, . $

    Given a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ with local expression

    $ Z = A\frac{\partial {}}{\partial {t}} + B\frac{\partial {}}{\partial {x}} + C\frac{\partial {}}{\partial {v}} + D\frac{\partial {}}{\partial {p}} + E\frac{\partial {}}{\partial {s}}\, , $

    equations (3.1) give the conditions

    $ \left\{ A=1,B=v,D=αxβx3δp+γcosωt,pv=0,E=pBH=L.
    \right. $

    Thus, the vector field $ Z $ is a $\text{SODE}$ and has the expression

    $ Z = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {x}} + C\frac{\partial {}}{\partial {v}} + (-\alpha x - \beta x^3 - \delta p + \gamma\cos\omega t)\frac{\partial {}}{\partial {p}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, , $

    and we have the constraint function

    $ \xi_1 = p-v = 0\, , $

    which defines the first constraint submanifold $ \mathcal{W}_1\hookrightarrow \mathcal{W} $. The constraint algorithm continues by demanding the tangency of the vector field $ Z $ to $ \mathcal{W}_1 $. Hence,

    $ 0 = \mathscr{L}_Z \xi_1 = -\alpha x - \beta x^3 - \delta v + \gamma\cos\omega t - C\, , $

    determining the last coefficient of the vector field $ Z $

    $ C = -\alpha x - \beta x^3 - \delta v + \gamma\cos\omega t\, , $

    and no new constraints appear. Then, we have the unique solution

    $ Z = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {x}} + (-\alpha x - \beta x^3 - \delta v + \gamma\cos\omega t)\frac{\partial {}}{\partial {v}} + (-\alpha x - \beta x^3 - \delta v + \gamma\cos\omega t)\frac{\partial {}}{\partial {p}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, . $

    Projecting onto each factor of $ \mathcal{W} $, namely using the projections $ \rho_1\colon \mathcal{W}\to \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ and $ \rho_2\colon \mathcal{W}\to \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $, we can recover both the Lagrangian and the Hamiltonian vector fields. In the Lagrangian formalism we obtain the holonomic vector field $ X\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ given by

    $ X = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {x}} + (-\alpha x - \beta x^3 - \delta v + \gamma\cos\omega t)\frac{\partial {}}{\partial {v}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, . $

    We can see that the integral curves of $ X $ satisfy the Duffing equation

    $ \ddot x + \delta \dot x + \alpha x + \beta x^3 = \gamma\cos\omega t\, . $

    On the other hand, projecting with $ \rho_2 $, we obtain the Hamiltonian vector field $ Y\in \mathfrak{X}(\mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R}) $ given by

    $ Y = \frac{\partial {}}{\partial {t}} + p\frac{\partial {}}{\partial {x}} + (-\alpha x - \beta x^3 - \delta p + \gamma\cos\omega t)\frac{\partial {}}{\partial {p}} + \left(\frac{1}{2}p^2 - \frac{1}{2}\alpha x^2 - \frac{1}{4}\beta x^4 - \delta s + \gamma x\cos \omega t\right)\frac{\partial {}}{\partial {s}}\, . $

    Notice that the integral curves of $ Y $ also satisfy the Duffing equation (5.1). Thus, we have shown that although the Duffing equation cannot be formulated as a standard Hamiltonian system, it can be described as a cocontact Lagrangian or Hamiltonian system.

    In this example we will consider a system of time-dependent mass with an engine providing an ascending force $ F > 0 $ and subjected to a drag proportional to the square of the velocity.

    Let $ Q = \mathbb{R} $ with coordinate $ (y) $ be the configuration manifold of our system and consider the Lagrangian function

    $ \mathcal{L}\colon \mathbb{R}\times \mathrm{T} Q\times \mathbb{R}\longrightarrow \mathbb{R} $

    given by

    $ L(t,y,v,s)=12m(t)v2+m(t)g2γ(e2γy1)2γvs+12γF,
    $
    (5.3)

    where $ \gamma $ is the drag coefficient and the mass is given by the monotone decreasing function $ m(t) $. Consider the extended Pontryagin bundle

    $ \mathcal{W} = \mathbb{R}\times \mathrm{T} Q\times_Q \mathrm{T}^\ast Q\times \mathbb{R} $

    endowed with canonical coordinates $ (t, y, v, p, s) $, the coupling function $ \mathcal{C}(t, y, v, p, s) = pv $ and the 1-forms $ \tau = {\mathrm{d}} t $ and $ \eta = {\mathrm{d}} s - p{\mathrm{d}} y $. We have that $ (\mathcal{W}, \tau, \eta) $ is a precocontact manifold, with Reeb vector fields $ R_t = \partial {}/\partial {t} $, $ R_s = \partial {}/\partial {s} $. The Hamiltonian function $ \mathcal{H} $ associated with the Lagrangian (5.3) is

    $ \mathcal{H} = \mathcal{C} - \mathcal{L} = pv - \frac{1}{2}m(t)v^2 - \frac{m(t)g}{2\gamma}\left( e^{-2\gamma y} - 1 \right) + 2\gamma v s - \frac{1}{2\gamma}F\ \in \mathscr{C}^\infty( \mathcal{W})\, . $

    In this case, we have

    $ {\mathrm{d}} \mathcal{H} - R_s( \mathcal{H})\eta - R_t( \mathcal{H}){\mathrm{d}} t = \\ = v{\mathrm{d}} p + (p - m(t) v + 2\gamma s){\mathrm{d}} v + \big(m(t) g e^{-2\gamma y} + 2\gamma v p\big){\mathrm{d}} y + \frac{\partial { \mathcal{H}}}{\partial {t}}{\mathrm{d}} t + 2\gamma v {\mathrm{d}} s\, . $

    Consider a vector field $ Z\in \mathfrak{X}(\mathcal{W}) $ with coordinate expression

    $ Z = A\frac{\partial {}}{\partial {t}} + B\frac{\partial {}}{\partial {y}} + C\frac{\partial {}}{\partial {v}} + D\frac{\partial {}}{\partial {p}} + E\frac{\partial {}}{\partial {s}}\, . $

    Then, equations (3.1) read

    $ \left\{ A=1,B=v,D=m(t)ge2γy2γvp,pm(t)v+2γs=0,E=pBH=L.
    \right. $

    Hence, the vector field $ Z $ is a $\text{SODE}$ and has the expression

    $ Z = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {y}} + C\frac{\partial {}}{\partial {v}} + \left( -m(t)ge^{-2\gamma y} - 2\gamma v p \right)\frac{\partial {}}{\partial {p}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, , $

    and we obtain the constraint function

    $ \xi_1 = p-m(t)v + 2\gamma s\, , $

    defining the first constraint submanifold $ \mathcal{W}_1\hookrightarrow \mathcal{W} $. Demanding the tangency of $ Z $ to $ \mathcal{W}_1 $, we obtain

    $ \mathscr{L}_Z\xi_1 = -\gamma m(t) v^2 - m(t)C - \dot m(t) v - m(t) g + F\, , $

    which determines the remaining coefficient of the vector field $ Z $:

    $ C = \frac{F}{m(t)} - \gamma v^2 - \frac{\dot m(t)}{m(t)}v - g $

    and no new constraints appear. Thus, we have the unique solution

    $ Z = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {y}} + \left(\frac{F}{m(t)} - \gamma v^2 - \frac{\dot m(t)}{m(t)}v - g\right)\frac{\partial {}}{\partial {v}} + \left( -m(t)ge^{-2\gamma y} - 2\gamma v p \right)\frac{\partial {}}{\partial {p}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, . $

    We can project onto each factor of $ \mathcal{W} $ by using the projections $ \rho_1\colon \mathcal{W}\to \mathbb{R}\times \mathrm{T} Q\times \mathbb{R} $ and $ \rho_2\colon \mathcal{W}\to \mathbb{R}\times \mathrm{T}^\ast Q\times \mathbb{R} $ thus recovering the Lagrangian and Hamiltonian formalisms. In the Lagrangian formalism we get the $\text{SODE}$ $ X\in \mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}) $ given by

    $ X = \frac{\partial {}}{\partial {t}} + v\frac{\partial {}}{\partial {y}} + \left(\frac{F}{m(t)} - \gamma v^2 - \frac{\dot m(t)}{m(t)}v - g\right)\frac{\partial {}}{\partial {v}} + \mathcal{L}\frac{\partial {}}{\partial {s}}\, . $

    The integral curves of $ X $ satisfy the second-order differential equation

    $ \left\{ ˙y=v,˙v=Fm(t)γv2˙m(t)m(t)vg,
    \right. $

    which can be rewritten as

    $ \left\{ ˙y=v,ddt(m(t)v)=Fm(t)gγm(t)v2.
    \right. $

    Consider a system where we have a charged particle with mass $ m $ and charge $ k $ in the plane immersed in a stationary electric field $ \mathbf{E} = (E_1, E_2, E_3) = -\nabla\phi $ and subjected to a time-dependent constraint given by $ f(t, \mathbf{q}) = 0 $, where $ \nabla $ denotes the Euclidean gradient and $ \mathbf{q} = (x, y, z) $. Consider the phase space $ \mathrm{T} \mathbb{R}^4 $, endowed with natural coordinates $ (x, y, z, \lambda; v_x, v_y, v_z, v_\lambda) $, and the contact Lagrangian function $ \mathcal{L}\colon \mathbb{R}\times \mathrm{T} \mathbb{R}^4\times \mathbb{R}\to \mathbb{R} $ given by

    $ L(t,q,λ,v,vλ,s)=12mv2kϕ(q)+λf(t,q)γs,
    $
    (5.4)

    where $ \mathbf{v} = (v_x, v_y, v_z) $ and $ v = \sqrt{v_x^2+v_y^2 + v_z^2} $ and $ \gamma $ is the friction coefficient. Since we have introduced the restriction $ f(t, \mathbf{q}) = 0 $ via a Lagrange multiplier, it is clear that the Lagrangian (5.4) is singular.

    Consider the extended Pontryagin bundle

    $ \mathcal{W} = \mathbb{R}\times \mathrm{T} \mathbb{R}^4\times_{ \mathbb{R}^4} \mathrm{T}^\ast \mathbb{R}^4\times \mathbb{R} $

    endowed with natural coordinates $ (t, x, y, z, \lambda, v_x, v_y, v_z, v_\lambda, p_x, p_y, p_\lambda, s) $. We have that $ ({\mathrm{d}} t, \eta) $, where

    $ \eta = {\mathrm{d}} s - p_x{\mathrm{d}} x - p_y{\mathrm{d}} y - p_z{\mathrm{d}} z - p_\lambda{\mathrm{d}}\lambda\, , $

    is a precocontact structure on $ \mathcal{W} $. The coupling function is $ \mathcal{C} = p_xv_x + p_yv_y + p_zv_z + p_\lambda v_\lambda $ and the Hamiltonian function $ \mathcal{H} = \mathcal{C} - \mathcal{L} $ associated to the Lagrangian $ \mathcal{L} $ is

    $ \mathcal{H} = p_xv_x + p_yv_y + p_zv_z + p_\lambda v_\lambda - \frac{1}{2}mv^2 + k\phi(\mathbf{q}) - \lambda f(t, \mathbf{q}) + \gamma s\, . $

    Thus,

    $ dHRs(H)ηRt(H)dt=vxdpx+vydpy+vzdpz+vλdpλ+(pxmvx)dvx+(pymvy)dvy+(pzmvz)dvz+pλdvλ+(kϕxλfx+γpx)dx+(kϕyλfy+γpy)dy+(kϕzλfz+γpz)dz+(γpλf(t,q))dλ.
    $

    Let $ Z $ be a vector field on $ \mathcal{W} $ with local expression

    $ Z=At+Bxx+Byy+Bzz+Bλλ+Cxvx+Cyvy+Czvz+Cλvλ+Dxpx+Dypy+Dzpz+Dλpλ+Es,
    $

    then, equations (3.1) yield the conditions

    $ A=1,Bx=vx,By=vy,Bz=vz,Bλ=vλ,Dx=λfxkϕxγpx,Dy=λfykϕyγpy,Dz=λfzkϕzγpz,Dλ=f(t,q)γpλ,pxmvx=0,pymvy=0,pzmvz=0,pλ=0,E=pxBx+pyBy+pzBz+pλBλH=L.
    $

    Thus, the vector field $ Z $ is

    $ Z=t+vxx+vyy+vzz+vλλ+Cxvx+Cyvy+Czvz+Cλvλ+(λfxkϕxγmvx)px+(λfykϕyγmvy)py+(λfzkϕzγmvz)pzf(t,q)pλ+Ls,
    $

    and we get the constraints

    $ \xi_1^x \equiv p_x - m v_x = 0\ , \qquad \xi_1^y \equiv p_y - m v_y = 0\ , \qquad \xi_1^z \equiv p_z - m v_z = 0\ , \qquad \xi_1^\lambda \equiv p_\lambda = 0\, , $

    defining the first constraint submanifold $ \mathcal{W}_1\hookrightarrow \mathcal{W} $. The constraint algorithm continues by demanding the tangency of the vector field $ Z $ to the submanifold $ \mathcal{W}_1 $:

    $ LZξx1=λfxkϕxγpxmCx=0LZξy1=λfykϕyγpymCy=0LZξz1=λfzkϕzγpzmCz=0LZξλ1=f(t,q)=0,
    $

    thus determining the coefficients $ C_x, C_y, C_z $. In addition, we have obtained the constraint function

    $ \xi_2 \equiv f(t, \mathbf{q}) = 0\, , $

    defining the second constraint submanifold $ \mathcal{W}_2\hookrightarrow \mathcal{W}_1\hookrightarrow \mathcal{W} $. Then, the vector field $ Z $ has the form

    $ Z=t+vxx+vyy+vzz+vλλ+1m(λfxkϕxγmvx)vx+1m(λfykϕyγmvy)vy+1m(λfzkϕzγmvz)vz+Cλvλ+(λfxkϕxγmvx)px+(λfykϕyγmvy)py+(λfzkϕzγmvz)pz+Ls.
    $

    Imposing the tangency to $ \mathcal{W}_2 $, we condition

    $ \mathscr{L}_Z\xi_2 = \frac{\partial {f}}{\partial {t}} + v_x\frac{\partial {f}}{\partial {x}} + v_y\frac{\partial {f}}{\partial {y}} + v_z\frac{\partial {f}}{\partial {z}} = 0\, , $

    which is a new constraint function $ \xi_3 \equiv \dfrac{\partial {f}}{\partial {t}} + v_x\dfrac{\partial {f}}{\partial {x}} + v_y\dfrac{\partial {f}}{\partial {y}} + v_z\dfrac{\partial {f}}{\partial {z}} = \dfrac{\partial {f}}{\partial {t}} + \mathbf{v}\cdot\nabla f = 0\, . $ This process has to be iterated until no new constraints appear, depending on the function $ f $.

    Now we are going to consider the particular case where $ f(t, \mathbf{q}) = z - t $. In this case,

    $ \xi_3 \equiv v_z - 1 = 0\, . $

    Thus, imposing the tangency of $ Z $ to $ \xi_3 $ we get the condition

    $ \mathscr{L}_Z\xi_3 = \frac{1}{m}\left( \lambda - k\frac{\partial {\phi}}{\partial {z}} - \gamma mv_z \right) = 0\, , $

    giving a new constraint function

    $ \xi_4 \equiv \lambda - k\frac{\partial {\phi}}{\partial {z}} - \gamma m = 0\, . $

    Then, the vector field $ Z $ is

    $ Z=t+vxx+vyy+z+vλλ+1m(kϕxγmvx)vx+1m(kϕyγmvy)vy+Cλvλ+(kϕxγmvx)px+(kϕyγmvy)py+Ls.
    $

    Imposing the tangency condition with respect to $ \xi_4 $, we obtain that

    $ v_\lambda = k\left(\frac{\partial^2 {\phi}}{\partial {x}\partial {z}}v_x + \frac{\partial^2 {\phi}}{\partial {y}\partial {z}}v_y + \frac{\partial {^2\phi}}{\partial {y^2}}\right)\, . $

    The tangency condition with respect to this constraint determines the last coefficient of the vector field,

    $ C_\lambda = k\Bigg( v_x^2\frac{\partial {^3\phi}}{\partial {x^2\partial z}} + v_y^2\frac{\partial {^3\phi}}{\partial {y^2\partial z}} + (1 + 2v_x)v_y\frac{\partial {^3\phi}}{\partial {x\partial y\partial z}} + \\ + 2v_x\frac{\partial {^3\phi}}{\partial {x\partial z^2}} + \frac{\partial {^3\phi}}{\partial {y\partial z^2}} + \frac{\partial {^3\phi}}{\partial {z^3}} - \left( \frac{k}{m}\frac{\partial {\phi}}{\partial {x}} + \gamma v_x \right)\frac{\partial^2 {\phi}}{\partial {x}\partial {z}} - \left( \frac{k}{m}\frac{\partial {\phi}}{\partial {y}} + \gamma v_y \right)\frac{\partial^2 {\phi}}{\partial {y}\partial {z}} \Bigg)\, , $

    and no new constraints arise. In conclusion, the vector field $ Z $ has local expression

    $ Z=t+vxx+vyy+z+k(2ϕxzvx+2ϕyzvy+2ϕy2)λ+1m(kϕxγmvx)vx+1m(kϕyγmvy)vy+Cλvλ+(kϕxγmvx)px+(kϕyγmvy)py+Ls.
    $

    The integral curves of the vector field $ Z $ satisfy the system of differential equations

    $ m\ddot x = -k\frac{\partial {\phi}}{\partial {x}} - \gamma m v_x\, , \qquad m\ddot y = -k\frac{\partial {\phi}}{\partial {y}} - \gamma m v_y\, , \quad z = t\, . $

    In Figure 2 one can see the trajectory of a charged particle with charge $ k = 2\cdot 10^{-4} $ and mass $ m = 1 $ in the electric field induced by a charge fixed in the origin with charge $ -2\cdot 10^{-4} $ and in absence of gravity. The friction coefficient is $ \gamma = 0.3 $ and the initial configuration of the system is $ \mathbf{q}(0) = (2, 0, 0) $, $ \mathbf{v}(0) = (0, 10, 0) $. As indicated above, the particle is subjected to the restriction $ z = t $.

    Figure 2.  Trajectory of the charged particle (blue) and position of the fixed charge (red).

    We have generalized the Skinner–Rusk unified formalism for time-dependent contact systems. This framework allows to skip the second-order problem, since this condition is recovered in the first step of the constraint algorithm for both regular and singular Lagrangians. This makes this formalism especially interesting when working with systems described by singular Lagrangians.

    The key tool of this formalism is the Pontryagin bundle $ \mathcal{W} = \mathbb{R}\times \mathrm{T} Q\times \mathrm{T}^\ast Q\times \mathbb{R} $ and its canonical precocontact structure. Imposing the compatibility of the dynamical equations on $ \mathcal{W} $ we obtain a set of constraint function defining a submanifold $ \mathcal{W}_1 $, which coincides with the graph of the Legendre map, the second-order conditions and the Herglotz–Euler–Lagrange equations. We have also shown that the Skinner–Rusk formalism for cocontact systems is equivalent to both the Hamiltonian and the Lagrangian formalisms (in this last case when imposing the second order condition).

    In addition, we have described in full detail three examples in order to illustrate this method: the Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint.

    The formulation introduced in this paper will permit to extend the $ k $-contact formalism for field theories with damping introduced in [44,45] to non-autonomous field theories. This new formulation will permit to describe many field theories, such as damped vibrating membranes with external forces, Maxwell's equations with charges and currents, etc.

    XR acknowledges the financial support of the Ministerio de Ciencia, Innovación y Universidades (Spain), project PGC2018-098265-B-C33 and of Novee Idee 2B-POB II project PSP: 501-D111-20-2004310 funded by the "Inicjatywa Doskonałości - Uczelnia Badawcza" (IDUB) program.

    All authors declare no conflicts of interest in this paper.

    [1] Cantor CR, Schimmel PR (1980) Techniques for the study of biological structure and function, Biophysical Chemistry, Part II, WH Freeman and Co.
    [2] Chen RF (1990) Fluorescence of proteins and peptides, In: Guilbault GG, Editor, Practical Fluorescence, Revised and Expanded, 2 Eds., Marcel Dekker, 576–682.
    [3] Lakowicz JR (2006) Protein fluorescence, In: Principles of fluorescence spectroscopy, Springer Science Business Media, 443–476.
    [4] Shukla A, Mukherjee S, Sharma S, et al. (2004) A novel UV laser-induced visible blue radiation from protein crystals and aggregates: Scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch Biochem Biophys 428: 144–153. doi: 10.1016/j.abb.2004.05.007
    [5] Mercato LLD, Pompa PP, Maruccio G, et al. (2007) Charge transport and intrinsic fluorescence in amyloid-like fibrils. P Natl Acad Sci USA 104: 18019–18024.
    [6] Guptasarma P (2008) Solution-state characteristics of the ultraviolet A-induced visible fluorescence from proteins. Arch Biochem Biophys 478: 127–129. doi: 10.1016/j.abb.2008.08.002
    [7] Sharpe S, Simonetti K, Yau J, et al. (2011) Solid-state NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 12: 1546–1555. doi: 10.1021/bm101486s
    [8] Chan FTS, Kaminski GS, Kumita JR, et al. (2013) Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 138: 2156–2162. doi: 10.1039/c3an36798c
    [9] Pinotsi D, Buell AK, Dobson CM, et al. (2013) A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chembiochem 14: 846–850. doi: 10.1002/cbic.201300103
    [10] Giamblanco N, Coglitore D, Janot JM, et al. (2018) Detection of protein aggregate morphology through single antifouling nanopore. Sensor Actuat B-Chem 260: 736–745. doi: 10.1016/j.snb.2018.01.094
    [11] Pinotsi D, Schierle GSK, Kaminski CF (2016) Optical super-resolution imaging of β-amyloid aggregation in vitro and in vivo: Method and techniques. Methods Mol Biol 1303: 125–141. doi: 10.1007/978-1-4939-2627-5_6
    [12] Schierle GSK, Bertoncini CW, Chan FTS, et al. (2011) A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 12: 673–680. doi: 10.1002/cphc.201000996
    [13] Hudson SA, Ecroyd H, Kee TW, et al. (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276: 5960–5972. doi: 10.1111/j.1742-4658.2009.07307.x
    [14] Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu Rev Biochem 86: 27–68. doi: 10.1146/annurev-biochem-061516-045115
    [15] Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366. doi: 10.1146/annurev.biochem.75.101304.123901
    [16] Spadaccini R, Leone S, Rega MF, et al. (2016) Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett 590: 3681–3689. doi: 10.1002/1873-3468.12437
    [17] Leone S, Picone D (2016) Molecular dynamics driven design of ph-stabilized mutants of MNEI, a sweet protein. PLoS One 11: e0158372. doi: 10.1371/journal.pone.0158372
    [18] Bouaziz Z, Soussan L, Janot JM, et al. (2017) Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide. Colloid Surface B 157: 10–17. doi: 10.1016/j.colsurfb.2017.05.050
    [19] Serpell LS (2000) Alzheimer's amyloid fibrils: Structure and assembly. BBA-Mol Basis Dis 1502: 16–30. doi: 10.1016/S0925-4439(00)00029-6
    [20] Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272: 5950–5961. doi: 10.1111/j.1742-4658.2005.05025.x
    [21] Serpell LC, Sunde M, Benson MD, et al. (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300: 1033–1039. doi: 10.1006/jmbi.2000.3908
    [22] Fitzpatrick AW, Debelouchina GT, Bayro MJ, et al. (2013) Atomic structure and hierarchical assembly of a cross-β amyloid fibril. P Natl Acad Sci USA 110: 5468–5473. doi: 10.1073/pnas.1219476110
    [23] Lashuel HA, Hartley DM, Petre BM, et al. (2003) Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332: 795–808. doi: 10.1016/S0022-2836(03)00927-6
    [24] Lee CC, Nayak A, Sethuraman A, et al. (2007) A three-stage kinetic model of amyloid fibrillation. Biophys J 92: 3448–3458.
    [25] Iannuzzi C, Borriello M, Irace G, et al. (2017) Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci Rep 7: 15086. doi: 10.1038/s41598-017-15503-5
    [26] Levine H (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci 2: 404–410.
    [27] Iannuzzi C, Borriello M, Carafa V, et al. (2016) D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. BBA-Mol Basis Dis 1852: 93–104.
    [28] Tcherkasskaya O (2007) Photo-activity induced by amyloidogenesis. Protein Sci 16: 561–571. doi: 10.1110/ps.062578307
    [29] Hanczyc P, Samoc M, Norden B (2013) Multiphoton absorption in amyloid protein fibres. Nat Photonics 7: 969–972. doi: 10.1038/nphoton.2013.282
    [30] Anand U, Mukherjee M (2013) Exploring the self-assembly of a short aromatic Aβ (16–24) peptide. Langmuir 29: 2713–2721. doi: 10.1021/la304585a
    [31] Pinotsi D, Grisanti L, Mahou P, et al. (2016) Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J Am Chem Soc 138: 3046–3057. doi: 10.1021/jacs.5b11012
    [32] Grisanti L, Pinotsi D, Gebauer R, et al. (2017) A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 19: 4030–4040. doi: 10.1039/C6CP07564A
    [33] Iannuzzi C, Borriello M, Portaccio M, et al. (2017) Insights into insulin fibril assembly at physiological and acidic pH and related amyloid intrinsic fluorescence. Int J Mol Sci 18: 2551.
    [34] Zou Y, Li Y, Hao W, et al. (2013) Parallel β-sheet fibril and antiparallel β-sheet oligomer: New insights into amyloid formation of hen egg white lysozyme under heat and acidic condition from FTIR spectroscopy. J Phys Chem B 117: 4003–4013. doi: 10.1021/jp4003559
    [35] Zou Y, Hao W, Li H, et al. (2014) New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach. J Phys Chem B 118: 9834–9843. doi: 10.1021/jp504201k
    [36] Lührs T, Ritter C, Adrian M, et al. (2005) 3D structure of Alzheimer's amyloid-beta (1–42) fibrils. P Natl Acad Sci USA 102: 17342–17347.
    [37] Qiang W, Yau WM, Luo Y, et al. (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. P Natl Acad Sci USA 109: 4443–4448. doi: 10.1073/pnas.1111305109
    [38] Yoshihara H, Saito J, Tanabe A, et al. (2016) Characterization of novel insulin fibrils that show strong cytotoxicity under physiological pH. J Pharm Sci 105: 1419–1426.
    [39] Luo Y, Ma B, Nussinov R, et al. (2014) Structural insight into tau protein's paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J Phys Chem Lett 5: 3026–3031. doi: 10.1021/jz501457f
    [40] Ruxi Q, Yin L, Guanghong W, et al. (2015) Aβ "Stretching-and-Packing" cross-seeding mechanism can trigger tau protein aggregation. J Phys Chem Lett 6: 3276–3282. doi: 10.1021/acs.jpclett.5b01447
    [41] Sakakibara R, Hamaguchi K (1968) Structure of lysozyme: XIV. Acid-base titration of lysozyme. J Biochem 64: 613–618.
  • This article has been cited by:

    1. Manuel de León, Manuel Lainz, Asier López-Gordón, Xavier Rivas, Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems, 2023, 187, 03930440, 104787, 10.1016/j.geomphys.2023.104787
    2. Manuel de León, Jordi Gaset, Miguel C Muñoz-Lecanda, Xavier Rivas, Narciso Román-Roy, Multicontact formulation for non-conservative field theories, 2023, 56, 1751-8113, 025201, 10.1088/1751-8121/acb575
    3. Xavier Rivas, Nonautonomous k-contact field theories, 2023, 64, 0022-2488, 033507, 10.1063/5.0131110
    4. Javier de Lucas, Xavier Rivas, Contact Lie systems: theory and applications, 2023, 56, 1751-8113, 335203, 10.1088/1751-8121/ace0e7
    5. R. Azuaje, A. Bravetti, Scaling symmetries and canonoid transformations in Hamiltonian systems, 2024, 21, 0219-8878, 10.1142/S0219887824500774
    6. Jordi Gaset, Manuel Lainz, Arnau Mas, Xavier Rivas, The Herglotz variational principle for dissipative field theories, 2024, 01, 2972-4589, 153, 10.1142/S2972458924500060
    7. Begüm Ateşli, Oğul Esen, Manuel de León, Cristina Sardón, On non-autonomous Hamiltonian dynamics, dual spaces, and kinetic lifts, 2024, 01672789, 134504, 10.1016/j.physd.2024.134504
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5927) PDF downloads(1241) Cited by(19)

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog