Citation: Ivana Sirangelo, Margherita Borriello, Gaetano Irace, Clara Iannuzzi. Intrinsic blue-green fluorescence in amyloyd fibrils[J]. AIMS Biophysics, 2018, 5(2): 155-165. doi: 10.3934/biophy.2018.2.155
[1] | Cantor CR, Schimmel PR (1980) Techniques for the study of biological structure and function, Biophysical Chemistry, Part II, WH Freeman and Co. |
[2] | Chen RF (1990) Fluorescence of proteins and peptides, In: Guilbault GG, Editor, Practical Fluorescence, Revised and Expanded, 2 Eds., Marcel Dekker, 576–682. |
[3] | Lakowicz JR (2006) Protein fluorescence, In: Principles of fluorescence spectroscopy, Springer Science Business Media, 443–476. |
[4] | Shukla A, Mukherjee S, Sharma S, et al. (2004) A novel UV laser-induced visible blue radiation from protein crystals and aggregates: Scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch Biochem Biophys 428: 144–153. doi: 10.1016/j.abb.2004.05.007 |
[5] | Mercato LLD, Pompa PP, Maruccio G, et al. (2007) Charge transport and intrinsic fluorescence in amyloid-like fibrils. P Natl Acad Sci USA 104: 18019–18024. |
[6] | Guptasarma P (2008) Solution-state characteristics of the ultraviolet A-induced visible fluorescence from proteins. Arch Biochem Biophys 478: 127–129. doi: 10.1016/j.abb.2008.08.002 |
[7] | Sharpe S, Simonetti K, Yau J, et al. (2011) Solid-state NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 12: 1546–1555. doi: 10.1021/bm101486s |
[8] | Chan FTS, Kaminski GS, Kumita JR, et al. (2013) Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 138: 2156–2162. doi: 10.1039/c3an36798c |
[9] | Pinotsi D, Buell AK, Dobson CM, et al. (2013) A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chembiochem 14: 846–850. doi: 10.1002/cbic.201300103 |
[10] | Giamblanco N, Coglitore D, Janot JM, et al. (2018) Detection of protein aggregate morphology through single antifouling nanopore. Sensor Actuat B-Chem 260: 736–745. doi: 10.1016/j.snb.2018.01.094 |
[11] | Pinotsi D, Schierle GSK, Kaminski CF (2016) Optical super-resolution imaging of β-amyloid aggregation in vitro and in vivo: Method and techniques. Methods Mol Biol 1303: 125–141. doi: 10.1007/978-1-4939-2627-5_6 |
[12] | Schierle GSK, Bertoncini CW, Chan FTS, et al. (2011) A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 12: 673–680. doi: 10.1002/cphc.201000996 |
[13] | Hudson SA, Ecroyd H, Kee TW, et al. (2009) The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 276: 5960–5972. doi: 10.1111/j.1742-4658.2009.07307.x |
[14] | Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu Rev Biochem 86: 27–68. doi: 10.1146/annurev-biochem-061516-045115 |
[15] | Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366. doi: 10.1146/annurev.biochem.75.101304.123901 |
[16] | Spadaccini R, Leone S, Rega MF, et al. (2016) Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett 590: 3681–3689. doi: 10.1002/1873-3468.12437 |
[17] | Leone S, Picone D (2016) Molecular dynamics driven design of ph-stabilized mutants of MNEI, a sweet protein. PLoS One 11: e0158372. doi: 10.1371/journal.pone.0158372 |
[18] | Bouaziz Z, Soussan L, Janot JM, et al. (2017) Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide. Colloid Surface B 157: 10–17. doi: 10.1016/j.colsurfb.2017.05.050 |
[19] | Serpell LS (2000) Alzheimer's amyloid fibrils: Structure and assembly. BBA-Mol Basis Dis 1502: 16–30. doi: 10.1016/S0925-4439(00)00029-6 |
[20] | Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272: 5950–5961. doi: 10.1111/j.1742-4658.2005.05025.x |
[21] | Serpell LC, Sunde M, Benson MD, et al. (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300: 1033–1039. doi: 10.1006/jmbi.2000.3908 |
[22] | Fitzpatrick AW, Debelouchina GT, Bayro MJ, et al. (2013) Atomic structure and hierarchical assembly of a cross-β amyloid fibril. P Natl Acad Sci USA 110: 5468–5473. doi: 10.1073/pnas.1219476110 |
[23] | Lashuel HA, Hartley DM, Petre BM, et al. (2003) Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332: 795–808. doi: 10.1016/S0022-2836(03)00927-6 |
[24] | Lee CC, Nayak A, Sethuraman A, et al. (2007) A three-stage kinetic model of amyloid fibrillation. Biophys J 92: 3448–3458. |
[25] | Iannuzzi C, Borriello M, Irace G, et al. (2017) Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci Rep 7: 15086. doi: 10.1038/s41598-017-15503-5 |
[26] | Levine H (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci 2: 404–410. |
[27] | Iannuzzi C, Borriello M, Carafa V, et al. (2016) D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. BBA-Mol Basis Dis 1852: 93–104. |
[28] | Tcherkasskaya O (2007) Photo-activity induced by amyloidogenesis. Protein Sci 16: 561–571. doi: 10.1110/ps.062578307 |
[29] | Hanczyc P, Samoc M, Norden B (2013) Multiphoton absorption in amyloid protein fibres. Nat Photonics 7: 969–972. doi: 10.1038/nphoton.2013.282 |
[30] | Anand U, Mukherjee M (2013) Exploring the self-assembly of a short aromatic Aβ (16–24) peptide. Langmuir 29: 2713–2721. doi: 10.1021/la304585a |
[31] | Pinotsi D, Grisanti L, Mahou P, et al. (2016) Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J Am Chem Soc 138: 3046–3057. doi: 10.1021/jacs.5b11012 |
[32] | Grisanti L, Pinotsi D, Gebauer R, et al. (2017) A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 19: 4030–4040. doi: 10.1039/C6CP07564A |
[33] | Iannuzzi C, Borriello M, Portaccio M, et al. (2017) Insights into insulin fibril assembly at physiological and acidic pH and related amyloid intrinsic fluorescence. Int J Mol Sci 18: 2551. |
[34] | Zou Y, Li Y, Hao W, et al. (2013) Parallel β-sheet fibril and antiparallel β-sheet oligomer: New insights into amyloid formation of hen egg white lysozyme under heat and acidic condition from FTIR spectroscopy. J Phys Chem B 117: 4003–4013. doi: 10.1021/jp4003559 |
[35] | Zou Y, Hao W, Li H, et al. (2014) New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach. J Phys Chem B 118: 9834–9843. doi: 10.1021/jp504201k |
[36] | Lührs T, Ritter C, Adrian M, et al. (2005) 3D structure of Alzheimer's amyloid-beta (1–42) fibrils. P Natl Acad Sci USA 102: 17342–17347. |
[37] | Qiang W, Yau WM, Luo Y, et al. (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. P Natl Acad Sci USA 109: 4443–4448. doi: 10.1073/pnas.1111305109 |
[38] | Yoshihara H, Saito J, Tanabe A, et al. (2016) Characterization of novel insulin fibrils that show strong cytotoxicity under physiological pH. J Pharm Sci 105: 1419–1426. |
[39] | Luo Y, Ma B, Nussinov R, et al. (2014) Structural insight into tau protein's paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J Phys Chem Lett 5: 3026–3031. doi: 10.1021/jz501457f |
[40] | Ruxi Q, Yin L, Guanghong W, et al. (2015) Aβ "Stretching-and-Packing" cross-seeding mechanism can trigger tau protein aggregation. J Phys Chem Lett 6: 3276–3282. doi: 10.1021/acs.jpclett.5b01447 |
[41] | Sakakibara R, Hamaguchi K (1968) Structure of lysozyme: XIV. Acid-base titration of lysozyme. J Biochem 64: 613–618. |