Research article Special Issues

Determining complex aggregate distributions of macromolecules using photobleaching image correlation microscopy

  • Aggregation of cell surface receptors is believed to be linked to their biological function. In this paper, we disclose the explicit formulation for macromolecular aggregation distribution by means of photobleaching Image Correlation Spectroscopy (pbICS).

    Citation: Lajevardipour Alireza, W. M. Chon James, H. A. Clayton Andrew. Determining complex aggregate distributions of macromolecules using photobleaching image correlation microscopy[J]. AIMS Biophysics, 2015, 2(1): 1-7. doi: 10.3934/biophy.2015.1.1

    Related Papers:

    [1] LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109
    [2] Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445
    [3] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [4] Xinyou Meng, Jie Li . Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting. Mathematical Biosciences and Engineering, 2020, 17(3): 1973-2002. doi: 10.3934/mbe.2020105
    [5] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [6] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
    [7] Dan Liu, Shigui Ruan, Deming Zhu . Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences and Engineering, 2012, 9(2): 347-368. doi: 10.3934/mbe.2012.9.347
    [8] Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135
    [9] Juenu Yang, Fang Yan, Haihong Liu . Dynamic behavior of the p53-Mdm2 core module under the action of drug Nutlin and dual delays. Mathematical Biosciences and Engineering, 2021, 18(4): 3448-3468. doi: 10.3934/mbe.2021173
    [10] Maoan Han, Tonghua Zhang . Some bifurcation methods of finding limit cycles. Mathematical Biosciences and Engineering, 2006, 3(1): 67-77. doi: 10.3934/mbe.2006.3.67
  • Aggregation of cell surface receptors is believed to be linked to their biological function. In this paper, we disclose the explicit formulation for macromolecular aggregation distribution by means of photobleaching Image Correlation Spectroscopy (pbICS).


    In this paper, we consider the following initial boundary value problem for higher-order nonlinear viscous parabolic type equations.

    $\left\{ ut+(Δ)Lu+(Δ)Kutt0g(ts)(Δ)Lu(s)ds=a|u|R2u,xΩ,t0,    (1.1)u(x,0)=u0(x)HL0(Ω),    (1.2)iuvi=0,i=0,1,2,...L1xΩ,t0,    (1.3)
    \right. $

    where $ L, K \geq 1 $ is an integer number, $ R\geq $ max $ \{2, 2a, 2H\} $ where $ a > 0 $ is a real number, and $ \Omega \subseteq R^N(N\geq 1) $ is a bounded domain with a smooth boundary $ \partial\Omega $.

    Equation (1.1) includes many important physical models. In the absence of the memory term and dispersive term, and with $ L = K = 1 $ and $ a = 0 $, Eq (1.1) becomes the linear pseudo-parabolic equation

    $ utΔuβut=0.
    $
    (1.4)

    Showalter and Ting [1] and Gopala Rao and Ting [2] investigated the initial boundary value problem of the linear Eq (1.4) and proved the existence and uniqueness of solutions. Pseudo-parabolic equations appear in many applications for natural sciences, such as radiation with time delay [3], two-phase porous media flow models with dynamic capillarity or hysteresis [4], phase field-type models for unsaturated porous media flows [5], heat conduction models [6], models to describe lightning [7], and so on. A number of authors (Showalter [8,9], DiBenedetto and Showalter [10], Cao and Pop [11], Fan and Pop [12], Cuesta and Pop [13], Schweizer [14], Kaikina [15,16], Matahashi and Tsutsumi [17,18]) have considered this kind of equation by various methods and made a lot of progress. Not only were the existence, uniqueness, and nonexistence results for pseudo-parabolic equations were obtained, but the asymptotic behavior, regularity, and other properties of solutions were also investigated.

    In 1972, Gopala Rao et al. [2,19] studied the equation $ u_{t}-k\Delta u_{t}- \Delta u = 0 $. They use the principle of maximum value to establish the uniqueness and the existence of solutions. Using the potential well method and the comparison principle, Xu and Su[20] studied the overall existence, nonexistence, and asymptotic behavior of the solution of the equation $ u_{t}-\Delta u_{t}-\Delta u = u^q $, and they also proved that the solution blows up in finite time when $ J(u_{0}) > d $.

    When $ L = K = 1 $, Eq (1.1) becomes

    $ utΔu=t0b(tτ)Δu(τ)dτ+f(u).
    $
    (1.5)

    Equation (1.5) originates from various mathematical models in engineering and physical sciences, such as in the study of heat conduction in materials with memory. Yin [21] discussed the problem of initial boundary values of Eq (1.5) and obtained the global existence of classical solutions under one-sided growth conditions. Replacing the memory term $ b(\cdot) $ in (1.5) by $ -g(\cdot) $, Messaoudi[22] proves the blow-up of the solution with negative and vanishing initial energies. When $ f(u) = |u|^{q-2}u $, Messaoudi[23] proved the result of the blow-up of solutions for this equation with positive initial energy under the appropriate conditions of $ b $ and $ q $. Sun and Liu [24] studied the equation

    $ utΔuΔut+t0g(tτ)Δu(τ)dτ=uq2u.
    $
    (1.6)

    They applied the Galerkin method, the concavity method, and the improved potential well method to prove existence of a global solution and the blow-up results of the solution when the initial energy $ J(u(0))\leq d(\infty) $, and Di et al. [25] obtained the blow-up results of the solution of Eq (1.6) when the initial energy is negative or positive and gave some upper bounds on the blow-up time, and they proved lower bounds on the blow up time by applying differential inequalities.

    When $ m > 1 $, Cao and Gu[26] studied the higher order parabolic equations

    $ ut+(Δ)mu=|u|qu.
    $
    (1.7)

    By applying variational theory and the Galerkin method, they obtained existence and uniqueness results for the global solution. When the initial value belongs to the negative index critical space $ H^{-s, R^s}, R^s = \frac{n\alpha}{w-s\alpha} $, Wang[27,28] proved the existence and uniqueness of the local and the global solutions of the Cauchy problem of Eq (1.7) by using $ L^r-L^q $ estimates. Caristi and Mitidieri [29] applied the method in [30] to prove the existence and nonexistence of the global solution of the initial boundary value problem for higher-order parabolic equations when the initial value decays slowly. Budd et al. [31] studied the self-similar solutions of Eq (1.7) for $ n = 1, k > 1 $. Ishige et al. [32] proved the existence of solutions to the Cauchy problem for a class of higher-order semilinear parabolic equations by introducing a new majority kernel, and also gave the existence of a local time solution for the initial data and necessary conditions for the solution of the Cauchy problem, and determine the strongest singularity of the initial data for the solutions of the Cauchy problem.

    When $ K = L, g = 0 $, problem (1.1) becomes the following $ n $-dimensional higher-order proposed parabolic equation

    $ ut(x,t)+(1)MΔMut(x,t)+(1)MΔMu(x,t)=a|u|q1u.
    $
    (1.8)

    Equation (1.8) describes some important physical problems [33] and has attracted the attention of many scholars. Xiao and Li [34] have proved the existence of a non-zero weak solution to the static problem of problem (1.8) by means of the mountain passing theorem, and, additionally, based on the method of potential well theory, they proved the existence of a global weak solution of the development in the equations.

    Based on the idea of Li and Tsai [35], this paper discusses the property of the solution of problem (1.1)–(1.3) regarding the solution blow-up in finite time under different initial energies $ E(0) $. An upper bound on the blow-up time $ T^{*} $ is established for different initial energies, and, additionally, a lower bound on the blow-up time $ T^{*} $ is established by applying a differential inequality.

    To describe the main results of this paper, this section gives some notations, generalizations, and important lemmas. We adopt the usual notations and convention. Let $ H^L(\Omega) $ denote the Sobolev space with the usual scalar products and norm, Where $ H_{0}^L(\Omega) $ denotes the closure in $ H_{0}^L(\Omega) $ of $ C_{0}^{\infty}(\Omega) $. For simplicity of notation, hereafter we denote by $ ||.||_{p} $ the Lebesgue space $ L^p(\Omega) $ norm, and by $ ||.|| $ the $ L^2(\Omega) $ norm; equivalently we write the norm $ ||D^L \cdot || $ instead of the $ H_{0}^L(\Omega) $ norm $ ||.||_{H_{0}^L(\Omega)} $, where $ D $ denotes the gradient operator, that is, $ D\cdot = \bigtriangledown \cdot = \left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, .... \frac{\partial}{\partial x_{n}}\right) $. Moreover, $ D^L\cdot = \bigtriangleup^{j}\cdot $ if $ L = 2j $, and $ D^L\cdot = D \bigtriangleup^{j}\cdot $ if $ L = 2j+1 $.

    $ L^p(\Omega) = L^p, \quad ||u||_{L^p(\Omega)} = ||u||_{p} = \left(\int_{\Omega}|u|^{p}dx\right)^{\frac{1}{p}}, $
    $ H_{0}^{L}(\Omega) = W_{0}^{L, 2}(\Omega) = H_{0}^{L}, \quad ||u||_{H_{0}^{L}(\Omega)} = ||u||_{H_{0}^{L}} = \left(\int_{\Omega}|u|^2+|D^L u|^2dx\right)^{\frac{1}{2}}. $

    To justify the main conclusions of this paper, the following assumptions are made on $ K $ $ L $, and the relaxation function $ g(\cdot) $.

    $ (A_1) $ $ 1\leq K < L $ are integers with $ 2a \leq R < +\infty $ if $ n < 2L $; $ 2a \leq R\leq \frac{2n}{n-2L} $ if $ n > 2L $,

    where $ a > 1 $

    $ (A_2) $ $ g:R^+\rightarrow R^+ $ is a $ C^1 $ function, satisfing

    $ g(t)0,g(t)0,2aR2a<β=10g(s)ds1t0g(s)ds.
    $
    (2.1)

    Define the energy functional of problem $ (1.1)-(1.3) $ as

    $ E(t)=t0ut2+12(1t0g(s)ds)DLu2+12(gDLu)(t)aRuRR
    $
    (2.2)

    where $ \left(g\circ D^L u \right)(t) = \int_0^t g(t-s)\parallel D^L u(t)-D^L u(s)\parallel^2 \, ds $.

    Both sides of Eq $ (1.1) $ are simultaneously multiplied by $ u_{t} $ and integrated over $ \Omega $, and from $ (A_1) $ and $ (2.1) $ we have that

    $ E(t)=DKut2+12(gDLu)(t)12g(t)DLu2<0.
    $
    (2.3)

    Definition 2.1 We say that $ u(x, t) $ is a weak solution of problem (1.1) if $ u \in L^{\infty}([0, T);H_{0}^L(\Omega)), u_{t} \in L^2([0, T);H_{0}^L(\Omega)) $, and $ u $ satisfies

    $ (u_t, v)+(D^L u, D^L v)+(D^K u_t, D^K v)-\int_{0}^{t}g(t-\tau)(D^L u(\tau), D^L v)d \tau = (a|u|^{R-2}u, v) $

    for all test functions $ v \in H_{0}^L(\Omega) $ and $ t\in [0, T] $.

    Theorem 2.1 (Local existence) Suppose that (A1) and (A2) hold. If $ (u_{0}, u_{1}) \in H_{0}^L(\Omega) \times L^2 (\Omega) $, then there exists $ T > 0 $ such that problem (1.1) admits a unique local solution $ u(t) $ which satisfies

    $ u\in L^2 ([0, T);H_{0}^L(\Omega)), \quad u_{t}\in L^2([0, T);L^2(\Omega) \cap L^2([0, T];H_{0}^K(\Omega)). $

    Moreover, at least one of the following statements holds true:

    $ \int_{0}^{t} ||u||^2 + ||D^L u||^2 \rightarrow +\infty, as \ t \rightarrow T , or\quad T = +\infty. $

    The existence and uniqueness of the local solution for problem (1.1) can be obtained by using Faedo-Galerkin methods and the contraction mapping principle in [30,36,37,38].

    Lemma 2.1[39]. Let $ q $ be a real number with $ 2\leq q\leq +\infty $ if $ n\leq 2L $, and $ 2\leq q\leq \frac{2n}{n-2L} $ if $ n > 2L $. Then there exists a constant $ B $ dependent on $ \Omega $ and $ q $ such that

    $ uqBDLu,uHL0(Ω).
    $
    (2.4)

    Remark 2.1. According to Eqs $ (1.1)-(1.3) $ and Lemma 2.1, we get

    $ E(t)12(1t0g(s)ds)DLu2+12(gDLu)(t)aRuRR12βDLu2+12(gDLu)(t)aBRR(DLu2)R212[(gDLu)(t)+βDLu2]aBRRβR2[βDLu2+(gDLu)(t)]R2=Q([βDLu2+(gDLu)(t)]12).
    $
    (2.5)

    Let $ Q(\xi) = \frac{1}{2}\xi^2-\frac{a B^R}{R\beta^{\frac{R}{2}}}\xi^R, \; \xi = \left(\beta\|D^L u\|^2+(g\circ D^L u)(t)\right)^{\frac{1}{2}} > 0. $ A direct calculation yields that $ Q'(\xi) = \xi-\frac{a B^R}{\beta^{\frac{R}{2}}}\xi^{R-1}, Q''(\xi) = 1-\frac{a(R-1)B^R}{\beta^{\frac{R}{2}}}\xi^{R-2}. $ From $ Q'(\xi) = 0, $ we get that $ \xi_1 = \left(\frac{\beta}{aB^2}\right)^{\frac{R}{2(R-2)}} $. When $ \xi = \xi_1 $, direct calculation gives $ Q''(\xi) = 2-R < 0 $. Therefore, $ Q(\xi) $ is maximum at $ \xi_1 $, and its maximum value is

    $ H=Q(ξ1)=R22R(βaB2)R(R2)=R22Rξ21.
    $
    (2.6)

    Lemma 2.2. Let conditions $ (A_1), (A_2) $ hold, $ u $ be a solution of ($ (1.1-(1.3) $), $ E(0) < H $, and $ \beta^{\frac{1}{2}}\|D^L u_0\| > \xi_1 $. Then there exists $ \xi_2 > \xi_1, $ such that

    $ βDLu2+(gDLu)(t)ξ22.
    $
    (2.7)

    Proof. From Remark 2.1, $ Q(\xi) $ is increasing on $ (0, \xi_1) $ and decreasing on $ (\xi_1, +\infty) $. $ Q(\xi)\rightarrow -\infty, (\xi\rightarrow \infty). $ According to $ E(0) < H $, there exists $ \xi'_2, \xi_2 $ such that $ \xi_1\in(\xi'_2, \xi_2), $ and $ Q(\xi'_2) = Q(\xi_2) = E(0). $ To prove Eq $ (2.7) $, we use the converse method. Assume that there exists $ t_0 > 0 $ such that

    $ βDLu(t0)2+(gDLu)(t0)<ξ22.
    $
    (2.8)

    1) If $ \xi'_2 < \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}} < \xi_2 $, then

    $ Q\left([\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)]^{\frac{1}{2}}\right) > Q(\xi'_2) = Q(\xi_2) = E(0) > E(t_0). $

    This contradicts $ (2.5) $.

    2) If $ \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}}\leq\xi'_2. $

    As $ \beta^{\frac{1}{2}}||D^L u_0|| > \xi_1 $, according to $ (2.5) $, $ Q\left(\beta^{\frac{1}{2}}\|D^L u_0\| \right) < E(0) = Q(\xi_2) $, which implies that $ \beta^{\frac{1}{2}}\|D^L u_0\| > \xi_2. $ Applying the continuity of $ \left(\beta\|D^L u(t_0)\|^2+(g\circ D^L u)(t_0)\right)^{\frac{1}{2}} $, we know that there exists a $ t_1\in(0, t_0) $ such that $ \xi'_2 < \left(\beta\|D^L u(t_1)\|^2+(g\circ D^L u)(t_1)\right)^{\frac{1}{2}} < \xi_2. $ hence, we have $ Q(\left(\beta\|D^L u(t_1)\|^2+(g\circ D^L u)(t_1)\right)^{\frac{1}{2}}) > E(0)\geq E(t_0) $, which contradicts $ (2.5) $.

    The following lemma is very important and is similar to the proof of Lemma 4.2 in [35]. Here, we make some appropriate modifications

    Lemma 2.3[40]. Let $ \Gamma(t) $ be a nonincreasing function of $ [t_0, \infty], t_0\geq 0 $. Satisfying the differential inequality

    $ Γ2(t)ρ+ψΓ(t)2+1ε,tt0
    $
    (2.9)

    where $ \rho > 0, \psi < 0 $, there exists a positive number $ T^{*} $ such that

    $ limtTΓ(t)=0.
    $
    (2.10)

    The upper bound for $ T^{*} $ is

    $ Tt0+1ψlnρψρψΓ(t0)
    $
    (2.11)

    where $ \Gamma(t_0) < min \lbrace 1, \sqrt{\frac{\rho}{-\psi}}\rbrace $, and $ T_{max} $ denotes the maximal existence time of the solution

    $ T_{max} = \sup\{ T > 0:u(., t) \in [0, T] \} < +\infty. $

    In this section, we will give some blow-up results for solutions with initial energy $ (i) $ $ E(0) < 0 $; $ (ii) $ $ 0\leq E(0) < \frac{w}{R-2}H $; and $ (iii) $ $ \frac{w}{R-2}H\leq E(0) < \frac{||u_{0}||^2+||D^K u_{0}|||^2}{\mu} $. Moreover, some upper bounds for blow-up time $ T^* $ depending on the sign and size of initial energy $ E(0) $ are obtained for problem (1.1)–(1.3).

    Define the functionals

    $ Φ(t)=t0u2ds+t0DKu2ds,
    $
    (3.1)
    $ Γ(t)=[Φ(t)+(T0t)(u02+DKu02)]ε
    $
    (3.2)

    where $ \frac{1}{\beta}\leq\varepsilon\leq \frac{R-2a}{2a} $, and $ T_0 $ is positive.

    Lemma 3.1. Let $ X, Y $, and $ \phi $ be positive, with $ p, q\geq 1, \frac{1}{p}+\frac{1}{q} = 1 $. Then,

    $ XYϕpXpp+Yqqϕq.
    $
    (3.3)

    Lemma 3.2. Let $ (A_1), (A_2) $ hold, $ u_0\in H_0^L(\Omega) $, and $ u $ be a solution of $ (1.1)-(1.3) $. Then, we have

    $ Φ(t)4(1+ε)t0ut2dsΠ(t)
    $
    (3.4)

    where $ \Pi(t) = -4(1+\varepsilon)E(0)+w[\beta\|D^L u\|^2+(g\circ D^L u)], \; w = 2\varepsilon-\frac{1}{2\beta} > 0. $

    Proof. From $ (3.1) $, a direct calculation yields that

    $ Φ(t)=u2+DKu2=2t0Ωuutdxdτ+u02+2t0ΩDKuDKutdxds+DKu02,
    $
    (3.5)
    $ Φ(t)=2Ωuutdx+2ΩDKuDKutdx=2Ωu[()Lu()Kut+t0g(ts)()Lu(s)ds+a|u|R2u]dx+2ΩDKuDKutdx=2DLu2ddtDKu2+2t0Ωg(ts)DLu(s)DLu(t)dxds+2auRR+ddtDku2.
    $
    (3.6)

    We infer from $ (2.2), (2.3) $, and $ (3.6) $ that

    $ Φ(t)4(1+ε)t0ut2ds=Φ(t)4(1+ε)E(t)+(2+2ε)(1t0g(s)ds)DLu2+(2+2ε)(gDLu)4a(1+ε)RuRR4(1+ε)E(0)+2εDLu2+(2+2ε)(gDLu)+[24a(1+ε)R]uRR(2+2ε)t0g(s)dsDLu2+2t0Ωg(ts)DLu(s)DLu(t)dxds.
    $
    (3.7)

    Applying Lemma 3.1 yields

    $ t0Ωg(ts)DLu(t)DLu(s)dxds=t0Ωg(ts)DLu(t)[DLu(s)DLu(t)]dxds+t0Ωg(ts)DLu(t)Dlu(t)dxds(gDLu)(t)+34t0g(s)dsDLu(t)2.
    $
    (3.8)

    Combining $ (3.7) $ and $ (3.8) $, we get

    $ Φ(t)4(1+ε)t0ut2ds4(1+ε)E(0)+2εDLu2+2ε(gDLu)(12+2ε)t0g(s)dsDLu2>4(1+ε)E(0)+2εDLu2+2ε(gDLu)+(12+2ε)(β1)DLu2>4(1+ε)E(0)+w[βDLu2+(gDLu)(t)]
    $
    (3.9)

    where $ w = 2\varepsilon-\frac{1}{2\beta} $.

    Therom 3.1. Let assumptions $ (A_1) $ and $ (A_2) $ hold, and $ T_0 < \frac{1}{\|u_0\|^2+\|D^Ku_0\|^2} $. In addition, it is assumed that one of the following conditions holds true:

    $ (1)E(0)<0;(2)0E(0)<wR2H,β12DLu0>ξ1;(3)0<wR2H<E(0)<u02+DKu02μ.
    $

    Then, the solution of problem $ (1.1)-(1.3) $ blows up in finite time, which means the maximum time $ T^{*} $ of $ u $ is finite and

    $ limtT(t0u2ds+t0DKu2ds)=+.
    $
    (3.10)

    Case (1). if $ E(0) < 0 $, an upper bound on the blow-up time $ T^{*} $ can also be estimated according to the sign and size of energy $ E(0) $. Then,

    $ T^{*}\leq \sqrt{\frac{-(2\varepsilon+1)}{8\varepsilon^2(\varepsilon+1)E(0)}} \cdot \ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^Ku_0\|^2)}}. $

    Case (2). if $ 0 < E(0) < \frac{w}{R-2}H $, and $ \xi_1 < \beta^{\frac{1}{2}}\|D^Lu_0\| $, then

    $ T^{*}\leq \sqrt{\frac{2\varepsilon+1}{8\varepsilon^2(\varepsilon+1)[\frac{w}{R-2}H-E(0)]}}. $

    Case (3). if $ \frac{w}{R-2}H\leq E(0) < \frac{\|u_0\|^2+\|D^Ku_0\|^2}{\mu} $, then

    $ T^{*}\leq \sqrt{\frac{2\varepsilon+1}{2\varepsilon^2\Lambda \chi(0)}}\cdot \ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^Ku_0\|^2)}} $

    where $ \chi(0) = \|u_0\|^2+\|D^K u_0\|^2-\mu E(0) = \Phi'(0)-\mu E(0) $, $ \mu = \frac{4(1+\delta)}{\Lambda}, \Lambda = w\beta\frac{1}{B} $.

    Case (1). if $ E(0) < 0 $, from $ (3.9) $ we infer that

    $ Φ(t)4(1+ε)E(0)+w[βDLu2+(gDLu(t))]+4(1+ε)t0ut2ds>0,t0.
    $
    (3.11)

    Thus, it follows that $ \Phi'(t) $ is monotonically increasing. Therefore, $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^K u_0\|^2 $

    and the second derivative of Eq $ (3.2) $ gives

    $ Γ(t)=εΓ(t)1+1ε[Φ(t)u02],
    $
    (3.12)
    $ Γ(t)=εΓ(t)1+1ε{Φ(t)[Φ(t)+(T0t)(u02+DKu02)](1+ε)[Φ(t)u02DKu02]2}=εΓ(t)1+2εV(t)
    $
    (3.13)

    where

    $ V(t) = \Phi''(t)[\Phi(t)+(T_0-t)(\|u_0\|^2+\|D^K u_0\|^2)] -(1+\varepsilon)[\Phi'(t)-\|u_0\|^2-\|D^K u_0\|^2]^2. $

    From Lemma 3.2, we have

    $ Φ(t)[Φ(t)+(T0t)(u02+DKu02)][Π(t)+4(1+ε)t0ut2ds][t0u2ds+t0DKu2ds+(T0t)(u02+DKu02)]Π(t)Γ(t)1ε+4(1+ε)t0ut2dst0u2ds+4(1+ε)t0ut2dst0DKu2ds.
    $
    (3.14)

    Therefore,

    $ [Φ(t)u02DKu02]2=4(t0Ωuutdxds)2+4(t0ΩDKuDKutdxds)2+8t0Ωuutdxdst0ΩDKuDKutdxds.
    $
    (3.15)

    Applying Holder's inequality, Lemma 3.1 yields

    $ 4(t0Ωuutdxds)24t0u2dst0ut2ds,
    $
    (3.16)
    $ 4(t0ΩDKuDKutdxds)24t0DKu2dst0DKut2ds,
    $
    (3.17)
    $ 8t0Ωuutdxdst0ΩDKuDKutdxds4t0u2dst0DKut2ds+4t0DKu2dst0ut2ds.
    $
    (3.18)

    Substituting $ (3.14)-(3.18) $ into $ (3.13) $ yields

    $ V(t)>Π(t)Γ(t)1ε+4(1+ε)t0ut2dst0u2ds+4(1+ε)t0ut2dst0DKu2ds4(1+ε)t0DKu2dst0DKut2ds4(1+ε)t0u2dst0ut2ds4(1+ε)t0u2dst0DKut2ds4(1+ε)t0DKu2dst0ut2ds>Π(t)Γ(t)1ε.
    $
    (3.19)

    From the definitions of $ (3.12) $, $ (3.19) $, and $ \Pi(t) $, it follows that

    $ Γ(t)εΠ(t)Γ(t)1+1εε(1+ε)E(0)Γ(t)1+1ε.
    $
    (3.20)

    From $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 > 0 $ and $ (3.12) $, we get $ \Gamma'(t) < 0 $, $ \Gamma'(0) = 0 $. $ (3.20) $ multiplied by $ \Gamma'(t) $ and integrated over $ (0, t) $ gives

    $ Γ(t)28ε2(1+ε)1+2εE(0)Γ(0)2+1ε+8ε2(1+ε)1+2εE(0)Γ(0)2+1ε=ρ+ψΓ(t)2+1ε
    $
    (3.21)

    where

    $ ρ=8ε2(1+ε)1+2εE(0)Γ(0)2+1ε>0,
    $
    (3.22)
    $ ψ=8ε2(1+ε)1+2εE(0)<0
    $
    (3.23)

    where $ \Gamma(0) = \left[T_0(\|u_0\|^2+\|D^Ku_0\|^2)\right]^{-\varepsilon} $.

    Combining $ (3.21)-(3.23) $ and Lemma 2.3 shows that there exists $ T^{*} $ such that $ \lim_{t\rightarrow T^{*}}\Gamma(t) = 0. $ I.e.

    $ \lim\limits_{t\rightarrow T^{*}}\left(\int_0^t\|u\|^2\, ds+\|D^Ku\|^2\, ds\right) = +\infty. $

    Furthermore, according to Lemma 2.3, the upper bound on the blow-up is given by

    $ T(2ε+1)8ε2(1+ε)E(0ln11T0(u02+DKu02).
    $
    (3.24)

    Case (2). if $ 0 < E(0) < \frac{w}{R-2}H $, and $ \beta^{\frac{1}{2}}\|D^Lu_0\| > \xi_{1} $, by Lemma 2.2 and the definition of $ \xi_{1} $

    $ Π(t)=4(1+ε)E(0)+w[βDLu2+(gDLu)(t)]4(1+ε)E(0)+wξ224(1+ε)E(0)+wξ21>4(1+ε)E(0)+w4(1+ε)r2H=4(1+ε)[wr2HE(0)]>0.
    $
    (3.25)

    Substituting $ (3.25) $ into (3.9) yields

    $ Φ(t)Π(t)+(4+4ε)t0ut2ds>(4+4ε)[wR2HE(0)]+(4+4ε)t0ut2ds>0.
    $
    (3.26)

    Hence, $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 \geq 0. $

    Similar to case (1), we get

    $ Γ(t)=εΓ(t)1+2εV(t),V(t)Π(t)Γ(t)1ε.
    $
    (3.27)

    From (3.25) and $ (3.27) $, we get

    $ Γ(t)εΠ(t)Γ(t)1+1ε4ε(1+ε)[wR2HE(0)]Γ(t)1+1ε,t0.
    $
    (3.28)

    Similar to case (1), we have $ \Gamma'(t) < 0 $, $ \Gamma(0) = 0 $. $ (3.28) $ Multiply by $ \Gamma'(t) $ and integratig over $ (0, t) $ gives

    $ Γ(t)28ε2(ε+1)2ε+1[wR2HE(0)][H(0)2+1εH(t)2+1ε]=ρ1+ψ1Γ(t)2+1ε
    $
    (3.29)

    where

    $ ρ1=8ε2(ε+1)2ε+1[wR2HE(0)]Γ(0)2+1ε>0,
    $
    (3.30)
    $ ψ1=8ε2(ε+1)2ε+1[wR2HE(0)]>0.
    $
    (3.31)

    By Lemma 2.3 and $ (3.29)-(3.31) $, there exists $ T^* $ such that

    $ limtTΓ(t)=0,
    $
    $ \lim\limits_{t\rightarrow T^*}\left(\int_0^t\|u\|^2ds+\int_0^t\|D^Ku\|^2\ ds\right) = +\infty $

    and

    $ T2ε+18ε2(ε+1)[wR2HE(0)]ln11T0(u02+DKu02).
    $
    (3.32)

    Case (3) : $ \frac{w}{R-2}H\leq E(0) < \frac{\|u_0\|^2+\|D^K u_0\|^2}{\mu} $.

    Define

    $ χ(t)=u2+DKu2μE(0)=Φ(t)μE(0)
    $
    (3.33)

    where $ \mu = \frac{4(1+\varepsilon)}{\Lambda}, \; \Lambda = w\beta\frac{1}{B}. $

    $ ddtχ(t)=Φ(t)4(1+ε)E(0)+w[βDLu2+(gDLu)(t)]+4(1+ε)t0ut2ds4(1+ε)E(0)+wβ1βu2+4(1+ε)t0ut2ds=wββ[u24(1+ε)BwβE(0)]+4(1+ε)t0ut2ds>Λ[u2+DKu2μE(0)]+4(1+δ)t0ut2ds=Λχ(t)+4(1+ε)t0ut2ds.
    $
    (3.34)

    According to (3.31) and

    $ u02+DKu2μE(0)=Φ(0)μE(0)=χ(0)>0
    $
    (3.35)

    we have $ \frac{d}{dt}\chi(t)\geq\Lambda \chi(t) $, i.e., $ \chi(t)\geq \chi(0)e^{\Lambda t} $. Thereby, we have

    $ χ(t)=Φ(t)μE(0)χ(0)eΛtχ(0)>0,t0.
    $
    (3.36)

    By $ (3.34)-(3.36) $, we obtain

    $ ddtχ(t)=Φ(t)Λχ(t)Λχ(0)>0.
    $
    (3.37)

    Thus, we get

    $ \Phi'(t) > \Phi'(0) = \|u_0\|^2+\|D^Ku_0\|^2 > 0, \quad t > 0. $

    Similar to the process in case (1), it is possible to derive

    $ Γ(t)εΠ(t)Γ(t)1+1ε,t0.
    $
    (3.38)

    By $ (3.34)-(3.36) $, we conclude that

    $ Π(t)Λχ(t)Λχ(0).
    $

    Consequently,

    $ Γ(t)εΠ(t)Γ(t)1+1εεΛχ(0)Γ(t)1+1ε,t>0.
    $
    (3.39)

    Multiplying both sides of $ (3.39) $ by $ \Gamma(t) $, and integrating over $ [0, t] $, we have

    $ Γ(t)22ε2Γχ(0)2ε+1[Γ2+1ε0Γ(t)2+1ε]=ρ2+ψ2Γ(t)2+1ε,
    $
    (3.40)
    $ ρ2=2ε2Γχ(0)2ε+1Γ(0)2+1ε>0,ψ2=2ε2Γχ(0)2ε+1>0.
    $
    (3.41)

    By Lemma 2.3 and $ (3.40)-(3.41) $, there exists a time $ T^* $ such that

    $ limtT(t0u2ds+t0DKu2ds)=+
    $

    and

    $ T^{*}\leq\sqrt{\frac{2\varepsilon+1}{2\varepsilon^2\Lambda \chi(0)}}\ln\frac{1}{1-\sqrt{T_0(\|u_0\|^2+\|D^K u_0\|^2)}}. $

    This section investigates a lower bound on the blow-up time $ T^* $ when the solution of Eqs $ (1.1)-(1.3) $ occurs in finite time.

    Theorem 4.1. Let $ A_1 $ and $ A_2 $ hold, $ u_0\in H_0^L(\Omega) $, and $ u $ be a solution of Eqs $ (1.1)-(1.3) $. If $ u $ blows up in the sense of $ H_{0}^L(\Omega) $, then the lower bound $ T^{*} $ of the blow-up can be estimated as

    $ T^{*}\geq \int_{R(0)}^{+\infty}\frac{1}{K_1+\frac{a(4+2R)}{r}B^R K_1^{\frac{R}{2}}+4E(0)}\, d K_1 . $

    Proof. Let

    $ R(t)=u2+DLu2.
    $
    (4.1)

    Differentiating $ (1.5) $ with respect to $ t $, we know from (1.1) that

    $ R(t)=2Ωuutdx+ddtDLu2=2Ωu[(Δ)Lu(Δ)Kut]
    $
    (4.2)
    $ +2Ωu[t0g(ts)(Δ)Lu(s)ds+a|u|R2u+ddtDLu2]=2DLu2+2Ωg(ts)DLu(s)DLu(t)dxds
    $
    (4.3)
    $ +2auRRddtDKu2+ddtDLu2.
    $
    (4.4)

    By Lemma 3.1, we have

    $ 2t0Ωg(ts)DLu(s)DLu(t)dxds2(gDLu2+12t0g(s)dsDLu2+2t0g(s)DLu2=2(gDLu2+52t0g(s)dsDLu2.
    $
    (4.5)

    Substituting $ (4.5) $ into $ (1.6) $ yields

    $ R(t)[52t0g(s)ds1]DLu2+12DL2+2(gDLu)(t)+2auRRddtDKu2+ddtDLu2<12DL2+4t0ut2ds+2(1t0g(s)ds)DLu2+2(gDLu)(t)4aRuRR+(4aR+2a)uRR<R(t)+4E(0)+a(4R+2)BRDLuR<R(t)+4E(0)+a(4R+2)BRR(t)R2.
    $
    (4.6)

    Integrating $ (4.6) $ over $ [0, t] $ yields

    $ R(t)R(0)1K1+a4+2RRBRKR21+4E(0)dK1t.
    $
    (4.7)

    If $ u $ blows up with $ H_0^L $, then $ T^* $ has a lower bound

    $ T+R(0)1K1+a4+2RRBRKR21+4E(0),
    $
    (4.8)

    which thereby completes the proof of Theorem 4.1.

    By using concavity analysis, we get the blow-up results of the solution when the initial energy is negative or positive and an upper bound on the blow-up time $ T^* $. In addition, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities in the case where the solution has a blow-up.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.

    [1] Douglas Magde, Elliot Elson, W. Webb (1972) Thermodynamic Fluctuations in a Reacting System——Measurement by Fluorescence Correlation Spectroscopy.Phys Rev Let 19: 705-708.
    [2] N. O. Petersen, P. L. H?ddelius, P. W. Wiseman, et al. (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application.Biophys J 65: 1135-1146.
    [3] Yan Chen, Joachim D. Müller, Peter T.C. So, et al. (1999) The Photon Counting Histogram in Fluorescence Fluc- tuation Spectroscopy.Biophys J 77: 553-567.
    [4] Antoine G. Godin, Santiago Costantino, Louis-Etienne Lorenzo, et al. (2011) Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis.Proc Natl Acad Sci U S A 108: 7010-7015.
    [5] Michelle A. Digman, Rooshin Dalal, Alan F. Horwitz, et al. (2008) Mapping the number of molecules and brightness in the laser scanning microscope.Biophy J 94: 2320-2332.
    [6] Tedman Torres, Marcia Levitus. (2007) Measuring conformational dynamics: a new FCS-FRET approach.J Phys Chem B 111: 7392-7400.
    [7] Joseph R. Lakowicz (2006) Principles of Fluorescence Spectroscopy.Springer US .
    [8] Claire Robertson and Steven C. George (2012) Theory and practical recommendations for autocorrelation-based image correlation spectroscopy.J Biomedical Optics 17: 80801-1.
    [9] Norman R. Davidson (1962) Statistical mechanics.McGraw-Hill .
    [10] Elliot L. Elson and Douglas Magde (1974) Fluorescence correlation spectroscopy. i. conceptual basis and theory.Biopolymers 13: 1-27.
    [11] N. O. Petersen (1986) Scanning uorescence correlation spectroscopy. i. theory and simulation of aggregation mea- surements.Biophys J 49: 809-815.
    [12] Giuseppe D. Ciccotosto, Noga Kozer, Timothy T. Y. Chow, et al. (2013) Aggregation distributions on cells determined by photobleaching image correlation spectroscopy.Biophys J 104: 1056-1064.
    [13] Henry Margenau, George Moseley MurphyThe mathematics of physics and chemistry.Young Press, 2nd edition1956 .
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4972) PDF downloads(1069) Cited by(5)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog