Citation: Giulia Rigamonti, Marco Guardamagna, Sabina Merlo. Non-contact reflectometric readout of disposable microfluidic devices by near infra-red low-coherence interferometry[J]. AIMS Biophysics, 2016, 3(4): 585-595. doi: 10.3934/biophy.2016.4.585
[1] | Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507: 181–189. doi: 10.1038/nature13118 |
[2] | Whitesides GM (2006) The origins and the future of microfluidics. Nature 442: 368–373. doi: 10.1038/nature05058 |
[3] | Pires NMM, Dong T, Hanke U, et al. (2014) Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors 14: 15458–15479. doi: 10.3390/s140815458 |
[4] | Nunes PS, Mortensen NA, Kutter JP, et al. (2008) Photonic crystal resonator integrated in a microfluidic system. Opt Lett 33: 1623–1625. |
[5] | Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16: 554–567. doi: 10.1038/nrm4041 |
[6] | Hunt K, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2: 1544–1559. doi: 10.1039/c0nr00201a |
[7] | Fang Y (2014) Label-free drug discovery. Front Pharmacol 5: 1–8. |
[8] | Tsuda T, Sweedler JV, Zare RN (1990) Rectangular capillaries for capillary zone electrophoresis. Anal Chem 62: 2149–2152. doi: 10.1021/ac00218a020 |
[9] | Evander M, Tenje M (2014) Microfluidic PMMA interfaces for rectangular glass capillaries. J Micromech Microeng 24: 1–5. |
[10] | Hammarström B, Evander M, Barbeau H, et al. (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 10: 2251–2257. doi: 10.1039/c004504g |
[11] | Geckeler KE, Müller B (1993) Polymer materials in biosensors. Naturwissenschaften 80: 18–24. |
[12] | Sorin WV, Gray DF (1992) Simultaneous thickness and group index measurement using optical low-coherence reflectometry. IEEE Photon Technol Lett 4: 105–107. doi: 10.1109/68.124892 |
[13] | Lee BH, Min EJ, Kim YH (2013) Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements. Opt Fiber Technol 19: 729–740. doi: 10.1016/j.yofte.2013.07.011 |
[14] | Izatt JA, Choma MA (2008) Theory of optical choerence thomography, In: W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Springer Berlin Heidelberg, 47–72. |
[15] | Youngquist RC, Carr S, Davies DEN (1987) Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett 12: 158–160. doi: 10.1364/OL.12.000158 |
[16] | Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-field optical coherence tomography. Opt Lett 27: 530–532. doi: 10.1364/OL.27.000530 |
[17] | Carpignano F, Rigamonti G, Mazzini G, et al. (2016) Low-coherence reflectometry for refractive index measurements of cells in micro-capillaries. Sensors 16: 1670. doi: 10.3390/s16101670 |
[18] | Carpignano F, Rigamonti G, Merlo S (2015) Characterization of rectangular glass microcapillaries by low-coherence reflectometry. IEEE Photon Technol Lett 27: 1064–1067. |
[19] | Carpignano F, Surdo S, Barillaro G, et al. (2015) Silicon micromachined device testing by infrared low-coherence reflectometry. J Microelectromech Syst 24: 1960–1964. doi: 10.1109/JMEMS.2015.2453367 |
[20] | Ibidi®, µ–Slide VI0.1, 2014. Available from: http://ibidi.com/xtproducts/en/ibidi-Labware/ Channel-Slides/ m-Slide-VI-0.4. |
[21] | Rollins AM, Izatt JA (1999) Optimal interferometer designs for optical coherence tomography. Opt Lett 24: 1484–1486. doi: 10.1364/OL.24.001484 |
[22] | Lancrin C, Mazan M, Stefanska M, et al. (2012) GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120: 314–322. doi: 10.1182/blood-2011-10-386094 |
[23] | Zengel P, Nguyen-Hoang A, Schildhammer C, et al. (2011) μ-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol 12: 2–14. |
[24] | Corydon TJ, Kopp S, Wehland M, et al. (2016) Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 6: 1–14. |
[25] | Aredia F, Carpignano F, Surdo S, et al. (2016) An innovative cell micro-incubator for drug-discovery based on 3D silicon structures. J Nanomater, 2016: 1–10. |
[26] | Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495–516. |