Citation: Zhe Mei, Zhiwen Liu, Zhiguo Zhou. A compact and low cost microfluidic cell impedance detection system[J]. AIMS Biophysics, 2016, 3(4): 596-608. doi: 10.3934/biophy.2016.4.596
[1] | Graham MD (2003) The coulter principle: foundation of an industry. J Lab Autom 8: 72–81. doi: 10.1016/S1535-5535(03)00023-6 |
[2] | Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112: 935–945. |
[3] | Streets AM, Huang Y (2013) Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics 7: 011302. doi: 10.1063/1.4789751 |
[4] | Watkins N, Irimia D, Toner M, et al. (2011) On a chip. Ieee Pulse 2: 19–27. |
[5] | Mark D, Haeberle S, Roth G, et al. (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39: 1153–1182. doi: 10.1039/b820557b |
[6] | Miyamura K (2004) Development of blood cell counter for point of care testing (POCT). Horiba Technical Journal “Readout”: 56–61. |
[7] | Tanabe R, Hata S, Shimokohbe A (2006) MEMS complete blood count sensors designed to reduce noise from electrolysis gas. Microelectron Eng 83: 1646–1650. doi: 10.1016/j.mee.2006.01.233 |
[8] | Zheng S, Liu M, Tai YC (2008) Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing. Biomed Microdevices 10: 221–231. doi: 10.1007/s10544-007-9128-5 |
[9] | Jagtiani AV, Carletta J, Zhe J (2011) An impedimetric approach for accurate particle sizing using a microfluidic Coulter counter. J Micromech Microeng 21: 045036. doi: 10.1088/0960-1317/21/4/045036 |
[10] | Chun H, Chung TD, Kim HC (2005) Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Anal Chem 77: 2490–2495. doi: 10.1021/ac048535o |
[11] | Joo S, Kim KH, Kim HC, et al. (2010) A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence. Biosens Bioelectron 25: 1509–1515. doi: 10.1016/j.bios.2009.11.011 |
[12] | Holmes D, Pettigrew D, Reccius CH, et al. (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9: 2881–2889. doi: 10.1039/b910053a |
[13] | Cheung KC, Berardino MD, Schade-Kampmann G, et al. (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77: 648–666. |
[14] | Cheung KC, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A 65: 124–132. |
[15] | Sun T, Morgan H (2010) Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluidics 8: 423–443. doi: 10.1007/s10404-010-0580-9 |
[16] | Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1: 76–82. doi: 10.1039/b103933b |
[17] | Wood Dk, Oh SH, Lee SH, et al. (2005) High-bandwidth radio frequency Coulter counter. Appl Phys Lett 87: 184106. doi: 10.1063/1.2125111 |
[18] | Rodriguez-Trujillo R, Castillo-Fernandez O, Garrido M, et al. (2008) High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture. Biosens Bioelectron 24: 290–296. |
[19] | Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11: 407–412. doi: 10.1039/C0LC00099J |
[20] | Spencer D, Morgan H (2011) Positional dependence of particles in microfludic impedance cytometry. Lab Chip 11: 1234–1239. doi: 10.1039/c1lc20016j |
[21] | Lee DW, Yi S, Cho YH (2008) A flow rate independent cell concentration measurement chip using electrical cell counters across a fixed control volume. J Microelectromech S 17: 139–146. doi: 10.1109/JMEMS.2007.906766 |
[22] | Jagtiani AV, Sawant R, Zhe J (2006) A label-free high throughput resistive-pulse sensor for simultaneous differentiation and measurement of multiple particle-laden analytes. J Microelectromech S 16: 1530. |
[23] | Zhan Y, Cao Z, Bao N, et al. (2012) Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation. J Control Release 160: 570–576. doi: 10.1016/j.jconrel.2012.04.006 |
[24] | Demierre N, Braschler T, Linderholm P, et al. (2007) Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7: 355–365. doi: 10.1039/B612866A |
[25] | Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4: 026502. doi: 10.1063/1.3259624 |
[26] | Van BC, Gwyer JD, Deane S, et al. (2011) Integrated systems for rapid point of care (PoC) blood cell analysis. Lab Chip 11: 1249–1255. doi: 10.1039/c0lc00587h |
[27] | Wu TF, Mei Z, Pion-Tonachini L, et al. (2011) An optical-coding method to measure particle distribution in microfluidic devices. AIP Adv 1: 022155. doi: 10.1063/1.3609967 |
[28] | Mei Z, Wu TF, Pion-Tonachini L, et al. (2011) Applying an optical space-time coding method to enhance light scattering signals in microfluidic devices. Biomicrofluidics 5: 034116. doi: 10.1063/1.3624740 |