Logarithmic estimates for continuity equations

  • Received: 01 April 2015 Revised: 01 August 2015
  • Primary: 35F16; Secondary: 37C10.

  • The aim of this short note is twofold. First, we give a sketch of the proof of a recent result proved by the authors in the paper [7] concerning existence and uniqueness of renormalized solutions of continuity equations with unbounded damping coefficient. Second, we show how the ideas in [7] can be used to provide an alternative proof of the result in [6,9,12], where the usual requirement of boundedness of the divergence of the vector field has been relaxed to various settings of exponentially integrable functions.

    Citation: Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations[J]. Networks and Heterogeneous Media, 2016, 11(2): 301-311. doi: 10.3934/nhm.2016.11.301

    Related Papers:

    [1] Maria Colombo, Gianluca Crippa, Stefano Spirito . Logarithmic estimates for continuity equations. Networks and Heterogeneous Media, 2016, 11(2): 301-311. doi: 10.3934/nhm.2016.11.301
    [2] Maria Laura Delle Monache, Paola Goatin . Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12(2): 245-258. doi: 10.3934/nhm.2017010
    [3] Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843
    [4] Fabio Camilli, Raul De Maio, Andrea Tosin . Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12(2): 191-215. doi: 10.3934/nhm.2017008
    [5] Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017
    [6] Jacek Banasiak, Proscovia Namayanja . Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197
    [7] Graziano Guerra, Michael Herty, Francesca Marcellini . Modeling and analysis of pooled stepped chutes. Networks and Heterogeneous Media, 2011, 6(4): 665-679. doi: 10.3934/nhm.2011.6.665
    [8] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [9] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [10] Rong Huang, Zhifeng Weng . A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems. Networks and Heterogeneous Media, 2023, 18(2): 562-580. doi: 10.3934/nhm.2023024
  • The aim of this short note is twofold. First, we give a sketch of the proof of a recent result proved by the authors in the paper [7] concerning existence and uniqueness of renormalized solutions of continuity equations with unbounded damping coefficient. Second, we show how the ideas in [7] can be used to provide an alternative proof of the result in [6,9,12], where the usual requirement of boundedness of the divergence of the vector field has been relaxed to various settings of exponentially integrable functions.


    [1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2
    [2] L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191-1244. doi: 10.1017/S0308210513000085
    [3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005.
    [4] L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50.
    [5] F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282. doi: 10.1142/S0219891613500100
    [6] A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence, Calc. Var. Partial Differential Equations, 55 (2016), p21, arXiv:1502.05303 doi: 10.1007/s00526-016-0956-0
    [7] M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. PDE, 54 (2015), 1831-1845. doi: 10.1007/s00526-015-0845-y
    [8] G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46. doi: 10.1515/CRELLE.2008.016
    [9] B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Diff. Eq., 21 (1996), 1667-1703. doi: 10.1080/03605309608821242
    [10] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835
    [11] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. doi: 10.1002/cpa.3160140317
    [12] P. B. Mucha, Transport equation: Extension of classical results for div bBMO, J. Differential Equations, 249 (2010), 1871-1883. doi: 10.1016/j.jde.2010.07.015
  • This article has been cited by:

    1. Elia Brué, Maria Colombo, Camillo De Lellis, Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves, 2021, 240, 0003-9527, 1055, 10.1007/s00205-021-01628-5
    2. F. Ben Belgacem, P.-E. Jabin, Convergence of Numerical Approximations to Non-linear Continuity Equations with Rough Force Fields, 2019, 234, 0003-9527, 509, 10.1007/s00205-019-01396-3
    3. Albert Clop, Heikki Jylhä, Joan Mateu, Joan Orobitg, Well-posedness for the continuity equation for vector fields with suitable modulus of continuity, 2019, 276, 00221236, 45, 10.1016/j.jfa.2018.10.001
    4. Luigi Ambrosio, Sebastiano Nicolussi Golo, Francesco Serra Cassano, Classical flows of vector fields with exponential or sub-exponential summability, 2023, 372, 00220396, 458, 10.1016/j.jde.2023.07.005
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3985) PDF downloads(244) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog