New interaction estimates for the Baiti-Jenssen system

  • Received: 01 April 2015 Revised: 01 October 2015
  • Primary: 35L65; Secondary: 35L67.

  • We establish new interaction estimates for a system introduced by Baiti and Jenssen. These estimates are pivotal to the analysis of the wave front-tracking approximation. In a companion paper we use them to construct a counter-example which shows that Schaeffer's Regularity Theorem for scalar conservation laws does not extend to systems. The counter-example we construct shows, furthermore, that a wave-pattern containing infinitely many shocks can be robust with respect to perturbations of the initial data. The proof of the interaction estimates is based on the explicit computation of the wave fan curves and on a perturbation argument.

    Citation: Laura Caravenna, Laura V. Spinolo. New interaction estimates for the Baiti-Jenssen system[J]. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263

    Related Papers:

    [1] Laura Caravenna, Laura V. Spinolo . New interaction estimates for the Baiti-Jenssen system. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263
    [2] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [3] Tong Li, Sunčica Čanić . Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4(3): 527-536. doi: 10.3934/nhm.2009.4.527
    [4] Raimund Bürger, Stefan Diehl, M. Carmen Martí, Yolanda Vásquez . A difference scheme for a triangular system of conservation laws with discontinuous flux modeling three-phase flows. Networks and Heterogeneous Media, 2023, 18(1): 140-190. doi: 10.3934/nhm.2023006
    [5] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [6] Qing Li, Steinar Evje . Learning the nonlinear flux function of a hidden scalar conservation law from data. Networks and Heterogeneous Media, 2023, 18(1): 48-79. doi: 10.3934/nhm.2023003
    [7] Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi . Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks and Heterogeneous Media, 2016, 11(1): 49-67. doi: 10.3934/nhm.2016.11.49
    [8] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [9] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [10] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
  • We establish new interaction estimates for a system introduced by Baiti and Jenssen. These estimates are pivotal to the analysis of the wave front-tracking approximation. In a companion paper we use them to construct a counter-example which shows that Schaeffer's Regularity Theorem for scalar conservation laws does not extend to systems. The counter-example we construct shows, furthermore, that a wave-pattern containing infinitely many shocks can be robust with respect to perturbations of the initial data. The proof of the interaction estimates is based on the explicit computation of the wave fan curves and on a perturbation argument.


    [1] L. Ambrosio and C. De Lellis, A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ., 1 (2004), 813-826. doi: 10.1142/S0219891604000263
    [2] preparation.
    [3] P. Baiti and H. K. Jenssen, Blowup in L for a class of genuinely nonlinear hyperbolic systems of conservation laws, Discrete Contin. Dynam. Systems, 7 (2001), 837-853. doi: 10.3934/dcds.2001.7.837
    [4] S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension, Comm. Math. Phys., 313 (2012), 1-33. doi: 10.1007/s00220-012-1480-5
    [5] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000.
    [6] A. Bressan and G. M. Coclite, On the boundary control of systems of conservation laws, SIAM J. Control Optim., 41 (2002), 607-622. doi: 10.1137/S0363012901392529
    [7] A. Bressan and R. M. Colombo, Decay of positive waves in nonlinear systems of conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 133-160, URL http://www.numdam.org/item?id=ASNSP_1998_4_26_1_133_0.
    [8] A. Bressan and P. Goatin, Oleinik type estimates and uniqueness for n×n conservation laws, J. Differential Equations, 156 (1999), 26-49. doi: 10.1006/jdeq.1998.3606
    [9] A. Bressan and T. Yang, A sharp decay estimate for positive nonlinear waves, SIAM J. Math. Anal., 36 (2004), 659-677. doi: 10.1137/S0036141003427774
    [10] L. Caravenna, A note on regularity and failure of regularity for systems of conservation laws via Lagrangian formulation, Bull. Braz. Math. Soc. (N.S.), 47 (1) (2016), Also arXiv:1505.00531.
    [11] Indiana Univ. Math. J., to appear, Also arXiv:1505.00609.
    [12] C. Christoforou and K. Trivisa, Sharp decay estimates for hyperbolic balance laws, J. Differential Equations, 247 (2009), 401-423. doi: 10.1016/j.jde.2009.03.013
    [13] C. M. Dafermos, Wave fans are special, Acta Math. Appl. Sin. Engl. Ser., 24 (2008), 369-374. doi: 10.1007/s10255-008-8010-4
    [14] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010, doi: 10.1007/978-3-642-04048-1
    [15] R. J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 26 (1973), 1-28. doi: 10.1002/cpa.3160260102
    [16] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408
    [17] J. Glimm and P. D. Lax, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970.
    [18] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002, doi: 10.1007/978-3-642-56139-9
    [19] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal., 31 (2000), 894-908. doi: 10.1137/S0036141099352339
    [20] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (123) (1970), 228-255.
    [21] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406
    [22] T. P. Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math., 30 (1977), 586-611.
    [23] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk (N.S.), 12 (1957), 3-73.
    [24] D. G. Schaeffer, A regularity theorem for conservation laws, Advances in Math., 11 (1973), 368-386. doi: 10.1016/0001-8708(73)90018-2
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3784) PDF downloads(196) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog