Transferability of collective transportation line networks from a topological and passenger demand perspective

  • Received: 01 July 2014 Revised: 01 December 2014
  • Primary: 05C82, 05C65, 05C40; Secondary: 90B10, 68M10, 90B06.

  • We analyze the transferability of collective transportation line networks (CTLN) with the help of hypergraphs, their linearization, and connectivity measures from Complex Network Theory. In contrast to other existing works in the literature, where transferability is analyzed at a topological level, we are also concerned with passenger system level, introducing data on the travel patterns. This will allow us to have a more complete view of the functioning of the transfer system of a CTLN.

    Citation: Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective[J]. Networks and Heterogeneous Media, 2015, 10(1): 1-16. doi: 10.3934/nhm.2015.10.1

    Related Papers:

    [1] Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa . Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks and Heterogeneous Media, 2015, 10(1): 1-16. doi: 10.3934/nhm.2015.10.1
    [2] Mary Luz Mouronte, Rosa María Benito . Structural analysis and traffic flow in the transport networks of Madrid. Networks and Heterogeneous Media, 2015, 10(1): 127-148. doi: 10.3934/nhm.2015.10.127
    [3] A. Marigo . Robustness of square networks. Networks and Heterogeneous Media, 2009, 4(3): 537-575. doi: 10.3934/nhm.2009.4.537
    [4] Fabio Camilli, Raul De Maio, Andrea Tosin . Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12(2): 191-215. doi: 10.3934/nhm.2017008
    [5] Mary Luz Mouronte, Rosa María Benito . Structural properties of urban bus and subway networks of Madrid. Networks and Heterogeneous Media, 2012, 7(3): 415-428. doi: 10.3934/nhm.2012.7.415
    [6] Yaojun Liu, Li Jia, Ping Wang, Xiaolin Song . Joint optimization of location and allocation for spare parts depots under ($ r, Q $) inventory policy. Networks and Heterogeneous Media, 2024, 19(3): 1038-1057. doi: 10.3934/nhm.20240046
    [7] Almerima Jamakovic, Steve Uhlig . On the relationships between topological measures in real-world networks. Networks and Heterogeneous Media, 2008, 3(2): 345-359. doi: 10.3934/nhm.2008.3.345
    [8] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [9] Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373
    [10] Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada . Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks and Heterogeneous Media, 2012, 7(3): i-iii. doi: 10.3934/nhm.2012.7.3i
  • We analyze the transferability of collective transportation line networks (CTLN) with the help of hypergraphs, their linearization, and connectivity measures from Complex Network Theory. In contrast to other existing works in the literature, where transferability is analyzed at a topological level, we are also concerned with passenger system level, introducing data on the travel patterns. This will allow us to have a more complete view of the functioning of the transfer system of a CTLN.


    [1] A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. doi: 10.1126/science.286.5439.509
    [2] E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks, International Journal of Complex Systems in Science, 3 (2013), 1-10.
    [3] E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs, European Physical Journal. Special Topics, 215 (2013), 93-108. doi: 10.1140/epjst/e2013-01717-3
    [4] C. Berge, Graphes et Hypergraphes, Elsevier Science, Paris, 1973.
    [5] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, North-Holland, Amsterdam, 1989. Available from: http://books.google.es/books?id=jEyfse-EKf8C.
    [6] R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, International Journal of Bifurcation and Chaos, 17 (2007), 2289-2301. doi: 10.1142/S0218127407018397
    [7] A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network, Transportation Research Part C: Emerging Technologies, 20 (2012), 34-46.
    [8] S. Derrible and C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678-3691. doi: 10.1016/j.physa.2010.04.008
    [9] G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations, TOP, 5 (1997), 95-104. doi: 10.1007/BF02568532
    [10] G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122 (2000), 1-10. doi: 10.1016/S0377-2217(99)00016-8
    [11] V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701-1-198701-4. doi: 10.1103/PhysRevLett.87.198701
    [12] V. Latora and M. Marchiori, Is the Boston subway a small-world network?, Physica A, 314 (2002), 109-113. doi: 10.1016/S0378-4371(02)01089-0
    [13] S. Milgram, The small world problem, Psychology Today, 1 (1967), 60-67. doi: 10.1037/e400002009-005
    [14] C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks, Journal of The Royal Society Interface, 9 (2012), 2540-2550. doi: 10.1098/rsif.2012.0259
    [15] K. Seaton and L. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635-644. doi: 10.1016/j.physa.2004.03.019
    [16] D. Watts and S. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442.
  • This article has been cited by:

    1. Henri Berestycki, Samuel Nordmann, Luca Rossi, Modeling the propagation of riots, collective behaviors and epidemics, 2022, 4, 2640-3501, 1, 10.3934/mine.2022003
    2. Lei Dong, Ruiqi Li, Jiang Zhang, Zengru Di, Population-weighted efficiency in transportation networks, 2016, 6, 2045-2322, 10.1038/srep26377
    3. Chenlan Wang, Nachuan Wang, Xiaotian Zhang, Network performance measure and importance identification: A case study of private car in Zhengzhou city, 2021, 574, 03784371, 125959, 10.1016/j.physa.2021.125959
    4. Regino Criado, Julio Flores, Alejandro García del Amo, Miguel Romance, Eva Barrena, Juan A. Mesa, Line graphs for a multiplex network, 2016, 26, 1054-1500, 065309, 10.1063/1.4953468
    5. Gilbert Laporte, Juan A. Mesa, 2019, Chapter 24, 978-3-030-32176-5, 687, 10.1007/978-3-030-32177-2_24
    6. Fengqin Tang, Chunning Wang, Yuanyuan Wang, Jinxia Su, Link prediction for multilayer networks using interlayer structural information, 2022, 33, 0129-1831, 10.1142/S0129183122500036
    7. Regino Criado, Santiago Moral, Ángel Pérez, Miguel Romance, On the edges’ PageRank and line graphs, 2018, 28, 1054-1500, 075503, 10.1063/1.5020127
    8. Wei Zhai, Xueyin Bai, Zhong-ren Peng, Chaolin Gu, A bottom-up transportation network efficiency measuring approach: A case study of taxi efficiency in New York City, 2019, 80, 09666923, 102502, 10.1016/j.jtrangeo.2019.102502
    9. Matthew Ackley, Peter Stechlinski, Determining Key Parameters in Riots Using Lexicographic Directional Differentiation, 2021, 81, 0036-1399, 1303, 10.1137/20M131583X
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4565) PDF downloads(98) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog