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Abstract. We analyze the transferability of collective transportation line net-

works (CTLN) with the help of hypergraphs, their linearization, and connec-
tivity measures from Complex Network Theory. In contrast to other existing

works in the literature, where transferability is analyzed at a topological level,
we are also concerned with passenger system level, introducing data on the

travel patterns. This will allow us to have a more complete view of the func-
tioning of the transfer system of a CTLN.

1. Introduction. One of the fields in which the Science of Complex Systems has
been applied is that of Technological Networks. In particular, transportation net-
work and, especially, urban transit networks are complex systems for which several
features as efficiency, vulnerability and robustness, have been studied from the view-
point of the Complex Network Science. Two properties of complex networks are
of special relevance. These are the scale-free pattern and the small-world effect.
Whereas the concept of scale-free network was introduced by Barabasi and Albert
[1], that of the small-world network was first coined by Watts and Strogratz [16],
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in analogy with the small-world phenomenon observed in social networks and pop-
ularly known as the six degrees of separation [13].

A small-world network is characterized by a high average local clustering coeffi-
cient and a low average shortest distance between nodes. The clustering coefficient,
which measures the average cliquisness of the nodes, and characteristic path length
were introduced by Watts and Strogratz [16]. These two measures are not well
defined in some cases and only apply to the topological setting. For these reasons
Latora and Marchiori [11] defined two substitutive measures, the local and global
efficiency, and applied them to metric networks, that is, those in which the edges
have an associated weight. In particular, the local and global efficiency concepts
have been applied to the Boston subway [12]. Indices to evaluate the robustness of
a railway network against interruptions in the normal functioning of its links (both
accidental interruptions and intentional attacks) have been introduced in [7]. Other
relevant papers regarding issues related with the complexity of metro networks from
the viewpoint of the topological setting are [6], [8], [14] and [15].

Collective transportation networks can be decomposed into three layers: the in-
frastructure network, the line network, which uses the infrastructure one as support,
and the passengers system, which uses the lines for traveling. For purposes of ef-
ficiency of the collective transportation line networks (CTLN), an edge for which
the line traversing it only carries one passenger should not be weighted the same
as one that transports one thousand passengers. Recently, Barrena et al. [3] have
introduced several measures on the line network by means of hypergraph theory
[4, 5]. Hypergraphs are the natural extension of graphs and allow us to describe
and apply different concepts which cannot be used by graphs. The new transferabil-
ity measures defined on hypergraphs and their corresponding linear graphs allow
assessing how easy or how hard it is to transfer from one line to another [3].

In this paper we are concerned with the passenger system level, where data on the
travel patterns are introduced. From this perspective, the transferability measures
are better to evaluate the difficulty of transferring between lines. We make the
following hypotheses:

• The CTLN is connected.
• Passengers use their shortest paths.
• There is no maximal capacity on stations (stops), nor on lines or edges.
• There is no other means of transportation competing with that of the CTLN,

therefore demand is fixed.
• The number of passengers wishing to use the CLTN is greater than or equal

to one for each pair of different nodes.
• All transfers are considered similar.

The remainder of the paper is organized as follows. In Section 2 we formally de-
scribe different representations of a CTLN topology, as well as the travel patterns
to be used in the following sections in order to adapt the topological transferability
measures to a passenger system level. In Section 3 we adapt the usual topologi-
cal connectivity indicators to a CTLN and its demand patterns in order to have
transferability indicators at a topological and passenger system level. We analyze
the properties of the new passenger-oriented transferability indicators. In Section
4, we apply our indicators to four typical CTLN configurations and compare the
pure topological with the passenger-oriented indicators. Finally, in Section 5, we
present the conclusions of our work.
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2. Previous definitions and demand patterns. In this section we will present
the notation and definitions needed to define our measures. We assume the ex-
istence of a CTLN represented by a set of lines {L1, . . . , L`}, each of them char-
acterized by its set of nodes and itinerary. More precisely, a line Lp is a chain
graph Lp = (Sp, Ep), where Sp = {si1, . . . , s

p
kp
} is the node (station, stop) set and

Ep = {{si1, si2}, . . . , {s
p
kp−1, s

p
kp
}} is the edge (inter-station space) set describing the

itinerary. Thus, a collective transportation line network G can be described by the
union of chain graphs G = (∪Sp,∪Ep), p = 1, . . . , `.

2.1. Topology of the CTLN. Previous definitions. As in [2], depending on
the level of given information about the network, the appropriated structure graph
for representing a CTLN can be different. We will consider that a CTLN G can be
represented by means of hypergraphs, linear graphs, and multigraphs as follows.

• Hypergraph
Let V (H) = {s1, . . . , sk} be the set containing all the stations of G, S1, . . . ,

S` the station (stop) sets of lines L1, . . . , L`, and E(H) = {S1, . . . , S`}. Then,
H = (V (H), E(H)) is the hypergraph associated to G. Note that, as opposed
to standard graphs, the elements in E(H) are not necessarily pairs of elements
of V (H), but sets of elements. From now on, we call this hypergraph H the
transit hypergraph.

On this structure, the distance dH(si, sj) on the elements of V (H) is the
length of the shortest ordinary (si, sj)-chain. So, all nodes belonging to the
same hyperedge are one unit of distance apart. More precisely, dH(si, sj) is the
minimum number of different lines one needs in order to travel from station
si to station sj . For the sake of readability we will identify a station by its
index whenever this creates no confusion.

• Linear graph
Let L(H) = (V (L(H)), E(L(H))) be the linear graph associated to hyper-

graph H. Its node set V (L(H)) = {L1, . . . , L`}, represents the network lines
(hyperedges of H) and its edge set E(L(H)) is the set of transfer edges connect-
ing lines with intersections between them. These transfer edges are denoted
by epq. Observe that each hyperedge in H corresponds to a node in L(H), and
two nodes in L(H) are linked if and only if the corresponding hyperedges in
H have a non-empty intersection. For the sake of readability, we will identify
a line by its index whenever this creates no confusion.

In this graph, the concept of distance is the usual topological distance in
graphs. Specifically, the distance dL(H)(Lp, Lq) from node Lp to Lq is the
minimum number of edges of a shortest path between Lp and Lq. From the
point of view of transfers, this distance indicates the number of transfers one
needs to make when traveling from one line to different lines in the CTLN.

• Linear multigraph
Note that the linear graph L(H) is assumed to be a simple or strict graph,

where multiple edges between nodes are not allowed. Recall that an edge epq
in this graph means that the lines Lp and Lq have a non-empty intersection,
that is, these lines have at least one common station in H. However, it does not
indicate the number of common stations between the lines, which is interesting
in order to measure how easy it is to transfer between lines. For some purposes,
it can become helpful to allow the linear graph to have multiple edges, thus
becoming the multilinear graph LM (H), i.e., a graph in which multiple edges
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are permitted. The latter case, the number of edges connecting two lines in
L(H) will be equal to the number of transfer stations between them in H. In
the rest of the paper LM (H) will be referred to as the linear multigraph of G.

As in the linear graph, the distance defined on the multigraph is the topo-
logical distance.

2.2. Passenger system level. Demand patterns. As mentioned, the goal of
this work is to analyze the development of a CTLN with respect to the number
of transfers from a passenger demand perspective. To this end, we consider the
passenger demand between stations, as well as between the lines of the network by
means of origin-destination matrices. Let k and ` be the number of stations and
the number of lines forming the CTLN, respectively.

Let OD ∈ Mk×k be the origin-destination demand matrix, whose elements
OD(i, j), i, j ∈ {1, . . . , k} represent the number of passengers traveling from station
si to station sj and the diagonal elements are equal zero since there is no demand
within a station. We assume that OD(i, j) ≥ 1, for all i 6= j, i, j ∈ {1, . . . , k}.
Regarding travels between lines, let LOD ∈ M`×` be the corresponding origin-
destination line-demand matrix where its elements LOD(p, q), p, q ∈ {1, . . . , `} rep-
resent the number of passengers traveling from line Lp to line Lq, and its diagonal
elements LOD(p, p) represent the number of passengers traveling within line Lp.
Starting from OD, LOD is computed as follows:

LOD(p, q) =
∑
i∈Lp

∑
j∈Lq

OD(i, j), p, q ∈ {1, . . . , `}.

Note that the matrices OD and LOD are not necessarily symmetric. The total
demand in the CTLN can be obtained by means of the elements of OD or LOD.
Let N be the total demand expressed as the sum of all demands OD(i, j), i, j ∈
{1, . . . , k} and let NL be defined as the sum of all demands LOD(p, q), p 6= q.
Note that the total demand N can also be defined by means of linear graphs, i. e.,
N = NL +

∑
p LOD(p, p).

3. Passenger system level. Passenger-oriented transferability measures.
Interesting topological measures to evaluate the connectivity of a collective trans-
portation line network are the characteristic path length, the clustering coefficient,
and the local and global efficiency. In this section we show how to adapt the topo-
logical measures to a passenger system level.

3.1. Characteristic path passenger-oriented length. In a previous work [3],
the characteristic path length was defined on the transit hypergraph, its associated
linear graph and linear multi-graph. From a topological point of view, this measure
indicates the separation, in terms of number of transfers, between pairs of nodes in
a CTLN. However, this measure does not take into account the mobility patterns
and should be extended. The following sections introduce the characteristic path
passenger-oriented length on the transit hypergraph and its linearizations.

3.1.1. Characteristic path passenger-oriented length on the transit hypergraph. Over
the hypergraph level of information, the characteristic path length will provide an
average measure of how the topological configuration of the CTLN affects the pas-
sengers who transfer between the stations of a CTLN. This measure will depend on
the number of transfers that passengers must make in order to reach their destina-
tion station.
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Definition 3.1. We define the characteristic path passenger-oriented length of the
transit hypergraph H, with |V (H)| > 1, as the average passenger-oriented distance
in H, i.e.,

Ld(H) =
∑
si 6=sj

dH(si, sj)
OD(i, j)

N
.

So, the higher the number of passengers who travel between stations si and sj , the
higher the weight we assign to the hypergraph distance between these two stations.
This way, the solutions of the problem of designing a line network minimizing the
characteristic path length will tend to have better connections between lines with
more passengers traveling between them.

Our intention is to analyze the topology of the CTLN from a passengers per-
spective. The pairs of stations with more passengers demand between them have
more influence on the resulting characteristic path passenger-oriented length, and
the pairs of stations with no passengers demand between them, have no influence.
The same is true for the linear graph L(H).

The following example shows the effect on considering the travel patterns in a
transit hypergraph associated to a CTLN.

Example 3.1. Consider a simple case in which two possible line configurations
(see Figure 2) are described for the same infrastructure network (see Figure 1).
The infrastructure network is formed by six stations and five edges as follows.

Figure 1. Infrastructure network.

Figure 2. Two CTLN G and Ḡ associated to the infrastructure
network of Figure 1.

The first CTLN G is defined by three lines:

• L1 = (S1, E1) = ({s1, s2, s3}, {{s1, s2}, {s2, s3}})
• L2 = (S2, E2) = ({s3, s4, s5}, {{s3, s4}, {s4, s5}})
• L3 = (S3, E3) = ({s5, s6}, {{s5, s6}}).
The second CTLN Ḡ is defined by the lines:

• L̄1 = (S̄1, Ē1) = ({s1, s2}, {{s1, s2}})
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• L̄2 = (S̄2, Ē2) = ({s2, s3, s4, s5}, {{s2, s3}, {s3, s4}, {s4, s5}})
• L̄3 = L3.

Figure 3 illustrates the hypergraphs representations H and H̄ of the CTLNs G
and Ḡ, respectively.

Figure 3. The two hypergraph H and H̄ associated to G and Ḡ, respectively.

The characteristic path lengths associated to H and H̄ are L(H) = 50/30 >
44/30 = L(H̄).

In order to compute the characteristic path passenger-oriented length and observe
the differences with respect to the usual characteristic path length, we assume the
following demand pattern as OD(1, 3) = 6, OD(i, j) = 1, ∀i 6= j, (i, j) 6= (1, 3).
So, Ld(H) = 60/40 < Ld(H̄) = 64/40. It can be observed that when this demand
pattern is introduced, the order is different. This result is due to the maximum
demand pair (1, 3), which is better connected in H than in H̄. If we consider a
constant demand for all origin-destination pairs, such as for example, OD(i, j) =
α, ∀i 6= j, α > 0, then Ld(H) = 50/30 > 44/30 = Ld(H̄).

The next lemma proves that the characteristic path passenger-oriented length
above defined is a natural extension of L(H) defined in [3].

Lemma 3.2. Ld(H) is an extension of L(H), which yields the same result if the
number of passengers between each pair of stations si, sj is the same, that is, all
the elements of matrix OD, except its diagonal elements, are the same.

Proof. Trivially, if we consider a constant number α > 0 of passengers for each
OD pair of different stations (i.e. OD(i, j) = α, i 6= j), then the total number of
passengers N is equal to the number of pairs of stations multiplied by α, that is
N = α(|V (H)|(|V (H)| − 1)). The following expression is thus obtained:

Ld(H) =
∑
i 6=j

dH(si, sj)
α

N
=
∑
i6=j

dH(si, sj)
α

α(|V (H)|(|V (H)| − 1))

=
1

|V (H)|(|V (H)| − 1)

∑
i6=j

dH(si, sj)).

Since the distance dH is symmetric and dH(si, si) = 0, then

1

|V (H)|(|V (H)| − 1)

∑
i 6=j

dH(si, sj) =
2

|V (H)|(|V (H)| − 1)

∑
i<j

dH(si, sj) = L(H).

The following proposition states that the characteristic path length of the transit
hypergraph, which gives a measure of the transferability of a CTLN, satisfies the
same two basic properties of this type of measures: it lies within a predefined range
and satisfies a monotonicity property.
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Proposition 1. Consider a CTLN G, and let H be its associated transit hypergraph.
Let OD be a non-empty demand matrix between stations. The passenger-oriented
characteristic path length Ld(H) of the transit hypergraph satisfies the following two
properties:

1. 1 ≤ Ld(H) ≤ ODmax
N

`(`+1)(`+2)
3 , where ODmax = maxi 6=j OD(i, j).

2. Let G′ be a CTLN obtained when adding one new line joining two lines of
G without additional stations, and let H′ be the associated hypergraph. Then
Ld(H) ≥ Ld(H′).

Proof. 1. If si, sj ∈ V (H), then 1 ≤ dH(si, sj) holds. The best situation regarding
dH(si, sj) is when there is only one line, in which case dH(si, sj) = 1,∀si, sj ∈
V (H), i 6= j. Then, in this case,

Ld(H) =
∑
i6=j

dH(si, sj)
OD(i, j)

N
= 1.

The worst situation regarding dH(si, sj) is when there are ` lines, each
of them consisting of two stations forming a chain graph. So, the lines are
L1, ..., L`, and the sets of nodes are V (Lk) = {sk, sk+1}, for k = 1, ..., `. It is
then fulfilled that dH(sk, sk+k′) = k′. Therefore

Ld(H) =
∑
k1 6=k2

dH(sk1 , sk2)
OD(k1, k2)

N

=2
∑
k1<k2

dH(sk1 , sk2)
OD(k1, k2)

N

≤ODmax

N

∑̀
k1=1

`+1∑
k2=k1+1

(k2 − k1)

=
ODmax

N
2
∑̀
k1=1

[ (`+ 1− k1)(`+ 2− k1)

2

]

=
ODmax

N

∑̀
k1=1

[(`+ 1)(`+ 2)− k1(`+ 1)− k1(`+ 2) + k21]

=
ODmax

N

[`(`+ 1)(`+ 2)

3

]
.

2. Adding a new line joining two lines without additional stations results in
dH(si, sj) ≥ dH′(si, sj). Since the node set V (H′) does not change, the result
follows.

3.1.2. Characteristic path passenger-oriented length on the linear graph. The follow-
ing definition is the natural extension of the characteristic path length defined in
[3], but considering the passenger demand. The characteristic path length in L(H)
provides information on how the number of transfers (resulting from the topology
of the network) affects the passengers. It gives an average measure of how easy it
is for passengers to transfer between the lines of a CTLN.

Definition 3.3. We define the characteristic path passenger-oriented length of the
linear graph L(H) with |V (L(H))| > 1 as the average passenger-oriented distance
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in L(H), i.e.,

Ld(L(H)) =
∑
p 6=q

dL(H)(Lp, Lq)
LOD(p, q)

NL
,

where LOD(p, q)/NL is the proportion of passengers transferring from line Lp to
line Lq over all passengers who transfer.

So, the higher the number of passengers traveling between lines Lp and Lq, the
higher the weight we assign to the distance between these two lines. This way, when
the characteristic path passenger-oriented length is minimized among the feasible
linear graphs, lines with more passengers traveling between them will have better
connections. Another possibility is to consider in the denominator, instead of the
number NL of passengers who transfer, the total number of passenger N in the
network.

The next lemma proves that the characteristic path passenger-oriented length
above defined is a natural extension of L(L(H)) defined in [3].

Lemma 3.4. Ld(L(H)) is an extension of L(L(H)), which yields the same result if
the number of passengers between each pair of lines Lp, Lq, is the same, that is, all
the elements of matrix LOD, except its diagonal elements, are the same.

Proof. Trivially, if we consider a constant number α > 0 of passengers for each
LOD pair (i.e. LOD(p, q) = α), then the number of passengers who tranfer is
equal to the number of ordered pairs of lines multiplied by α, that is, NL =
α(|V (L(H))|(|V (L(H))| − 1)). The following expression is thus obtained:

Ld(L(H)) =
∑
p6=q

dL(H)(Lp, Lq)
α

NL
=

∑
p 6=q

dL(H)(Lp, Lq)
α

α(|V (L(H))|(|V (L(H))| − 1))

=
1

|V (L(H))|(|V (L(H))| − 1)

∑
p 6=q

dL(H)(Lp, Lq).

Since the distance dL(H) is symmetric and dL(H)(Lp, Lp) = 0 , then

1

|V (L(H))|(|V (L(H))| − 1)

∑
p 6=q

dL(H)(Lp, Lq)

=
2

|V (L(H))|(|V (L(H))| − 1)

∑
p<q

dL(H)(Lp, Lq) = L(L(H)).

The next proposition proves two properties which allow us to use the passenger-
oriented characteristic path length as a transferability measure for collective trans-
portation line networks. These two properties are: staying within a predefined
range of variation and monotonicity.

Proposition 2. Consider a CTLN G, and let L(H) be its associated linear graph.
The passenger-oriented characteristic path length Ld(L(H)) of the linear graph sat-
isfies the following properties:

1. 1 ≤ Ld(L(H)) ≤ `− 1.
2. Ld(L(H)) is monotone decreasing in the sense that, if G′ is obtained when

adding a new link to G connecting two lines without additional stations (with
at least one passenger), we have that Ld(L(H)

′
) ≤ Ld(L(H)), where L(H)′ is

the linear graph of G′.
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Proof. 1.

Ld(L(H)) =
∑
p 6=q

dL(H)(Lp, Lq)
LOD(p, q)

NL
≥

∑
p 6=q

LOD(p, q)

NL
= 1.

This bound is attained when dL(H)(Lp, Lq) = 1,∀p 6= q, i.e. each two lines
intersect at a transfer station/stop and, thus, the linear graph is complete.

`− 1 =
∑
p 6=q

(`− 1)
LOD(p, q)

NL
≥

∑
p 6=q

dL(H)(Lp, Lq)
LOD(p, q)

NL
= Ld(L(H)).

2. When adding a line that connects two lines that were previously connected
in G, dL(H) does not vary and neither does Ld(L(H)). When adding a line
that connects two lines that were not directly connected, say Lp and Lq, now
dL(H)(Lp, Lq) decreases to 1, and dL(H) either remains constant or decreases

for any other pair of lines. Therefore Ld(L(H)
′
) < Ld(L(H)).

Similar definitions and properties hold for the linear multigraph LM (H).

3.2. Clustering passenger-oriented coefficient. Transitivity is an important
concept in social network analysis. A well-known indicator to measure the local
degree of clustering, known as the clustering coefficient, is defined in [16]. In [3],
it is adapted to the different topological representations of a CTLN. The clustering
coefficient takes into account the number of transfers one needs to make to travel
between neighbors of a node when this is deleted. In the following sections we
will present the clustering coefficient at the different topological representations of
CTLN, but also including travel demand patterns.

3.2.1. Clustering passenger-oriented coefficient on linear graphs L(H) and LM (H).
The clustering coefficient in L(H) takes into account the number of transfers one
needs to make to travel between neighbors of a line when this is deleted, as well
as the number of passengers travelling between lines. The number of stations is
therefore not considered, nor are the trips between pairs of stations of the same
line. These aspects will be taken into consideration in Section 3.2.2.

Definition 3.5. Let G be a CTLN and let L(H) be its associated linear graph.
We consider the passenger-oriented clustering coefficient Cd on the linear graph
L(H) as an extension considering demand of the clustering coefficient presented in
[16]. Therefore, for each node p ∈ V (L(H)), the subgraph Lp(H) formed by all first
neighbors of p is considered. In this subgraph, node p and all edges incidents to p
are eliminated. If node p has kp neighbors, then Lp(H) will have kp nodes and at
most kp(kp − 1)/2 edges. Cp is the fraction of these edges that actually exist and
Cd is the average of Cp, calculated over all nodes:

Cd(L(H)) =
1∑

p∈V (L(H))Np

∑
p∈V (L(H))

Cp(Lp(H)),

where

Cp(Lp(H)) =
number of edges in Lp(H)

kp(kp − 1)/2
Np,

where Np is the total number of passengers taking line Lp. Note that Cd(L(H)) ∈
[0, 1].

We consider that if |Lp(H)| = 1, then Cp(Lp(H)) = 0.
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The next lemma proves that the passenger-oriented clustering coefficient just
defined, is a natural extension of C(L(H)) defined in [3].

Lemma 3.6. Cd(L(H)) is an extension of C(L(H)), which yields the same result if
the number of passengers Np traversing each line is the same, that is, if there exists
a constant α > 0 such that Np = α.

Proof. Trivially, if there exists a constant α > 0 such that Np = α, the following
expression is obtained:

Cd(L(H)) =
1∑

p∈V (L(H)) α

∑
p∈V (L(H))

number of edges in Lp(H)

kp(kp − 1)/2
α

=
1

|V (L(H))|
∑

p∈V (L(H))

number of edges in Lp(H)

kp(kp − 1)/2
= C(L(H)).

The passenger-oriented clustering coefficient in L(H) measures the degree of
transferability between its nodes from a passenger perspective, but does not take
into account the number of transfer nodes in H. In order to consider these, not only
if passengers can transfer between two lines, but also the number of possibilities
to transfer, we propose the following definition of the passenger-oriented clustering
coefficient in LM (H).

Definition 3.7. Let LMp (H) be the neighbor multigraph associated to p ∈ V (LM (H))
and Umax a threshold that represents the maximum number of transfer nodes that
can exist between two lines. If node p has kp neighbors, then LMp (H) will have at

most Umax(kp(kp − 1))/2 multi-edges. CMA
p (LMp (H)) is the fraction of these edges

that actually exist and the passenger-oriented clustering coefficient CMA
d (LM (H))

on the linear multigraph LM (H) is the average of CMA
p (LMp (H)), calculated over all

nodes:

CMA
d (LM (H)) =

1∑
p∈V (LM (H))Np

∑
p∈V (LM (H))

CMA
p (LMp (H)),

where

CMA
p (LMp (H)) =

number of edges in LMp (H)

Umaxkp(kp − 1)/2
Np.

Note that CMA
d (LM (H)) ∈ [0, 1].

Multiplying Cp by Np we weight the nodes (lines) in such a way that the lines
with more passengers weight more. In this way, we give more relevance to the busier
lines. Moreover, if these indices are to be minimized, then these more busy lines
will be preferred to have better connections in order not to weight that much in the
objective function.

Trivially, Lemma 3.6 also applies to the passenger-oriented clustering coefficient
on the linear multigraph.

3.2.2. Passenger-oriented clustering coefficient on transit hypergraph H. The clus-
tering coefficient in H will take into account the passengers traveling between sta-
tions. In order to define the local clustering coefficient on hypergraphs, we refer
to the primal graph of a hypergraph and will make calculations on it by using the
terminology of hypergraphs.
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Definition 3.8. Let GH be the primal graph (see [4]) of the transit hypergraph H.
We will consider the passenger-oriented clustering coefficient of GH defined as an
extension of the clustering coefficient introduced in [16] and denoted by Cd(GH). Let
GHi be the subgraph formed by all first neighbors of i, then the passenger-oriented
clustering coefficient of GH is defined as follows:

Cd(GH) =
1∑

i∈V (GH)
ni

∑
i∈V (GH)

Cd(GHi),

where

Cd(GHi) =
number of edges in GHi

ki(ki − 1)/2
ni,

ki being the number of nodes of GHi and ni the number of passengers traversing
station i. Note that Cd(GH) ∈ [0, 1].

Note that if a station has no passenger traversing it, then ni = 0 and therefore
this station is not being considered in the calculation of the passenger-oriented
clustering coefficient. Our intention is to analyze the topology of the CTLN from a
passenger perspective. Thus the stations with more passengers have more influence
on the resulting coefficient, and the stations with no passengers have no influence.
The same applies to the linear graph L(H): if a line has no passengers, it is not
considered in the computation of the passenger-oriented clustering coefficient Cd on
L(H), and the lines with more passengers have more influence on this coefficient.

The next lemma proves that the passenger-oriented clustering coefficient on the
primal graph GH is a natural extension of C(GH) defined in [3].

Lemma 3.9. Cd(GH) is an extension of C(GH), which yields the same result if the
number of passengers traversing each station si is the same, that is, if there exists
a constant α > 0 such that ni = α.

Proof. Trivially, if there exists a constant α > 0 such that ni = α, the following
expression is obtained:

Cd(GH) =
1∑

i∈V (GH)
α

∑
i∈V (GH)

number of edges in GHi
ki(ki − 1)/2

α

=
1

|V (GH)|
∑

i∈V (GH)

number of edges in GHi
ki(ki − 1)/2

= C(GH).

3.3. Passenger-oriented local and global efficiency. Global and local effi-
ciency [11] in a CTLN environment [3] measure how efficiently one can move from
one node to another from a global and a local point of view, respectively. In this
section, we introduce this measures considering not only the topology of the CTLN,
but also the passenger demand patterns.

3.3.1. Passenger-oriented local and global efficiency on the linear graph L(H). The
passenger-oriented local and global efficiency on the linear graph will measure how
efficiently the passenger demand can move from one line to another from a global
and a local point of view, respectively.
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Definition 3.10. We define the passenger oriented global efficiency indicator of the
linear graph L(H) as the average of the inverse of the passenger-oriented distances
in L(H), that is,

Eglobd (L(H)) =
∑
p 6=q

LOD(p, q)

NLdL(H)(Lp, Lq)
,

where LOD(p, q)/NL is the proportion of passengers transferring from line Lp to
line Lq over all passengers who transfer.

The next proposition provides two properties which allow us to use the passenger-
oriented global efficiency as a transferability measure for collective transportation
line networks. These two properties are: staying within a predefined range of vari-
ation and monotonicity.

Proposition 3. Consider a CTLN G, and let L(H) be its associated linear graph.
We have that:

1. 1
`−1 ≤ Eglobd (L(H)) ≤ 1. The closer to 1, the more interconnected the lines

are. Eglobd (L(H)) = 1 means that for all pairs of lines of G there is a transfer
station that directly connects them.

2. Eglobd (L(H)) is monotone increasing in the sense that, if G′ is obtained when
adding a new line without additional stations that connects two lines in G, we

have that Eglobd (L(H)′) ≥ Eglobd (L(H)), where L(H)′ is the linear graph of G′.

Moreover, Eglobd (L(H)′) > Eglobd (L(H)) if and only if the new link connects
two lines that were not directly connected in G.

Proof. This proof is analogous to that of Proposition 2.

Definition 3.11. We define the passenger-oriented local efficiency indicator of the
linear graph L(H) as the average passenger oriented global efficiency of the subgraph
Lp(H) = (Vp, Ep), formed by all first neighbors of Lp in L(H), where Vp = V (Lp(H))
and Ep = E(Lp(H)). Mathematically,

Elocd (L(H)) =
1∑

p∈V (L(H))Np

∑
p∈V (L(H))

Eglobd (Lp(H))Np,

where Np is the number of passengers traveling within line Lp.

3.3.2. Passenger-oriented local and global efficiency on the hypergraph H. The pass-
enger-oriented local and global efficiency on the hypergraph H measure how effi-
ciently passenger demand can move from one station to another from a global and
a local point of view, respectively. This is defined as the average of the inverse of
the distances dH(si, sj) (Section 2.1), similar to what is done in Definitions 3.10 and
3.11.

Note that for constant demand patterns, the passenger oriented global and local
efficiency indicators for CTLN are the same as the usual global and local efficiency
indicators for CTLN studied in [3]. This can be proved analogously to what is done
for the passenger-oriented characteristic path length in Lemmas 3.4 and 3.2.

4. Computational experiments. Most CTLNs have been classified according to
simple topological patterns ([10]) and the number of lines in the network, such as
single lines, two lines with one or two crosses, circular lines, stars, grids, cartwheels
and triangles. In order to show the applicability of our measures, we have tested
several basic network configurations (see Figure 4), composed of three lines each.
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Specifically, we have considered four topological CTLN configurations: a cartwheel
configuration with 29 nodes and 32 edges, a parallel configuration with 29 nodes
and 28 edges, a star configuration with 29 nodes and 28 edges and a triangle con-
figuration with 29 nodes and 29 edges.

In order to introduce demand patterns, we have generated an OD demand matrix
for each of these configurations, following the trip distribution described in [9]. To
this end, we have considered each network as a graph, where each node is represented
as point by a coordinate in the plane, and each edge represents a direct connection
between a pair of nodes. As in [9], each configuration describes a CTLN for a
circular city with two disjoint areas: a central business district B and a residential
area A. For each configuration, we have defined A as the area corresponding to a
circle of radius 2 and centre a (see Figure 4), and B as the area lying outside of A.

In Table 1 we report the values of the transferability measures introduced in Sec-
tion 3 obtained for each configuration and its associated OD matrix. More precisely,
the rows represent the different configurations, and the columns the transferability
measures for the pure topological case [3], as well as for the passenger-oriented case
(Section 3).

It can be observed that with the exception of the parallel configuration, all L(H)
measures are equal to one, both for the topological and the passenger-based cases.
This is due to the topology of the linear graph, which is a complete graph for the
cartwheel, star and triangle configurations, thus yielding the best possible results for
the measures at this level. However, differences can be observed for the clustering
at the multi-linear graph, the cartwheel configuration being the one achieving the
best results for both passenger oriented and topological cases. This is due to the
number of transfer possibilities between any two lines. The cartwheel is the only
configuration with more than one transfer station between two lines. These transfer
stations correspond to multiple edges in corresponding the multi-linear graph thus
yielding better results. The multi-linear graph allows us to know not only if there
are possibilities to transfer between two lines, but also the number of transfers.

Regarding the clustering coefficient in H, the best results are achieved by the star
configuration when no passenger patterns are considered since the existing transfer
node is very well connected. However, when we calculate the passenger-oriented
clustering coefficient, the parallel configuration yields better results. This is due to
the shape of the OD matrices, which have more passengers between pairs of stations
in the best connected area for the parallel case.

Since the demand is mostly concentrated in a small central area, the passenger-
oriented characteristic path length and the efficiency in H is smaller than the pure
topological characteristic path length for all configurations. The pair of stations that
are the closest are given more weight, thus yielding better results for characteristic
path length and efficiency when passenger patterns are taken into consideration. In

spite of the fact that Ld and Eglobd are better than L and Eglob, respectively, for all
configurations, there are configurations that improve more than others depending
on the demand distribution associated with the network topology. For example, the
cartwheel configuration is the one yielding the best results for L and Eglob, whereas
when demand patterns are introduced, the triangular configuration is the best one

with respect to the measures Ld and Eglobd .
Table 2 shows the average values of Table 1. It can be seen that on average, all

measures except the clustering coefficient in H, improve for the passenger-oriented
case. As explained before, this is due to the trip distribution [9], which concentrates
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in a small central area, so that the closest OD pairs have more passengers than the
most separated ones.

Network Levels L C Eglob Ld Cd Eglob
d

Hypergraph 1.571 0.918 0.714 1.524 0.820 0.737
Cartwheel Linear 1 1 1 1 1 1

Multi-linear 0.555 0.548
Hypergraph 1.886 0.964 0.638 1.666 0.837 0.702

Parallel Linear 1.333 0.666 0.833 1.187 0.839 0.906
Multi-linear 0.222 0.181
Hypergraph 1.642 0.976 0.678 1.522 0.829 0.738

Star Linear 1 1 1 1 1 1
Multi-linear 0.333 0.333
Hypergraph 1.62 0.938 0.689 1.479 0.825 0.76

Triangle Linear 1 1 1 1 1 1
Multi-linear 0.333 0.333

Table 1. Results of the different configurations.

Network Levels L C Eglob Ld Cd Eglob
d

Hypergraph 1.679 0.949 0.679 1.547 0.827 0.734
Average Linear 1.083 0.916 0.958 1.046 0.959 0.976

Multi-linear 0.361 0.505
Table 2. Average statistic for Table 1.

Sensitivity analysis with respect to passenger demand for a fixed CTLN . We analyze
the behavior of our measures with respect to small changes in the OD matrix. For
this sensitivity analysis, we focus on the cartwheel configuration. Let OD be the OD
matrix obtained from [9] for the cartwheel configuration. Starting from OD, we have
randomly generated 120 different OD matrices by considering small changes in its
elements. To this end, we consider a parameter τ representing the maximum change
in the number of passengers allowed for each OD pair. We consider four different
values of τ and for each of them we randomly create 30 different OD matrices OD

r

τ ,

r = 1, . . . , 30. The relative error of each OD
r

τ with respect to OD is computed as

Error(OD
r

τ ) = ‖OD − ODr

τ‖/‖OD‖, and the average relative error Error(ODτ )
for each τ is shown in Table 3. We compute the transferability measures defined in
previous sections for each OD

r

τ .
In Table 3 the first column shows the values of τ ; the second presents the average

relative error Error(ODτ ); the third column is the average relative error of the total
demand; the fourth, fifth and sixth column report the average relative error of Ld,

Cd and Eglobd , respectively. The last three columns present the average results of

Ld, Cd and Eglobd , respectively.
It can be observed from Table 3 that for small changes in the OD matrices,

small average relative error are obtained for the passenger-oriented characteristic
path length, clustering coefficient and global efficiency. Our measures are stable
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a

(a) Cartwheel

a

(b) Parallel

a

(c) Star

a

(d) Triangle

Figure 4. Four simple network configurations.

τ Error(ODτ ) Error(demand) Error(Ld) Error(Cd) Error(E
glob
d

) aver(Ld) aver(Cd) aver(E
glob
d

)

1 0.01834 0.0035 0.0019 0.0002 0.0016 1.5248 0.8205 0.0027
2 0.0335 0.0034 0.0037 0.0004 0.0034 1.5253 0.8205 0.7373
3 0.0474 0.0050 0.0058 0.0006 0.0048 1.5257 0.8205 0.7372
4 0.0607 0.0103 0.0118 0.0006 0.0092 1.5276 0.8207 0.7362

Table 3. Average demand sensitivity results for cartwheel configuration.

against small changes in OD matrices. These results show that they are satisfactory
regarding stability against small changes in the OD matrix.

5. Conclusions. We have presented an extension of topological transferability co-
efficients for CTLN, by also considering passenger demand, thus yielding a more
complete analysis of the transferability of these networks. We have analytically
demonstrated that when the demand between each OD pair is constant, the pas-
senger demand has no influence on the resulting coefficients, and the results are the
same as those obtained by considering only the topology of the networks. We have
also seen that for the non-constant demand case, the influence of passenger demand
is reflected in the coefficients, yielding better results when demand is concentrated
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between well connected areas, and worse results when it is higher between poorly
connected areas. Our computational experiments support the analytical results and
have allowed us to analyze the behavior of the coefficients for four typical CTLN
configurations.
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