From the Newton equation to the wave equation in some simple cases

  • Received: 01 September 2011 Revised: 01 January 2012
  • Primary: 35Q35, 35Q72, 82C21; Secondary: 35L70, 70F45, 82C22.

  • We prove that, in some simple situations at least, the one-dimensional wave equation is the limit as the microscopic scale goes to zero of some time-dependent Newton type equation of motion for atomistic systems. We address both some linear and some nonlinear cases.

    Citation: Xavier Blanc, Claude Le Bris, Pierre-Louis Lions. From the Newton equation to the wave equation in some simple cases[J]. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1

    Related Papers:

    [1] Xavier Blanc, Claude Le Bris, Pierre-Louis Lions . From the Newton equation to the wave equation in some simple cases. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1
    [2] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [3] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [4] Rong Huang, Zhifeng Weng . A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems. Networks and Heterogeneous Media, 2023, 18(2): 562-580. doi: 10.3934/nhm.2023024
    [5] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [6] Dingwen Deng, Jingliang Chen . Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays. Networks and Heterogeneous Media, 2023, 18(1): 412-443. doi: 10.3934/nhm.2023017
    [7] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
    [8] Raul Borsche, Axel Klar, T. N. Ha Pham . Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12(3): 381-401. doi: 10.3934/nhm.2017017
    [9] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [10] Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
  • We prove that, in some simple situations at least, the one-dimensional wave equation is the limit as the microscopic scale goes to zero of some time-dependent Newton type equation of motion for atomistic systems. We address both some linear and some nonlinear cases.


    [1] Robert A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
    [2] M. Berezhnyy and L. Berlyand, Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality, J. Mech. Phys. Solids, 54 (2006), 635-669.
    [3] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324 (electronic). doi: 10.1137/S0036142902401311
    [4] Constantine M. Dafermos and William J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Ration. Mech. Anal., 87 (1985), 267-292.
    [5] Wei-nan E and Ping-bing Ming, Cauchy-Born rule and the stability of crystalline solids: Dynamic problems, Acta Math. Appl. Sin. Engl. Ser., 23 (2007), 529-550. doi: 10.1007/s10255-007-0393
    [6] P. Joly, Finite element methods with continuous displacement, in "Effective Computational Methods for Wave Propagation," Numer. Insights, 5, Chapman & Hall/CRC, Boca Raton, FL, (2008), 267-329.
    [7] Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, 58 (1975), 181-205. doi: 10.1007/BF00280740
    [8] B. G. Pachpatte, On discrete inequalities of the Poincaré type, Period. Math. Hungar., 19 (1988), 227-233. doi: 10.1007/BF01850291
    [9] Denis Serre, "Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves," Translated from the French by I. N. Sneddon, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374
    [10] Antoni Zygmund, "Trigonometrical Series," Dover Publications, New York, 1955.
  • This article has been cited by:

    1. C. Ortner, F. Theil, Justification of the Cauchy–Born Approximation of Elastodynamics, 2013, 207, 0003-9527, 1025, 10.1007/s00205-012-0592-6
    2. Xavier Blanc, Marc Josien, From the Newton Equation to the Wave Equation: The Case of Shock Waves, 2017, 2017, 1687-1200, 338, 10.1093/amrx/abx001
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3749) PDF downloads(87) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog