Loading [MathJax]/jax/output/SVG/jax.js

The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison

  • Received: 01 March 2012 Revised: 01 March 2013
  • 35K86, 74N20, 35K35, 35K65.

  • The deep quench obstacle problem (DQ){ut=M(u)w,w+ϵ2u+uΓ(u), for $(x,t) \in \Omega \times (0,T)$, models phase separation at low temperatures. In (DQ), $\epsilon>0,$ $\partial \Gamma(\cdot)$ is the sub-differential of the indicator function $I_{[-1,1]}(\cdot),$ and $u(x,t)$ should satisfy $\nu \cdot \nabla u=0$ on the ``free boundary'' where $u=\pm 1$. We shall assume that $u$ is sufficiently smooth to make these notions well-defined. The problem (DQ) corresponds to the zero temperature ``deep quench'' limit of the Cahn--Hilliard equation. We focus here on a degenerate variant of (DQ) in which $M(u)=1-u^2,$ as well as on a constant mobility non-degenerate variant in which $M(u)=1.$ Although historically more emphasis has been placed on models with non-degenerate mobilities, degenerate mobilities capture some of the underlying physics more accurately. In the present paper, a careful numerical study is undertaken, utilizing a variety of benchmarks as well as new upper bounds for coarsening, in order to clarify evolutionary properties and to explore the differences in the two variant models.

    Citation: L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg. The degenerate and non-degenerate deep quench obstacle problem: Anumerical comparison[J]. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37

    Related Papers:

    [1] L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg . The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37
    [2] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [3] Patrick W. Dondl, Michael Scheutzow . Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137
    [4] Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti . Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2(4): 695-715. doi: 10.3934/nhm.2007.2.695
    [5] Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523
    [6] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
    [7] Martin Heida, Stefan Neukamm, Mario Varga . Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17(2): 227-254. doi: 10.3934/nhm.2022004
    [8] Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini . Traveling waves for degenerate diffusive equations on networks. Networks and Heterogeneous Media, 2017, 12(3): 339-370. doi: 10.3934/nhm.2017015
    [9] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory . An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6(3): 401-423. doi: 10.3934/nhm.2011.6.401
    [10] Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203
  • The deep quench obstacle problem (DQ){ut=M(u)w,w+ϵ2u+uΓ(u), for $(x,t) \in \Omega \times (0,T)$, models phase separation at low temperatures. In (DQ), $\epsilon>0,$ $\partial \Gamma(\cdot)$ is the sub-differential of the indicator function $I_{[-1,1]}(\cdot),$ and $u(x,t)$ should satisfy $\nu \cdot \nabla u=0$ on the ``free boundary'' where $u=\pm 1$. We shall assume that $u$ is sufficiently smooth to make these notions well-defined. The problem (DQ) corresponds to the zero temperature ``deep quench'' limit of the Cahn--Hilliard equation. We focus here on a degenerate variant of (DQ) in which $M(u)=1-u^2,$ as well as on a constant mobility non-degenerate variant in which $M(u)=1.$ Although historically more emphasis has been placed on models with non-degenerate mobilities, degenerate mobilities capture some of the underlying physics more accurately. In the present paper, a careful numerical study is undertaken, utilizing a variety of benchmarks as well as new upper bounds for coarsening, in order to clarify evolutionary properties and to explore the differences in the two variant models.


    [1] N. D. Alikakos, P. W. Bates and X. F. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165-205. doi: 10.1007/BF00375025
    [2] N. D. Alikakos, G. Fusco and G. Karali, Motion of bubbles towards the boundary for the Cahn-Hilliard equation, European J. Appl. Math., 15 (2004), 103-124. doi: 10.1017/S0956792503005242
    [3] C. H. Arns, M. A. Knackstedt, W. V. Pinczewski and K. R. Mecke, Euler-Poincaré characteristics of classes of disordered media, Phys. Rev. E, 63 (2001), 031112. doi: 10.1103/PhysRevE.63.031112
    [4] L'. Baňas and R. Nürnberg, Finite element approximation of a three dimensional phase field model for void electromigration, J. Sci. Comp., 37 (2008), 202-232. doi: 10.1007/s10915-008-9203-y
    [5] L'. Baňas and R. Nürnberg, A multigrid method for the Cahn-Hilliard equation with obstacle potential, Appl. Math. Comput., 213 (2009), 290-303. doi: 10.1016/j.amc.2009.03.036
    [6] L'. Baňas and R. Nürnberg, Phase field computations for surface diffusion and void electromigration in $\mathbbR^3$, Comput. Vis. Sci., 12 (2009), 319-327. doi: 10.1007/s00791-008-0114-0
    [7] J. W. Barrett and J. F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numer. Math., 72 (1995), 1-20. doi: 10.1007/s002110050157
    [8] J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999), 286-318. doi: 10.1137/S0036142997331669
    [9] J. W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), 738-772. doi: 10.1137/S0036142902413421
    [10] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis, European J. Appl. Math., 2 (1991), 233-280. doi: 10.1017/S095679250000053X
    [11] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis, European J. Appl. Math., 3 (1992), 147-179. doi: 10.1017/S0956792500000759
    [12] J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1
    [13] J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature, European J. Appl. Math., 7 (1996), 287-301.
    [14] J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
    [15] X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential Geom., 44 (1996), 262-311.
    [16] S. Conti, B. Niethammer and F. Otto, Coarsening rates in off-critical mixtures, SIAM J. Math. Anal., 37 (2006), 1732-1741. doi: 10.1137/040620059
    [17] M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65. doi: 10.1007/BF01385847
    [18] R. Dal Passo, L. Giacomelli and A. Novick-Cohen, Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility, Interfaces Free Bound., 1 (1999), 199-226. doi: 10.4171/IFB/9
    [19] C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97-128. doi: 10.1093/imamat/38.2.97
    [20] C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
    [21] IMA, Univ. of Minnesota, Preprint 887.
    [22] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339-357. doi: 10.1007/BF00251803
    [23] P. Fratzl and J. L. Lebowitz, Universality of scaled structure functions in quenched systems undergoing phase separation, Acta Metall., 37 (1989), 3245-3248. doi: 10.1016/0001-6160(89)90196-X
    [24] P. Fratzl, J. L. Lebowitz, O. Penrose and J. Amar, Scaling functions, self-similarity, and the morphology of phase-separating systems, Phys. Rev. B, 44 (1991), 4794-4811. doi: 10.1103/PhysRevB.44.4794
    [25] M. Gameiro, K. Mischaikow and T. Wanner, Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation, Acta Mater., 53 (2005), 693-704. doi: 10.1016/j.actamat.2004.10.022
    [26] H. Garcke, B. Niethammer, M. Rumpf and U. Weikard, Transient coarsening behaviour in the Cahn-Hilliard model, Acta Mater., 51 (2003), 2823-2830. doi: 10.1016/S1359-6454(03)00087-9
    [27] J. D. Gunton, M. San Miguel and P. S. Sahni, The dynamics of first-order phase transitions, in "Phase Transitions and Critical Phenomena," 8, Academic Press, London (1983), 267-482.
    [28] R. Hilfer, Review on scale dependent characterization of the microstructure of porous media, Transp. Porous Media, 46 (2002), 373-390. doi: 10.1023/A:1015014302642
    [29] in "Phase Transformations" (ed. H. I. Aaronson), American Society for Metals, Metals Park, Ohio, 497-560.
    [30] D. J. Horntrop, Concentration effects in mesoscopic simulation of coarsening, Math. Comput. Simulation, 80 (2010), 1082-1088. doi: 10.1016/j.matcom.2009.10.002
    [31] J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith and C. M. Elliott, Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude, Acta Metall. Mater., 43 (1995), 3403-3413. doi: 10.1016/0956-7151(95)00041-S
    [32] J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith and C. M. Elliott, Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-III. Development of morphology, Acta Metall. Mater., 43 (1995), 3415-3426. doi: 10.1016/0956-7151(95)00042-T
    [33] T. Izumitani, M. Takenaka and T. Hashimoto, Slow spinodal decomposition in binary liquid mixtures of polymers. III. Scaling analyses of later-stage unmixing, J. Chem. Phys., 92 (1990), 3213-3221. doi: 10.1063/1.457871
    [34] T. Kaczynski, K. Mischaikow and M. Mrozek, "Computational Homology," 157 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004.
    [35] Available from http://chomp.rutgers.edu.
    [36] R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys., 229 (2002), 375-395. doi: 10.1007/s00220-002-0693-4
    [37] T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Comput. Vision Graph. Image Process., 48 (1989), 357-393.
    [38] P. Leßle, M. Dong and S. Schmauder, Self-consistent matricity model to simulate the mechanical behaviour of interpenetrating microstructures, Comput. Mater. Sci., 15 (1999), 455-465.
    [39] P. Leßle, M. Dong, E. Soppa and S. Schmauder, Simulation of interpenetrating microstructures by self consistent matricity models, Scripta Mater., 38 (1998), 1327-1332.
    [40] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), 187-219. doi: 10.1007/s002050050196
    [41] A. Novick-Cohen, Upper bounds for coarsening for the deep quench obstacle problem, J. Stat. Phys., 141 (2010), 142-157. doi: 10.1007/s10955-010-0040-7
    [42] A. Novick-Cohen, "The Cahn-Hilliard Equation: From Backwards Diffusion to Surface Diffusion," Cambridge Univ. Press, Cambridge, 2013. (in preparation).
    [43] A. Novick-Cohen and A. Shishkov, Upper bounds for coarsening for the degenerate Cahn-Hilliard equation, Discrete Contin. Dyn. Syst., 25 (2009), 251-272. doi: 10.3934/dcds.2009.25.251
    [44] Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling, Phys. Rev. A, 38 (1988), 434-453. doi: 10.1103/PhysRevA.38.434
    [45] R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278. doi: 10.1098/rspa.1989.0027
    [46] E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
    [47] A. Schmidt and K. G. Siebert, "Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA," 42 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 2005.
    [48] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122
    [49] T. Sullivan and P. Palffy-Muhoray, The effects of pattern morphology on late time scaling in the Cahn-Hilliard model, Abstract, American Physical Society, APS March Meeting, (2007).
    [50] R. Toral, A. Chakrabarti and J. D. Gunton, Large scale simulations of the two-dimensional Cahn-Hilliard model, Physica A, 213 (1995), 41-49. doi: 10.1016/0378-4371(94)00146-K
    [51] T. Ujihara and K. Osamura, Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering, Acta Mater., 48 (2000), 1629-1637. doi: 10.1016/S1359-6454(99)00441-3
  • This article has been cited by:

    1. Yong Li, Bao-Nam Dinh Ngô, Jürgen Markmann, Jörg Weissmüller, Topology evolution during coarsening of nanoscale metal network structures, 2019, 3, 2475-9953, 10.1103/PhysRevMaterials.3.076001
    2. Shibin Dai, Qiang Du, Computational studies of coarsening rates for the Cahn–Hilliard equation with phase-dependent diffusion mobility, 2016, 310, 00219991, 85, 10.1016/j.jcp.2016.01.018
    3. Alpha Albert Lee, Andreas Münch, Endre Süli, Sharp-Interface Limits of the Cahn--Hilliard Equation with Degenerate Mobility, 2016, 76, 0036-1399, 433, 10.1137/140960189
    4. Eric A. Carlen, Amy Novick-Cohen, Lydia Peres Hari, 2024, Chapter 11, 978-3-031-65194-6, 239, 10.1007/978-3-031-65195-3_11
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4174) PDF downloads(87) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog