Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain

  • Primary: 35B27; Secondary: 35J25.

  • We investigate the Neumann problem for a nonlinear elliptic operator $Au^{( s) }=-\sum_{i=1}^{n}\frac{\partial }{ \partial x_{i}}( a_{i}( x,\frac{\partial u^{( s) }}{ \partial x})) $ of Leray-Lions type in the domain $\Omega ^{( s) }=\Omega \backslash F^{( s) }$, where $\Omega $ is a domain in $\mathbf{R}^{n}$($n\geq 3$), $F^{( s) }$ is a closed set located in the neighbourhood of a $(n-1)$-dimensional manifold $ \Gamma $ lying inside $\Omega $. We study the asymptotic behaviour of $ u^{( s) }$ as $s\rightarrow \infty $, when the set $F^{( s) }$ tends to $\Gamma $. Under appropriate conditions, we prove that $ u^{( s) }$ converges in suitable topologies to a solution of a limit boundary value problem of transmission type, where the transmission conditions contain an additional term.

    Citation: Mamadou Sango. Homogenization of the Neumann problem for a quasilinear ellipticequation in a perforated domain[J]. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361

    Related Papers:

  • We investigate the Neumann problem for a nonlinear elliptic operator $Au^{( s) }=-\sum_{i=1}^{n}\frac{\partial }{ \partial x_{i}}( a_{i}( x,\frac{\partial u^{( s) }}{ \partial x})) $ of Leray-Lions type in the domain $\Omega ^{( s) }=\Omega \backslash F^{( s) }$, where $\Omega $ is a domain in $\mathbf{R}^{n}$($n\geq 3$), $F^{( s) }$ is a closed set located in the neighbourhood of a $(n-1)$-dimensional manifold $ \Gamma $ lying inside $\Omega $. We study the asymptotic behaviour of $ u^{( s) }$ as $s\rightarrow \infty $, when the set $F^{( s) }$ tends to $\Gamma $. Under appropriate conditions, we prove that $ u^{( s) }$ converges in suitable topologies to a solution of a limit boundary value problem of transmission type, where the transmission conditions contain an additional term.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3875) PDF downloads(60) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog