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ABSTRACT. We investigate the Neumann problem for a nonlinear elliptic oper-
0 Auls)

ator Au(®) = — o (ai (x, >> of Leray-Lions type in the domain
Q) = Q\F(®) | where Q is a domain in R"(n > 3), F(®) is a closed set located
in the neighbourhood of a (n — 1)-dimensional manifold IT" lying inside Q. We
study the asymptotic behaviour of u(¥) as s — oo, when the set F(*) tends
to I'. Under appropriate conditions, we prove that () converges in suitable
topologies to a solution of a limit boundary value problem of transmission type,
where the transmission conditions contain an additional term.

1. Introduction. Let  be a bounded domain in R™(n > 3) with a sufficiently
smooth boundary 9. Let F() be a closed set in Q depending on the parameter
s running throughout the set of natural numbers. The main assumption on the
set F®) is that as s — oo, F®) is located in an arbitrary small neighbourhood of
some (n — 1)-dimensional smooth manifold I" without boundary which lies inside
and partition € into two subdomains QT (the interior) and Q~ (the exterior). In the
domain Q) = O\ F(®) we investigate the sequence of solutions u(*) of the boundary
value problem

n (s)
Aul) = =3 a% (“i (”” %)) = f, in Q) (1)

=1
(s) n (s)
i=1
u® =0 on o9, (3)

where v is the normal to F ), f is a function defined and compactly supported
inside © (the support of f does not intersect T'), A : W} (R") — W, (R") is
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a monotone operator satisfying appropriate conditions to be stated in the next
section.

The aim of the present paper is to investigate the behavior of the sequence u(*)
of solutions of the problem (1)-(3). Under more precise restrictions on the set F(%),
we show that u(®) converges in suitable topologies to a solution of a limit problem
that we derive explicitly. This is the philosophy of what is now widely known as
Homogenization theory.

The problem (1)-(3) was originally studied by Marchenko and Khruslov in the
monograph [32] (see also the long awaited english version [33]).

They considered the linear version of problem (1)-(3) when a; (z,&) = a;; (x) &;,
&= (&,...,&,) and a;; () = aj; (z), © € Q. They proved under appropriate con-
ditions that as s — oo, the sequence u(®) of solutions of the problem converges in
suitable topologies to the solution of a transmission problem

‘Za ( g;) — i O\,

ou Ou
(M>+_ (M) = 2c(z)(uy —u_) onT,
v = 0 on 99,

0
¢ (z) being a function related to the geometry of the sets F(*); <a—u> are the
va ) 4
limit values of
" ou
8VA E a;; () cos (v, x;) a—IJ

on each side of ' and v is the normal to I' directed toward the interior of Q*. These
are the equations (3.6)-(3.8) on page 171 in [32].

Later contributions on closely related problems covering also Ginzburg-Landau
equations were made Khruslov, Berlyand and their co-workers [27], [28], [29], [8],
[9], [10], [11]. It should be noted that the work of Marchenko and Suzikov [34] seems
to be the first dealing with Neumann problems for elliptic equations domains with
fine grained boundaries. The main feature of the above cited works is the absence
of periodicity condition on the geometry of the domains Q).

In the present work we shall be concerned with the most difficult case of nonlinear
elliptic equations of Leray-Lions type. The difficulties reside not only in the more
complicated nature of the equations but also in the tools that are fundamentally
nonlinear, notably nonlinear potential analysis. Our main result is Theorem 1 which
coincide with the classical result of Marchenko and Khruslov [32] when p = 2. Some
results of the paper were announced in [45].

There is a great wealth of results concerning the homogenization of Neumann
and mixed boundary value problems in domains with the geometry closely related
to the one we consider here. They deal in many instances with the linear case again
and in periodically perforated domains. A wide range of results have been obtained
in [4], [5], [6], [15], [16], [48], [49], [50], [51], [52], [40], [41], just to cite a few. Some
extension of these results to higher-order equations may be found for instance in
[53]. We also note the work of Del Vecchio [24] which treats the so-called Thick
Neumann sieve problem in the linear setting.

The case of perforated surfaces which is a particular case of the geometry con-
sidered here was investigated [2], [3], [23], [25], [26], [37], [38], [39].
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Let us note that Dirichlet problems in perturbed domains have been extensively
studied in comparison with Neumann problems. A great deal of information on
the state of affairs in Homogenization theory since its inception in the mid sixties
can be found collected in the following key works [7], [18], [32], [34], [55], [56] and
the references therein. Another approach dealing with gamma-convergence was
developed by the celebrated Italian school of Calculus of Variations.

The plan of the paper is as follows. In section 2, we introduce some notations,
formulate the conditions on problem (1)-(3) and the main result. In section 3,
we prove some keys auxiliary results and in section 4, we prove our main result.
Finally we construct an explicit example involving the p-Laplacian which illustrates
the abstract conditions that are requested from the set Q(*). It should be noted
that such examples are in short supply even in the linear case.

2. Preliminaries. We shall use the following well-known Lebesgue and Sobolev
spaces Ly (-), W (), W, (), (p = 1). We denote by Wp71 (-) the dual of W (-)

where p’ is the Holder conjugate of p, i.e, p~L +p/~! = 1. If € is a vector we denote
its Euclidean norm by |£]. We denote by C' all generic constants independent of s
and depending only on the data.

We assume for simplicity that p > 2 and that the equation (1) is the Euler-
Lagrange equation for the functional

ov\ Ov
I(v)= /Q(S) {AZ— (x, %> oz, - fv} dz,

where the functions A; (z,§), £ = (&1, ...,&n), are Caratheodory and satisfy
A forallz € Q, t€ R and ¢

A (z,18) = [t|P 2 tA; (2,€), (4)
B. there exist two positive constants ¢; and ¢y such that for all £, n € R" with
n= (7717 "'77771)7

> (A (2,6) — Ai(x,m) (& — 1) = e |€ — (5)
=1
[A; (2,) = Ai (@,m)| < 2 (16" + ") e = . (6)
Therefore N
(0.6 =Y P g 4 4 (0,g). )
k=1 v

Hence any minimizer of the functional I in Wz} (Q(S)) N W]D1 (Q) which satisfies the
boundary condition (2)-(3) is a weak solution of (1)-(3), the existence of which
under the above conditions is classical and can be found in [30] (Chap. 10), [31].
We note that A; (z,€) = €]~ &; corresponds to the case of the p-Laplacian.

We introduce some notations. Let v be an arbitrary open set on I and let T' (v, d)
be a layer of thickness 2§ centered around . We denote by *ytsi the bases of the layer
T (v,0), i.e., the surfaces located at the different sides of v at distance §. We set
T(v,6,8) =T (v,6) \F(S)

We denote by W (7,4, s) the class of functions from W, (T (v, 4, s)) taking values
one and zero on 7; and 75 respectively, i.e.,

W (y,6,8) = {veW, (T (y,6,5)): v(z)=1onv), v(z)=0o0n~;}.
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The main characteristic of influence of the sets F(*) is expressed in term of the
following functions of sets

= 22) 25, ®

Cy(v,0,s :inf/ A; (a:, T,
(FY ) (s T('y,&,s); ox 8301-

where infimum is taken over the functions ¢(*) € W (7,6, s). These quantities are
referred to as A-conductivity of the set T (7,6, s), following Mazya [36] who seems
to have been the first to introduce the concept in [35]. The following properties of
A-conductivity hold:
1. (a) Ca(m,0,8) < Cys(y2,9,5) if 1 C 0.

(b) OA (’}/, 51, S) S CA (")/, 52, S) if 51 Z 52.

(¢) Ca(711Un2,0,8) > Ca(71,0,8) + Ca(72,9,5) if v1 Na.

(d) Ca(7,6,51) < Ca(7,0,80) it )N T (v,8) C FEINT (v,6).

We refer to [36] (Section 4.1) for proofs. Closely related concepts in the frame-
work of Dirichlet problems of monotone type in varying domains were introduced
recently in [22].

Consider the class of functions W} (T UQ~) = W, (QF) x W) (Q7) with the
norm

||u||W7}(Q+uQ*) = ||u||Wp1(Q+) + ||u||W7}(Q*)
and the class of functions W (Q®+ UQ® =) = W (Q®T) x W (Q®)7) with
norm
||U||Wp1(9<s>+ug<s)—) =: ||“||Wp1(g<s)+) + ||U||Wp1(9<s)—)

where Q) = Q) 0 QF,
Now we are in the position to formulate our main result.

Theorem 1. Assume that the above assumptions on problem (1)-(3) are satisfied
and f € Wp71 (Q). As s — oo, we require that
a) the set F(®) lies in an arbitrary small neighbourhood of the manifold T € Q,
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b) for any portion v € T, there exist the limits

lim lim C4 (7,6,s) = hm Tim Cy (v,6,5) = /c(:z:) dr, 9)
g

0—00 500 d—00 §—00

where ¢ is a non negative, measurable function on I.

Then the sequence of solutions u'®) of problem (1)-(3) converges weakly in
Wy (0 UQh) and strongly in W, (2, UQ_), 1 < q < p to a function u which
is a solution of the transmission problem

SeCa)ren
(ﬂ)+ _ (ﬂ)_ —pe(@) |us —u_ P2 (uy —u_) onT,  (11)

aUA 6VA
u=0 on 04, (12)

where the sign "+ and ”-” indicate the boundary values of the function on the
ou

different sides of T, s is the derivative along the normal to I' in the direction
va

corresponding to 7+".

Remark 2. The convergence of F®) to T' is in terms of Hausdorff distance. We re-
call that given a metric space (X, p) with the distance function p (-, -), the Hausdorff
distance between two non empty subsets X, Y of X" is the quantity

n(X,Y)= max{sup inf p(z,y),sup inf p(:v,y)} .
zeX YEY yey T1€X
In our case p is of course the Euclidean distance in R™.

Remark 3. We note that when p = 2, our results coincide with those of Marchenko
and Khruslov [33], [32]. Unlike the Dirichlet case where the additional term in the
limit problem appears in the equation (see [17], [33], [32], [21], [44], [46], [55]), the
limit problem here contains an additional term in the transmission conditions. We
note that in the limit of some Dirichlet problems in domains in fine grained bound-
aries where the grains have a surface distribution, the additional term might also
appear in the transmission conditions; we refer to [34] (linear case), [54], [55] (non-
linear case), [1] (Navier Stokes) where such questions were considered ( see also [42],
[43], for the case of systems of quasilinear elliptic equations) Precise expressions of
the function ¢ (z) can be found in many of the papers mentioned here; in particular
when the perforations are spherical.

We collect in the next section some results needed for the proof of the theorem.

3. Auxiliary results. We start with

Lemma 4. Let u € W) (T (v,6,s)), UF = vrai max u (z), v* = vrai min u (z).
mE'yf JUE’Ygi

Then

- ou\ Ou
A |z, — dx > a? ,0,8), 1
/(m); ( 8x>axi Ca (7,5, 5) (13)
where
{ ut U, ifut >U",
YT Ut ifum > UT,
and a = 0 otherwise.
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Proof. Assume that U™ > U~ and consider the truncated function
tifu(z) >ut,
a(r)=< u(x) ifU” <u(z)<u',
U ifu(x)<U~.
We show that @ € W, (T (v,0,s)). Let G; be an increasing sequence of domains
in T (v, 0, s) which exhausts T (7,4, s), i.e.,, T'(v,6,s) = U;G,. Then there exists a

sequence of piecewise linear functions {ué}l . such that
llgn Hu uHW;(Gj) =0. (14)

We define a new truncated function

j+ if ul (x ) > ot
aé (z) = u} 1flf];7 T u (x) <£¢§+
U;” ifuj(z) <U;™.

Since ué are piecewise linear in G it follows that ﬂé e W) (Gy). Straightforward

computations show that

al \ ot n oul '\ oul
I g < ) o j
/ ZA < )(?xidx_/G,ZAl <x, 8:1:) 8xzdx (15)

le

since A4; (x,€) & > 0, for all € = (&1, ..,&,). By Lemma 3.2 from [[30], Chap. 2], we
have

lim ||u - QHW;(Gj) =0. (16)

l—o00

Next using inequality (6), we get

out \ oul ou\ Ou
A; —L | L - A — d
/Gj (x, 6:10) Ox; <x, (%c) az; |
ou \ oul ou\ oul
< ) _J J _ A J
- /G]. Ai (x, 817) ox; Ai (w 8x) 0x; du
ou\ oul ou\ du
) / ouy|"" jou = o (@ —w) || 0w
— Ja, ox ox ox; ox;
+/ 0u™ 005 1)\,
G 8$ 8171

Applying Holder’s inequality to both integrals in the right-hand side of this inequal-
ity and appealing to (16) we get

8u ou
. . J _
Jim GjAl <:v 5 )(%ldx / ZA ( )(%Zd

le

Analogously using (14), we have

n 3ul- 8ul- n 811, 811,
oo /Gj ; (I’ (%c) ox; . /Gj Z <x, (%c) Ox; v

=1
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Hence passing to the limit in both sides of (15) and using (5), we get

— P P
/ @ dr < / @ dx.
e 8$ G 8$
Summing over j, we get
/ oul|”
—| dx < o0.
T(v,5,s) Oz
Thus u € W, (T (7,6, s)).
Next we consider the function
1, if u(z) > ut,
u—U~ w—Ut
= ¥ = - 3 - +
v (z) Py u"‘—U—’lfU <wu(zr) <ut,
0,ifu(z) <U.

It is easy to see that v € W, (T (v,d,5)). Let © be defined by

v if v (x) > 0T,
1=2¢ v(z),f V- <v(z) <ot
Vo ifo(z) <V,
where VF = vrai max v (x), vE = vrai min v (x). Due to the homogeneity of A;, we
Vs Vs
have

- o\ 0v 1 - ou\ 0u
A; (w, —) —dx = 7/ A; (:v, —) —dx.
/T(W;)S) ; oz ) 0z, (ut =U") Jr(r.ss) ; oz ) dz;

From this relation and the definition of C4 (v, d, s), we get

- ou\ Ou
Ai (;L‘, _) dx > u+ U~ PCA 775, 5.
/T(%é,s) ; ox ) Oz, ( ) Ca( )

since as an easy verification shows o € W)} (T' (7,4, s)), 0 () = 1on v, and o (z) = 0

n ou\ Ou n ou\ Ou
A’i I d Z AZ N~ d .
Safeg) gtz [ S A g) g

2 1=

on 75 . We have

/T(’y,é,s)

Thus from the previous inequality we deduce that (13) follows for Ut > U~. Similar
arguments lead to the same conclusion for UT < U~. This completes the proof of
the lemma. O

We assumed that I' is a manifold without boundary which divides the domain
Q into two subdomains QT the interior and Q~ the exterior with respect to I'. Let
T (T, 6) be a layer of thickness 20 centered around the manifold I'. Let T'(T', d, s) =
T (T,5)\F®). We consider the functional

n )\ )
(5) () — (.. 9 ¥
(b - AZ 9 d k)
0 (1/} ) /’T(I‘,é,s); (I O ) O; !

over the set W of functions from W]D1 (T (', 6,s)) taking on the surfaces 'y, I'y
bounding the layer T'(T',§) the values of u (z) € W) (T UQ™). It is a well known
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fact (see e.g. [30] (Chap. 5)) that under the growth conditions on A;, there exists
at least a function u(*) minimizing @gs), ie,
of) (u) = inf @l ().
P& ew

Of key importance in this work is

Theorem 5. Assume that the conditions of Theorem 1 are satisfied. Then for any
function u € W) (1 UQ™) the following relation holds

lim lim @gs) (u) = lim lim ‘I)fss) (u) = / ¢ |qu - ui}p dr.
r

§—0s—00 6—0 s 500

Proof. Denote by M the set of functions u (x) € W} (2 U Q) such that

(z) = ut (x), if z e QF,
wir) = u (x), fzeQ,

where ut € Wp1 (QF) and is continuous on QF. Since T' is smooth, it is a well
known fact that M is dense in W} (2 U Q™). We prove the theorem for functions
in the set M and later by means of approximation, we recover it in the general
case. Let v;, j = 1,2,... be some disjoint sets of sufficiently small diameter d; and
such that I' = U;v;. Let u be an arbitrary function in M and v(*) a minimizer of

the functional fI)gs). Then

Z/ z”:A < 3v(s)> 3v(s)d / z”:A < 3v(s)> 3v(s)d
i | Ly —F7— xr = il Ly —F/— X
j JT(5:08) =1 Oz dz; T(I,6,s) 5—1 Ox Oz;

5 (u). (17)

Since v(*) € W, then v(*) takes on the surfaces I'} and I'; the values of u (z). Thus
by Lemma 4

IN

n v\ gu(®)
A; (:C, —) ——dx > d’Cy (v;,6,5), 18
/:rm,a,s); Ox ) Ow; 1€ 000 1)

where a; is defined as in Lemma 4 with 7 replaced by 7;. v is continuous as a
function in M thus for all z; € ; there exists an € = € (v;, 6, x;) such that

aé’: ’qu () —u~ (Ij)‘p"‘a(%"dvxj) (19)

and € (v,0,2;) — 0 as § — 0 and d; — 0. Condition (9) in Theorem 1 implies that
there exists an &’ = ¢’ (v;, 6, s) such that

Ca (3,8, 5) = / c(@)dD (14 (1,0,5)), (20)

Vi
and lim lim ¢’ (v;, 4, s) = 0. Substituting (19) and (20) in (18) and passing to the

0—0 500

limit we get from (17) that

0—0s—c0

lim lim @gs) (u) > / c ’u+ - u_‘pdl". (21)
r

Let us establish the reverse inequality, namely

0—0s—00

lim lim @gs) (u) < / ¢ ’qu - uf‘pdf. (22)
r
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The proof is technically involved and rely on some suitable test functions. We con-
sider the sets «y; introduced earlier. They partition I" and are bounded by manifolds
Iy, of codimension 2. We set L = Ugly. Let ¢’ be such that 26" < §/4. We introduce
in the neighbourhood of each point of I a coordinate system in which [ is con-
tained in the submanifold R"~2 = {z = (z1,22,....,7,) € R" : 21 = 0,290 = 0}. In
this system of coordinates, we consider the function n (z) € C*° (R"™): n(z) =1lin
the §/4-neighbourhood of I, and 7 (z) = 0 outside the ¢ /2-neighbourhood of I;, and
0 <n(x) <1 Let p= /2% + x3. We define the function

1_n($)a1fP§25/7
Ind —1In2
n0-Indp eosi < p<o)o,

Ind —1n2d"’
1,if p > /2,

(@) =4 1-y()

and let @y (2) = Ixpf (z). The function s € W) (Q) and satisfies the following
conditions: @s () = 0 in a 2§’-neighbourhood of I, ps () =1 in a §/2 neighbour-
hood of [ and for fixed §

lim /

6'—0 9]

By means of an appropriate diffeomorphism we can extend the above construction
to [lj in its original coordinates.

Let QO = Qf UT(T,6) and for u € M, let u* be the restriction of u to the
domain Q*. We denote by 4+ (z), the continuous extension of u® (x) to QF. The
existence of such an extension is guaranteed by the smoothness of I' and we have

p

% dr = 0.

ox

13wy @2y < Clle™lws o) (23)

with the constant C' independent of w.

Let T (6,8') =: QF N (T (T,8)\T (T',¢")) be the domain lying between I's and
I'$ and let v§s) be a function from W (v;,d, s) minimizing the functional in the
right-hand side of (8) in the domain T (v;, ¢, s), i.e.,

" v\ ov'®
Ca(v,0,s :/ A |z, —— I dzx.
0 79) T(vj,af,su; O | Ow;

We consider the function

w'® (z)

ut (z) ps (z), itz eTt(6,8),
_ u” (x) s (), it eT™(4,0),
- (

it ()0l (@) oy () — i~ (2) (1 e (a:)) oo (), if x € T (y;,8,5),

Easy verifications show that w(®) € W, (T (T',4,s)) and w® (z) = u* (z) on I'F.
Therefore

n PRONE O
o </ A (2, de = JF +J7 +J 24
s (W< T<r,5,5>z (I Oz ) oy WS (@)

i=1
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where
n Sw\ gw®)
JE = / ZA1< v ) dz,
Ti(é,é’ =1 8171
n (s)
B = / S, (Iaw_) 0 e
T(v;,0",8) j—1 Oz Oz

Let us estimate Ji=. By (6), we have

o + |P Hos p
JE<c { e B O e } dz.

Ti((;)(;/) 8(17 817
Since u* is continuous in QF, then it is bounded there. Thus from the properties
of ws, we get

s |P
/ (ut)” gre dx < £(9),
T+(5,8") T

with £(0) — 0 as § — 0. For s sufficiently large let & be so small that F(*) C
+ OuT

T (T,¢), then
p
P
e dx < C'/
/Ti((i,é’) o Ox Q*(5) 890

where QF (§') = QF N T (I,§) and the constant C is independent of u*, ¢’ and
s. Combining the two previous inequalities and taking into account the absolute
continuity of Lebesgue’s integrals we readily get that JljE — 0asd — 0.

Next we estimate Jo. For z € T (75,4, s)

ow®)
ox; - hj (I) + 9j (I) )

p
dx

)

where “
~ ~ o’
hy (@) = (0% — ) gy
and
8'& s 8 + ~_ S ~ S 8905'
g5 (0) = (1= o)) w4 0w G [ (1 07) bl 2
We write
Jo = Jo1 + Jao + Jo3, (25)
where

S =3 / A, (2. hy) hyda,
1/ T( )

= T(v;,0",s

n ow'®
Jog = Z/(V ) [Al- (a: W) — A (g;,hj)} hjdz,
i=1 3,078

ow'®)
J. :/ A; (:1:, —) g;dx.
2 0 ox )™

o)

Uy

Bv(s vt
J: S/ t—a A; I dz. 26
° T(wM) al Z ( Oz ) O )

The properties of ps and the homogeneity of A; (see (4)) imply that
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By (6) and Holder’s inequality, we have

P (r=2)/p " p 1/p
Jy < C / dx / [al }dx
T(’Yjvé/vs) T(’Yjvé/vs) 8I
1/p
x ( / |hj|de> . (27)
T(’Yjvélvs)

Similarly we have
p (p—1)/p p 1/p
dx / { } dx .
T(’Yj 76,75)

Ja3 < C (/
T(’Yjvélvs)
(28)

Owing to the absolute continuity of Lebesgue’s integrals, the expressions in the
right-hand side of inequalities (27)-(28) vanish as 6 — 0(§" — 0). Hence by (25) and
the definition of Jo, we get

n (s) (s)
S sa(n ) S (29)
5 T(v5,0",s) =1 ox 6:51-

n o'\ avl®
< ~+ _ =P . J J
2 /T o ’u U ‘ E A |z, e O, dz +¢(I',9),
i (’Yjv ’ ) =1

where ¢ (I',8) — 0 as § — 0. The functions @, @~ are continuous as continuous
extensions of the restriction of u to Q4 and €)_ respectively. Thus by the definition
of P4, we get

P ou~

Ox

Sw®)
ox

Aut|?

Ox

Ow®)
ox

ou~

ox

(s) (s)
8vj ) (?vj (30)

at —a |’ . Al )
Zj:/ﬂw,é',s) i =] ; <x Oz | O

< 3 (lat @)~ @) 42 (03 wa7) ) Ca (1,8, 9),

J

where 27 € v, and e ((5’, Vi, u, xj) — 0as ¢’ — 0 and d; — 0. Appealing to condition
(9) of Theorem 1, the relations (29)-(30), we deduce that

" (s) (s)
S (o %) G [l - paree s
j T(v5,9",8) 7—1 ox ox; r
(31)

§’,s,d) =0 and d = max {d;}.

Since the first two terms in the right-hand side of (24) vanish as 6 — 0, we deduce
from (31) and (24) that

S—>OOE (

where lim limgs_,olim
d—0

%ir%ﬁsﬂoofbgs) (u) < / c(x) ‘qu - uflp dx. (32)
- r

(21) and (32) prove the theorem for u € M.
Let us show that the theorem holds for u € WZ} (QTUQ7). For such u, there
exists a sequence of functions {u;} from M such that

llirgo [|u — u||wpl(sz+usr) =0;
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if uljE is the restriction of u; on QF, we have

=0.

Jon ||

_’UJHW;(Qi)

By the definition of fI)gs), the inequality (6) and Holder’s inequality, we have

» 1/p
d:c)

1/p
8ul d:C)

057 (u) — @ ()|

» (p—1)/p
< C / dx /
T(T,5,s) T(T,9,s)
(»—2)/p
P
s Izl *1721 ) (S
T(T,8,s) Ox T(T',4,s)
» 1/p
X / dx .
T(T,d,s)

As | — oo the right-hand side vanishes. Thus
q)gs) (u) = llim q)gs) (wr) -

ou

Ou 0 (u — u)
Ox

ox

p 8ul
ox

O

0 (u; — u)
Ox

This shows that the theorem holds for u € Wz} (QTuQ). O

4. Proof of Theorem 1. Straightforward calculations give

with a constant C' independent of §. Let Qf;[ = QF\T(T',6). We assume that for
sufficiently large s, F(*) lies inside T (T, ), therefore the sets Qf;t are independent
of s. From this inequality it follows that

H“(S)

u®) <C

Wi (00) =

— )

‘W; (25 uef)

We have that u(®) is independent of §. Thus passing to the limit as § — 0 in this
inequality we get

[ < (33)
Wy (Q-uQt)
There is therefore a function u € W, (2~ U Q") such that
u(®) — u, weakly in W]D1 (Q-uat). (34)

Furthermore we have the following result which follows from a straightforward
adaptation of the arguments of Boccardo and Murat [12].

Lemma 6. Under the conditions on problem (1)-(3), we have
u'® — u strongly in qu (Q-uat), (35)
forl<q<p.

For any 6 > 0 and sufficiently large s, u(*) is defined in Qf;t and we have from
(33)

H“(S)

o) <© (30
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Thus letting u® be the restriction of u to Q}, we have from this inequality and
Lemma 6, that
u® -t in WZ} () weakly, (37)

u®) — ut in qu (Qgt) strongly. (38)

Lemma 7. The function u™ satisfies the integral identity

/ Auigad:c:/ fedx, (39)
of of

for all o € W} (QF).
Proof. We have

Aul®) = — Za ( Buls ):f, in QF.
ZE

An integration by parts and Holder’s inequality yield

(%)
= sup iAi (:v, 8u_) vdz

vew} (0f) of 0% Ox

= sup / fodx < C.

vewl(szi

H Au'®)

W, H(QF)

Thus
Aul® — X, weakly in Wp71 (Q?) :
Hence since

Au(s)cpd:vz/ fodx,
Q5 a5

for all o € W, (QF), passing to the limit we get

xgad:c:/ fodz.
/95i of

Thus x = f almost everywhere in Q(;i. Since the operator A is monotone and u(®)
converges weakly to u® in w, (Q?), arguing as in [31] (Chap. 2, page 170), we get

jEzf,forgceﬂgt. O
Lemma 8. Let u™ be as in the previous lemma. Then
. (s) _ -
Jm fJu H “ HWl of) 0 (40)

Proof. Let

+ 1in Qi
XGe (%) = { 0 outside Q ’

and xi (x) € [0,1); ¢ > 0 is chosen so that Qi_E ﬂF(S = (7) QF.. CQ x5 €

C°° (Qia) and xf& — 1 strongly in W]D1 (Qf;t) as € — 0. Let u™ be an extension of
ut to Qgﬂrs such that

’U,(S) — ui weakly in Wl (Q(Si-i-a) ’ (41>

u® — u strongly in qu (Qirs) l<g<p
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Multiply (1) by (u(s) —u¥) ng and substitute in (39) ¢ by (u(s) —u¥) stta and
subtract the resulting equations to get

2 Au'®) ou* 0 (u(s) — ui) X:?ts
2 . [A” (”” oz ) — A (”” o ﬂ 9,

S+

= /i f (u(s) — ui) xidw.
Q

S+

Applying the inequalities (5)-(6) and Holder s inequality, we have

p
/ 0 (u(s) — ui) Xi .
Q(5i+5 or de
8’[1,(5) p—2 811}‘: p—2 (p—2)/p 3u(5) - u:t p 1/p
< g d e
s Gl /Q ’ ox ox . /Q ox *

» 1/p , 1/p » 1/p
X (/ ’u(s) - ui’ d:c) + (/ |fP d:c) (/ ‘u(s) - ui‘ d:c) .
Q Q Q

(41) implies that u(®) strongly converges to u* in L, (Qgﬁrg). Thus the right-hand
side of the above inequality vanishes when s — co. Hence

0 (u®) —u*) ’ +
ot s Xs.dr — 0, as s — o0.
Passing to the limit as € — 0, we get (40). O

Let W, (27 UQ™) denote the class of functions in W, (2 U Q™) which vanish
on 0. We consider the functional J defined as

" ow\ Ow
‘]“")‘/mw 34, <x,%)a—xi—fw

i=1
We have with A; satisfying the conditions formulated earlier with regard to the
functional I.

da:—l—/c(x)‘w""—w_‘pdf, (42)
r

Lemma 9. Under the conditions imposed on the functions A; (x,p), (z,p) € R*",

any minimizer of the functional J in Wp1 (QTUQ7) is also a weak solution of
problem (10)-(12).

Proof. Let ¢ be any function from VVp1 (QTUQ7) and let ¢t € R. We readily have

B - _ ow\ 0¢
t=0 B /sHusz [Z “ <x, %> Ox; - f(b] e

=1

—l—p/rc(a:) lwt — w7’p72 (wt —w™) [¢pF — ¢ | dl.

dJ (w + t)
dt
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Integrating by parts in the integral over QT UQ™ and setting dJ/dt|s—o = 0, we get

/9+qu Za ( 7))

- / o) ot w7t —w) 6" o,
r

where dw/ 8uf are the normals directed toward the interior of QF. This integral
identity is the weak formulation of problem (10)-(12). O

o
Now we prove that the function u minimizes J in W, (T UQ™). Let w be an

arbitrary function in W} (27 U Q™ ), we introduce the function
() () = w(z), if z € QF
w (z) 1fx€T(1" 9)
where w(®) is a function from W]D1 (T (T, 6, s)) which minimizes the functional @gs) in
the class of functions equal to w (x) on I‘i Clearly w(s) ew, (Q(S)). As discussed

at the beginning of the paper, minimizers in W1 (Q(S)) of the functional

o= [, 13 (n5) o

=1
under the assumptions made on A; are weak solutions of the problem (1)-(3). We
assumed that the support of f does not intersect I'. Thus for sufficiently small 4,

f is located outside T' (T, ), and from the definitions of the functionals I and @(S)

we have
I (wgs)) :/ zn:Ai (w 8_w) Ow + fw| dx + @f;s) (w) . (43)
ofuve; | Ox ) Ox;
By Theorem 5 and the definition of J, we have
Tim i, oo/ (wf;)) — J(w). (44)

Let u € W, (2T UQ™) be the limit of u(®) along the subsequence s = s — co. By
Lemma 8, we have shown that

i [[u =], o =
e 11 lwg (o)

o
where u® is a restriction to Qi Let u(s) € Wp1 (2T UQ™) be an extension of u(®)
from QF UQ; to QF UQ™ such that

lim H H —0. (45)
5—00 W1 QtuQ-)
We have
- oul? 8u(
I(u® :/ A |2, =2 + ful | de + @) (ul) . (46)
() = [ S () 2] o)
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Let us estimate the last term. We have
o'\ oul® ou\ Ou
3 (4®) = / A 5 I PN
4 (u(; ) 4 (U)+ T(T,5,s) =1 s 8(17 8$Z % 8$ 8$Z .
(47)

Denoting the last term in the right-hand side of this relation by As®, we have from
n

(6)
(s) (s)
/ Z A | @, us ) _ A; (UC, %> dus dz +
T(,8,5) 15 Oz or )| Ox;

- ou 9 (uz(SS) - u)
/T(m,s) ; A (I’ %) Ox; e

K2

n

AP

(s) P2 p—2] |0 (u(s) - u)
< C’/ dug 3 ‘ ou 5 "
T(N.5,s) || O 0x; Oz,
ou P20 (uf;s) — u)
v [ AN R A P
T(T,8,s) 8$Z 8171
(45) and Hélder’s inequality imply that
lim A;® = 0.
Analogously we have
n ou®\ out® .
/ ZAi x, Y Ys + fu((;) dx
QU5 |im O ) Oxi
- 8u) ou
— A |2, — + ful| dx
Q5uUQy ; < Ox ) Ox;
as s — oo. Hence passing to the limit in (46), (47), we get
lim, I (u<5>) > J (u). (48)

Since u(*) minimizes I in w, (Q®)), thus for wgs) ew, (Q®), I (u®) <1 (wgs)).
Therefore from (44) and (48), we get
J(u) < J (w),

for all w € W} (2 U Q™). This implies that u minimizes J in W, (2T UQ™). This
completes the proof of Theorem 1.

5. Example of a geometry for F(*). We consider for each s a layer T'®) of
thickness h(*) bounded from one side by a fixed surface T' and from the other
side by a surface T'(®) parallel to I" and at a distance h(®) from it. We remove
) of diameter d'*(radius r{*).

from I' s disjoint connected open sets o; = o
The normals through the points x € o;, cut some channels Ti(s) through 7). Set

F& =76\ U, TV, thus F©) is a set with channels for each s. Let € be a large
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ball containing 7*). In the region Q) = O\F (¢) we consider the boundary value
problem

"9 ([ou® P oul
(s) — _ — — fin Q®)
Apu jgzl oz, ( o oz, fin QY (49)
(s)
gu =0, on AF®); u =0 on HQ. (50)
VA,

Let v be a portion of the surface I' and T (v,0) be the layer with thickness 20
(6 > h(®) for sufficiently large s) centered around ~ with bases %i. We define the

quantity
P

(s)
i (51)

ox

Ca, (7,0,s) = inf
wls) T(v,0,s)

where T (7,6,s) = T (y,6)\T®\ Us_, T, and the infimum is taken over the
functions w(®) belonging to the set W (7,d,s) which consists of functions from
W, (T (7,6, s)), taking on the surfaces 75 and v; the values one and zero re-
spectively. Let us denote by T~ (v,6) (resp. T (v,d)) the part of T (vy,d) whose

boundary intersects with 75 (resp. 75 ) and ' (resp. T'*)). We denote Ti(s) NI and

Ti(s) NI by 055)7 and ogsH, respectively.
We define the p—capacity of a set E C B (xg, R) (ball of center xy and radius R)
as the number

p

0
i dx,

C,(F)= inf /
v (B) EM(E) JB(ao,2R) | OF
where M (E) = {¢ € C° (B (20,2R)) : ¢ (x) =1 on E}.
Let Rgs be the distance between JES)_ and Ul';gjO'jS)_; we assume that

max {RES),dZ(-S)} < 6. Let B (a:z(-s),dz(-s)) be the smaller (n — 1) —dimensional

ball containing o). Let B (xgs),R) be a (n — 1)-dimensional ball centered at
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3:55) with radius R. We denote by Q* (ags),R, d) the cylinder in T% (v,d) with
base B (xz(-s),R) and height d; if R = d, we write Q% (O'Z(S),R). We define
the function cpl(-s)i sufficiently smooth in € and such that cpl(-s)i () = 1 in
O* (a§5>,R§S>/4, Afdg”), S (2) = 0 outside a Q* (a§5>,R§5)/3,A;td§S>),

(s)*

-1
angS’i/ayAp =0onl, 0<gp’™ <1, &pl(-s)i/ax‘ <C [RES)} P AT < AT

Further conditions on dgs) and RES) will ensure that that the functions gpgs)i have
disjoint supports.
We introduce the function vl(s)_ solution of the boundary value problem
A,,Ufsk () =0,in T~ (v,9) (52)
vgs)_ (x) =1in JES)_, (53)
dvlY” -
Ui 0 on 9T~ (,9) \ag -, (54)
ova,

By a solution of problem (52)-(54), we mean a function 055)7 e Wy (T~ (v,9))
such that of”~ — 1€ Wg, (T~ (3,6)Uo”") and

p—2

= (%gs)_ (%gs)_ Oy
Z/ 5 o —dr =0, (55)
j=17 T=(v:9) z Tj O

for all ¢ € W, ( T (v,0)U ogs)_). Here Wy, ( T (v,0)U ags)_) denotes the
closure of C} ( T~ (v,6)U ags)_) in W, (T~ (7,9)).

Next we derive some a priori estimates for the functions Ul(s)i. Substituting
© = min {vfs)_, O} and ¢ = max {vgs)_ -1, O} in (55) and performing some simple
calculations we get

0< o™ <1 (56)

Let 9% e ¢! (R™), O@) = 1 on o and ¢\ (z) = 0 outside
Q (o, RY/1), uf) € ¢t (R), ) (@) = Lon B (07, Ad) and o) (x) =
0 outside @~ (Ul(s), Rgs)/?)), 0< ) <1, k=1,2. We assume that d'* < Ad'*) <

r® + RES)/3 then the supports of the w,ij)’s do not intersect for different i’s. Sub-

i

stitute ¢, = = (vl(s)_ - S)) éf) in (55) Then by Young’s inequality and the
estimate (56), we get
(s)—1|P
/ o, dx
o- (U§S>,R§S)/3) Ox
@ o |
o] 0 e | w2l )
Q7<U§s>7R§s)/4) Oz Q*(gis),RE”/g) Ox
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Passing to infimum in the right-hand side and recalling the definition of capacity
au~ |7

we have
/B(ggs>,Rgs> 2)| O

< (o) + 6 (B (a7 2d?)) )

We define the functions cp(-S)Jr and v§5)+

ol

dz (57)

analogously with respect to T (v, ) and

and obtain analogous corresponding estimates as (57), (56) with the obvious
changes.

Let wgs)i (x) = @Es)i (1 - vgs)i) and consider the function

Y ws” (x) /A if @ € T (7,0),

K2

4 s
o) () = mlfxET()

1-37, s)w( ( $)if x € TT (v,9),

where ¢ is the distance between z and I' for x € TZ-( ),

W) € W (v,6,s).
Let us evaluate

A verification shows that

~(s) p
/ o dx.
T(v,5,s) Ox
We have
A (s) P 1 ()= 1|7
/ 3w_ < —p/ 9% (1 - vfs)_)p dx
T (v,5) ox [h(s)} T (v,5) ox

0 (1 - U(S)f) :
1 / - i
+ ‘gpi ‘ dx.
T~ (7.9)

[h(s)]p ox

From the definition of ¢; and the estimates (57), (56), we get

4 [d [ <s>+Rs>/3]” !
/Tw) s CZ [ S)R(S)} (58)

OF e 6 () 6 (5 (k)]

'Y(S)

ow® P
ox

Analogously we have

/T+(’Y15)

w7
ox

d [d + RS /3}"_1

der < (C

(59)

) ne R '

05 ok 6 () (7))

/Tp

We have
()

o, g () @
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By (58)-(60), we have

P ) P )P
/ o de > / o dr — / o x (61)
T(v,5,s) ox Ti(s) ox T+ (v,5) ox
~(s) p
—/ o dx.
T-(v.0) | O
We make the following assumptions :

d¥ = o(RY) (62)

s 10T
T =Y (63)

© [poRY]

mes (o)

shlﬁlo Z T = /C (z)dT, (64)
‘o [¢] 7

where ¢ () is a nonnegative function on I', 3°_ ) is the sum over all ¢ for which

( ) belong to v C T. Assumptions (62) and (64) mean that the holes 0( ) a

sufﬁmently big and the heigths of the channels TZ-( *) are relatively larger compared

n—1 _
to the diameters of the holes since [d;s)] / [h(s)}p ' converge to zero on account

of the convergence of the series in (64).
By (62) and (63), we have

n—1
d [d + R3]
lim lim C =

§—0 s—0o0 [h(s)Rl(S)} P

v(s)

e
}13}) slgrolo d( )ZS) [ S)R(S)j| =0

Next we have

S () [] < o[ )

~v(s) v(s)

RZ(S) [dl(-s)} "
il & [one]”

IN

IN

The first inequality follows from [36](Chap. 9). (62)-(63) imply

lim lim Cp ( (S)+) =0.

§—0s—00

7(s)
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Similarly since

>y (B ")) < X (47)

v(s) v(s)

< (Cmax {dz(-s)} Z [dl(s)] nr ,

v(s)

lim T 3 €, (B (07, 0d7) ) =0,

—0 s—oc

v(s)

IN

we get

Thus we have shown that

~ () P
lim lim O g — 0. (65)
0=05=00 Jps(y5) | O
Analogously "
lim lim O gy — 0. (66)
6—0 s—o00 T (v,5) T

Combining (65), (66) with (61), we get from (51)
> 1 Nt/

fi Jim Ca, (:604) 2 Jim D
y(s

Next we consider in the domain T (v, d, s) the function
0if €T (v,9),
t
(s) _ . (s)
w'™ (x) ) ifeeT;”,
lifx e Tt (y,9),

where t = t () is defined above. w(®) € W (7,4, s) and
p mes( 1(5))
[ oy )

T(7,9,s)

-
v(s) [h(S)]
Using the formula (51), we have

Sw®)
Ox

e (o19)
lim Ca, (7,6,5) < lim — (68)
s—00 §—00 st [h(s)}
The inequalities (67) and (68) imply
mes (o19)
—

lim lim Ca, (7,6, s) = lim lim Ca, (v,6,s) = -

§—0 s—00 6—0 s 500 §—00 () [h(s)}

We have thus proved the following

Theorem 10. Let the conditions (62)-(64) be satisfied and n > p + 1 , then the
sequence of solutions of problem (49)-(50) converges to a function u (z) which is a

solution of the problem
Apu=f, inQ, (69)

<aa—§,,)+ + (%)_ —pe(@)|us —u_ " (uy —u_) onT,  (70)
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u=20 on 05, (71)
where ¢ is the function defined in (6).

Remark 11. The case of Neumann Sieve where the layer T() has zero thickness
can be considered as well and explicit formula for the function ¢ (z) can be found
if the perforations are periodically distributed balls in convenient way. In this case
the A,-conductivity of T (v, d, s) reduces to its capacity, cf. [35].
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