Loading [MathJax]/jax/output/SVG/jax.js

Ideally soft nematic elastomers

  • Received: 01 March 2006 Revised: 01 January 2007
  • Primary: 35B27.

  • The paper examines a class of energies of nematic elastomers that exhibit ideally soft behavior. These are generalizations of the neo-classical energy function proposed by Bladon, Terentjev & Warner [7]. The effective energy (quasiconvexification) of is calculated for a large subclass of considered energies. Within the subclass, the rank 1 convex, quasiconvex, and polyconvex envelopes coincide and reduce to the largest function below that satisfies the Baker–Ericksen inequalities. Compressible cases are included. The effective energy displays three regimes: one fluid-like, one partially fluid-like and one hard, as established by DeSimone & Dolzmann [20] for the energy function of Bladon, Terentjev & Warner. Ideally soft deformation modes are shown to arise.

    Citation: M. Silhavý. Ideally soft nematic elastomers[J]. Networks and Heterogeneous Media, 2007, 2(2): 279-311. doi: 10.3934/nhm.2007.2.279

    Related Papers:

    [1] M. Silhavý . Ideally soft nematic elastomers. Networks and Heterogeneous Media, 2007, 2(2): 279-311. doi: 10.3934/nhm.2007.2.279
    [2] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [3] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [4] Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi . Convex and quasiconvex functions in metric graphs. Networks and Heterogeneous Media, 2021, 16(4): 591-607. doi: 10.3934/nhm.2021019
    [5] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
    [6] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [7] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [8] V. V. Zhikov, S. E. Pastukhova . Korn inequalities on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153
    [9] Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541
    [10] Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89
  • The paper examines a class of energies of nematic elastomers that exhibit ideally soft behavior. These are generalizations of the neo-classical energy function proposed by Bladon, Terentjev & Warner [7]. The effective energy (quasiconvexification) of is calculated for a large subclass of considered energies. Within the subclass, the rank 1 convex, quasiconvex, and polyconvex envelopes coincide and reduce to the largest function below that satisfies the Baker–Ericksen inequalities. Compressible cases are included. The effective energy displays three regimes: one fluid-like, one partially fluid-like and one hard, as established by DeSimone & Dolzmann [20] for the energy function of Bladon, Terentjev & Warner. Ideally soft deformation modes are shown to arise.


  • This article has been cited by:

    1. Alain Goriely, L Angela Mihai, Liquid crystal elastomers wrinkling, 2021, 34, 0951-7715, 5599, 10.1088/1361-6544/ac09c1
    2. L Angela Mihai, Alain Goriely, Likely striping in stochastic nematic elastomers, 2020, 25, 1081-2865, 1851, 10.1177/1081286520914958
    3. Carlos Mora-Corral, Marcos Oliva, Relaxation of nonlinear elastic energies involving the deformed configuration and applications to nematic elastomers, 2019, 25, 1292-8119, 19, 10.1051/cocv/2018005
    4. Virginia Agostiniani, Antonio DeSimone, Ogden-type energies for nematic elastomers, 2012, 47, 00207462, 402, 10.1016/j.ijnonlinmec.2011.10.001
    5. Sergio Conti, Georg Dolzmann, Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, 2014, 24, 0218-2025, 2929, 10.1142/S0218202514500419
    6. Sergio Conti, Georg Dolzmann, Relaxation in crystal plasticity with three active slip systems, 2016, 28, 0935-1175, 1477, 10.1007/s00161-015-0490-x
    7. Pierluigi Cesana, Antonio DeSimone, Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications, 2011, 59, 00225096, 787, 10.1016/j.jmps.2011.01.007
    8. Sergio Conti, Georg Dolzmann, On the Theory of Relaxation in Nonlinear Elasticity with Constraints on the Determinant, 2015, 217, 0003-9527, 413, 10.1007/s00205-014-0835-9
    9. Sergio Conti, Georg Dolzmann, An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, 2018, 113, 00225096, 126, 10.1016/j.jmps.2018.02.001
    10. Antonio DeSimone, 2010, Chapter 7, 978-3-7091-0173-5, 241, 10.1007/978-3-7091-0174-2_7
    11. G. Dolzmann, Microstructure and effective behavior of materials, 2013, 93, 00442267, 4, 10.1002/zamm.201200128
    12. A. DeSimone, L. Teresi, Elastic energies for nematic elastomers, 2009, 29, 1292-8941, 191, 10.1140/epje/i2009-10467-9
    13. L. Angela Mihai, 2022, Chapter 6, 978-3-031-06691-7, 183, 10.1007/978-3-031-06692-4_6
    14. Georg Dolzmann, 2010, Chapter 5, 978-90-481-9194-9, 65, 10.1007/978-90-481-9195-6_5
    15. Florian Behr, Georg Dolzmann, Klaus Hackl, Ghina Jezdan, Analytical and numerical relaxation results for models in soil mechanics, 2023, 35, 0935-1175, 2019, 10.1007/s00161-023-01225-9
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3519) PDF downloads(137) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog