Citation: Al-hassem Nayam. Constant in two-dimensional $p$-compliance-network problem[J]. Networks and Heterogeneous Media, 2014, 9(1): 161-168. doi: 10.3934/nhm.2014.9.161
| [1] |
D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963. doi: 10.1017/S0308210500030006
|
| [2] |
G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761
|
| [3] |
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769. doi: 10.1051/cocv:2006020
|
| [4] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8
|
| [5] | S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158. |
| [6] |
P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136. doi: 10.3934/nhm.2012.7.127
|
| [7] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3
|