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Abstract. We consider the problem of the minimization of the p-compliance

functional where the control variables Σ are taking among closed connected

one-dimensional sets. We prove some estimate from below of the p-compliance
functional in terms of the one-dimensional Hausdorff measure of Σ and compute

the value of a constant θ(p) appearing usually in Γ-limit functional of the

rescaled p-compliance functional.

1. Introduction. Let p > 1 be fixed and q = p/(p− 1) the conjugate exponent of
p. For an open set Ω ⊂ R2 and l a positive given real number, we define

Al(Ω) := {Σ ⊂ Ω, closed and connected, 0 < H1(Σ) ≤ l}.
For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-capacity,
we denote by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

(1)

that is u ∈W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈W 1,p
0 (Ω \ Σ).

It is well known that by the maximum principle, the nonnegativity of the function
f implies that of u. For f ≥ 0, the p-compliance functional is defined by

Cp(Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|pdx

= qmax

{∫
Ω

(
fv − 1

p
|∇v|p

)
dx : v ∈W 1,p

0 (Ω \ Σ)

}
,

(2)

where q stands for the conjugate exponent of p. The minimization problem we are
dealing with is the following

min{Cp(Σ, f,Ω) : Σ ∈ Al(Ω)}. (3)

The existence of a minimal p-compliance configuration is just a consequence of a
generalized Šverák compactness-continuity result (see [1]).This subject has been first
introduced by Buttazzo-Santambrogio-Varchon (see [3]) in the case of small balls

2010 Mathematics Subject Classification. Primary: 49J45; Secondary: 49Q10, 74P05.
Key words and phrases. Γ-convergence, shape optimization.

161

http://dx.doi.org/10.3934/nhm.2014.9.161


162 AL-HASSEM NAYAM

instead of connected networks. In [2], authors have studied the asymptotic behavior
of the optimal set Σl of the p-compliance functional problem as l → +∞. To fix
idea, let us recall their result. Let us denote by P(Ω) the space of all probability
measures defined on Ω. We endow the space P(Ω) with the topology generated
by the weak* convergence of measures. To every set Σ ∈ Al(Ω), we associate a
probability measure on Ω, given by

µΣ =
H1xΣ

H1(Σ)

and define a functional Fl : P(Ω)→ [0; +∞] by

Fl(µ) =

{
lqCp(Σ, f,Ω) if µ = µΣ, Σ ∈ Al(Ω)

+∞ otherwise.
(4)

We also define a functional F by setting, for µ ∈ P(Ω)

F (µ) := θ(p)

∫
Ω

fq

µqa
dx, (5)

where µa stands for the density of the absolutely continuous part of the measure µ
and f the right hand side of equation (1). The constant θ(p) is a positive and finite
real number which is defined by

θ(p) := inf{lim inf
l→+∞

lqCp(Σl, 1, Y ) : Σl ∈ Al(Y )}, (6)

being Y the unit square in R2. From now on, if Σ is a nonempty closed set in R2,
we denote by

dΣ(x) = min
y∈Σ
|y − x|, x ∈ R2

the distance function to Σ. The following theorem is the main result in [2].

Theorem 1.1. (Buttazzo-Santambrogio) Given any bounded open set Ω ⊂ R2 and
a nonnegative function f ∈ Lq(Ω), the functional defined in (4) Γ-converges to F
as l→ +∞ with respect to the weak* topology of P(Ω).

The constant used in [2] is equal to q−1θ(p). For the notion of Γ-convergence,
one may consults [4]. In order to have the explicit value of the functional F defined
in (5) and get the asymptotics of the minimal value, we need to compute the exact
value of the constant θ(p). But in [2] this value was not available. However, authors
proved that the constant is finite and bounded below by

θ(p) ≥ (2q)−q

q + 1
. (7)

Finding the value of the constant θ(p) is the main motivation of our paper. Let us
point out that in the case where p = 2, the constant θ(2) is proved to be bounded
above by 1

12 (in [2], this value is equal to 1
24 since our θ(2) is twice their own).

Moreover authors conjectured that θ(2) = 1
12 and the comb configuration is asymp-

totically optimal. Recently, it has been proved in [6] that this conjecture holds
true. Let us recall that in [2], authors proved a link with the average distance func-
tional. More precisely, they showed that the p-compliance functional Γ-converges
to the average distance functional with respect to the weak* topology of P(Ω) and
consequently

lim
p→+∞

min{lqCp(Σl, f,Ω) : Σl ∈ Al(Ω)} = min
{
l

∫
Ω

(f(x)dΣl
(x))dx : Σl ∈ Al(Ω)

}
.
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This connexion required a good knowledge of the p-compliance functional for
p large enough. We may recall also the Γ-convergence of the average distance
functional studied in [5] which provide in the particular case of dimension 2 the
following

lim
l→+∞

min
{
l

∫
Ω

f(x)
(
dΣl

(x)
)
dx : Σl ∈ Al(Ω)

}
=

1

4

∫
Ω

f(x)

µa(x)
dx

where µa is the density of the absolutely continuous part with respect to Lebesgue
of a given probability measure µ. Taking the limit as p → +∞ of the value of
constant θ(p) we compute in this paper, we recover the coefficient 1

4 above.

2. Estimate of θ(p) from below. In this section, we estimate from below the
p-compliance functional Cp(Σ, 1,Ω) in terms of the one-dimensional Hausdorff mea-
sure of Σ ∪ ∂Ω as made in the case p = 2 in [6]. By taking Ω as a unit square, we
prove an estimate from below of the constant θ(p) (see (19) in the sequel) which
is better than (7) obtained in [2]. Let us denote by meas(A) the two-dimensional
Lebesgue measure of a measurable set A ⊂ R2 and by H1(A) the one-dimensional
Hausdorff measure of a measurable set A ⊂ R2. Let us recall the following definition.

The following result is proved in [6].

Lemma 2.1. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, let Σ ∈
Al(Ω) and N denotes the number of the connected components of ∂Ω∪Σ. For t ≥ 0,
we define

At := {x ∈ Ω : dΣ∪∂Ω(x) < t}, (8)

where dσ(x) stands for the distance function to σ. Then the following estimate of
the measure of At holds

meas(At) ≤ min{meas(Ω), 2H1(Σ ∪ ∂Ω)t + Nπt2} t ≥ 0.

For convenience of notation, we set Λ := Σ ∪ ∂Ω and L = H1(Σ ∪ ∂Ω). Let us
introduce the following auxiliary function

B(t) := min{meas(Ω), 2Lt + Nπt2}. (9)

From Lemma 2.1 and the definition of B(t), it holds

meas(At) ≤ B(t) ≤ meas(Ω). (10)

Now define α to be the positive root of the equation

2Lα+Nπα2 = meas(Ω)

that is

α =
meas(Ω)

L+
√
L2 +Nπmeas(Ω)

. (11)

From the definition of α, the function B may be written in the form

B(t) =

{
2Lt+Nπt2 if 0 ≤ t ≤ α
meas(Ω) if t > α.

For the computation in the next proposition, let us introduce the quantity

m := max
x∈Ω

dΛ(x). (12)

Clearly, meas(Am) = meas(Ω), so taking t = m in (10) gives

B(m) = meas(Ω) = meas(Am). (13)



164 AL-HASSEM NAYAM

As a consequence we have

0 < α ≤ m. (14)

The function B is differentiable at t for any t 6= α and

B′(t) =

{
2L+ 2Nπt if 0 ≤ t < α

0 if α < t ≤ m.
(15)

We denote the perimeter of At in Ω by B(At,Ω) (this notation of perimeter is
not usual but we do not want to use p which is reserved for the “p − Laplacian”
operator). Then, by the coarea formula (see [7]), we have for all t ∈ (0,m)

meas(At) =

∫ t

0

B(As,Ω) ds,

hence for almost every t ∈ (0,m)

B(At,Ω) =
d

dt
meas(At).

Proposition 1. Let Ω ⊂ R2 be a bounded open domain with Lipschitz boundary,
let Σ ∈ Al(Ω) and let N denote the number of the connected components of Σ∪∂Ω.
For any h : [0, α] 7→ R C1,1 function such that

h(0) = 0, h′ ≥ 0, h′′ ≤ 0 on [0, α], (16)

we have the following estimate:

Cp(Σ, 1,Ω) ≥ q
∫ α

0

(
h(t)− 1

p
h′(t)p

)
B′(t) dt. (17)

where B′ is given in (15) and α in (11).

Proof. To prove (17), we will construct a competitor u depending only on the dis-
tance function to Λ. Our proof is based on the one made in [6] for the case p = 2.

Let h : [0, α] 7→ R be as in our statement (16) and extended by h′(α)(t − α)
for t ≥ 0. It is well known that the distance function is Lipschitzian and enjoys
the property |∇dΛ| = 1 almost everywhere. Noticing that dΛ vanishes along Λ,
we consider the competitor u as the composition of h with the distance function
namely

u(x) = h(dΛ(x)), x ∈ Ω.

One can check that u ∈W 1,p
0 (Ω \ Λ) = W 1,p

0 (Ω \ Σ) and

|∇dΛ(x)| = |h′(dΛ(x))|

for almost every x ∈ Ω. Using (2) with f = 1, we get

Cp(Σ, 1,Ω) ≥ q
∫

Ω

(
u(x)− 1

p
|∇u(x)|p

)
dx = q

∫
Ω

(
h(dΣ′(x))− 1

p
|h′(dΣ′(x))|p

)
dx.

Using the fact that |∇dΛ| = 1 almost everywhere and a slicing along the level sets
of the distance function, the coarea formula (see [7] ) gives

Cp(Σ, 1,Ω) ≥ q
∫ m

0

(
h(t)− 1

p
h′(t)p

)
B(At,Ω)dt,

where B(At,Ω) is the perimeter of the set At inside Ω (see (8) for the definition of
At). Set

Hp(t) = h(t)− 1

p
h′(t)p Vt = meas(At)
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for every t ∈ [0,m] and integrate by part, we get

Cp(Σ, 1,Ω) ≥ q
∫ m

0

Hp(t)B(At,Ω)dt

= −q
∫ m

0

H ′p(t)Vtdt+ q
(
VmHp(m)− V0Hp(0)

)
= −q

∫ m

0

H ′p(t)Vtdt+ qVmHp(m)

from (16), the inequality h′′ ≤ 0 and the way h is extended for all t ≥ α, we get
H ′p(t) ≥ 0 for all t ∈ (0,m) so, (10) yields

−H ′p(t)Vt ≥ −H ′p(t)B(t), t ∈ (0,m).

Using this inequality, (15), (13) and (14), an integration by part gives

Cp(Σ, 1,Ω) ≥− q
∫ m

0

H ′p(t)Vtdt+ qAmHp(m)

≥q
∫ m

0

Hp(t)B
′(t) dt+ q(Vm −B(m))Hp(m)

=q

∫ α

0

Hp(t)B
′(t) dt+ q(Vm −B(m))Hp(m)

=q

∫ α

0

Hp(t)B
′(t) dt,

and the proof is over.

In the following result, we prove an estimate from below of the p-compliance
functional in terms of the one-dimensional Hausdorff measure of the set Λ (made
by Dirichlet regions and the boundary of Ω) and the number of its connected com-
ponents. This estimate allows to get an estimate from below of the constant θ(p).

Theorem 2.2. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, let
Σ ∈ Al(Ω) and N denote the number of the connected components of ∂Ω∪Σ. Then
the following estimate of p-compliance holds

Cp(Σ, 1,Ω) ≥ 2L

q + 1
αq+1 +

N(q2 + q + 2)π

(q + 1)(q + 2)
αq+2. (18)

where α is given in (11). As a consequence, if we choose Ω to be the unit square Y
then

θ(p) = inf{lim inf
l→+∞

lqCp(Σ, 1, Y ) : Σ ∈ Al(Y )} ≥ 1

(q + 1)2q
(19)

Proof. The inequality (17) holds for every C1,1 function h satisfying (16), so

Cp(Σ, 1,Ω) ≥ qmax
{∫ α

0

(
h(t)− 1

p
h′(t)p

)
B′(t) dt : h satisfies (16)

}
. (20)

One can check that the maximizer in (20) is given by the function h defined as

h(t) =

∫ t

0

(B(α)−B(s)

B′(s)

) 1
p−1

ds, t ∈ (0, α). (21)

To prove (18) and (19), we will choose a particular function h which is not optimal
(that is not maximizer of (20)) but satisfies the conditions (16). Let take h to be
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the function defined by

h(t) :=
1

q

(
αq − (α− t)q

)
t ∈ (0, α),

where α is defined in (11). Clearly, h satisfies (16). Let us point out that the
function h is the solution of the variational problem

max
{∫ α

0

(
h(t)− 1

p
h′(t)p

)
dt : h(0) = 0

}
.

Using the relation between the conjugate exponents p and q, it holds

(h′(t)p = (α− t)p(q−1) = (α− t)q

and

h(t)− 1

p
(h′(t))p =

1

q
αq − (α− t)q.

So plugging this in (17), using the expression of B′(t) and integrating by part, we
get

Cp(Σ, 1,Ω) ≥ αq
∫ α

0

B′(t) dt− q
∫ α

0

(α− t)qB′(t) dt

= αqB(α)− q
(

2L

∫ α

0

(α− t)q dt+ 2Nπ

∫ α

0

(α− t)qt dt
)

= αqB(α)− q
( 2L

q + 1
αq+1 +

2Nπ

(q + 1)(q + 2)
αq+2

)
.

By observing that B(α) = 2Lα+Nπα2, we get

Cp(Σ, 1,Ω) ≥ 2L

q + 1
αq+1 +

N(q2 + q + 2)π

(q + 1)(q + 2)
αq+2

which proves (18). For (19), if we choose Ω to be the unit square Y and Σ ∈ Al(Y )
then meas(Ω) = 1, 1 ≤ N ≤ 2 (since Σ and ∂Y are connected) and from (11), we
have

α =
1

L+
√
L2 +Nπ

.

The relation between L and l is given by l ≤ L ≤ l + 4 since L = H1(Σ ∪ ∂Y ),
Σ ∈ Al(Y ) and H1(∂Y ) = 4. So

α ≈ 1

2L
≈ 1

2l
as l→ +∞,

hence

lim inf
l→+∞

lqCp(Σ, 1, Y ) ≥ lim inf
l→+∞

lq
( 2L

q + 1

( 1

2l

)q+1

+
N(q2 + q + 2)π

(q + 1)(q + 2)

( 1

2l

)q+2)
=

1

(q + 1)2q
.

Taking the infimum over all sets Σ ∈ Al(Y ) yields (19).



p-COMPLIANCE-NETWORK 167

3. Estimate of θ(p) from above and optimal sequence. This section deals
with the estimate of the constant θ(p) from above and optimal sequence. In fact
we will prove that the reverse inequality of (19) holds true and the comb structure
is asymptotically optimal.

Theorem 3.1. We have θ(p) ≤ 1
(q+1)2q and the comb configuration is asymptoti-

cally optimal.

Proof. To prove the Theorem, we will construct a comb configuration Σn with a
one-dimensional Hausdorff measure H1(Σn) = ln (with ln → +∞ as n→ +∞) and
then show that

lim inf
n→+∞

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q
.

Let u be a function defined on [0, 1] by

u(t) :=

{
1
q ( 1

2 )q − 1
q ( 1

2 − t)
q, t ∈ (0, 1

2 )
1
q ( 1

2 )q − 1
q (t− 1

2 )q, t ∈ ( 1
2 , 1)

. (22)

that we extend periodically on R with period 1. Notice that u is the explicit
solution of the p-Laplacian equation with right side 1 that is −∆pu = 1 on (0, 1)
constraint to the homogeneous Dirichlet boundary conditions at 0 and 1 (that is
u(0) = u(1) = 0). For a given integer n ≥ 1, we consider the set γn to be the union
of n+ 1 parallel vertical segments of unit length (including the two vertical sides of
the unit square) uniformly distributed. Clearly this set is not connected. To make
it connected, we add one horizontal side of the unit square which give it the comb
structure. We denote this new set by Σn. The length of Σn is

ln := H1(Σn) = n+ 2 = H1(γn) + 1. (23)

Let vn be the weak solution of{
−∆pv = 1 in Y \ Σn

v = 0 in Σn ∪ ∂Y,

then

Cp(Σn, 1, Y ) =

∫
Y

vn(x, y) dxdy (24)

To estimate the integral (24) from above, we will compare the function vn with an-
other solution of the p-Laplacian equation with mixed boundary conditions (namely
Dirichlet and Neumann). Let us consider the function

un : R2 7→ R, un(x, y) := n−qu(nx),

where u is the function defined in (22) and q the conjugate exponent of p. An
easy computation shows that un satisfies −∆pu = 1 in Y \ Σn with homogeneous
Dirichlet condition along γn (the set γn is made of n+1 parallel line segments of unit
length) and homogeneous Neumann along the two horizontal sides of Y . Instead
of homogeneous Neumann conditions along the two horizontal sides of Y , one may
consider also the nonnegative inhomogeneous Dirichlet condition. Therefore by the
maximum principle it holds vn ≤ un in Y \ Σn. Integrating this inequality and
taking into account the definition of un and the periodicity of u, we get∫

Y

vn(x, y) dxdy ≤
∫
Y

un(x, y) dxdy = n1−q
∫ 1/n

0

u(nx) dx = n−q
∫ 1

0

u(x) dx.
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To compute the last integral, we use (22). From an elementary computation, we
have ∫ 1/2

0

u(x) dx =

∫ 1

1/2

u(x) dx =
1

q + 1

(1

2

)q+1

,

hence, recalling (24) we get

Cp(Σn, 1, Y ) =

∫
Y

vn(x, y) dxdy ≤ n−q

(q + 1)2q
.

Since the length of Σn is ln = n+ 2 (see (23)) it follows that

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q

(n+ 2

n

)q
.

Therefore, passing to liminf as n→ +∞ in the inequality, and using the definition
of θ(p), we get

θ(p) ≤ lim inf
n→+∞

lqnCp(Σn, 1, Y ) ≤ 1

(q + 1)2q

which concludes the proof.

Remark 1. The case of higher dimension is still an open problem. For this setting,

the scaling factor in the definition of θ(p) is l
q

d−1 . To get an estimate from below,
one has to find a right function h as we did in (18). A big deal is to find an
asymptotically optimal set which will lead to the value of θ(p).
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