Research article Special Issues

Grand weighted variable Herz-Morrey spaces estimate for some operators

  • In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p()(ω). We also obtained the boundedness of the morder multilinear fractional Hardy operator Hβ,m and its adjoint operator Hβ,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω).

    Citation: Ming Liu, Binhua Feng. Grand weighted variable Herz-Morrey spaces estimate for some operators[J]. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012

    Related Papers:

    [1] Heng Yang, Jiang Zhou . Some estimates of multilinear operators on tent spaces. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031
    [2] Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020
    [3] Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037
    [4] İrem Akbulut Arık, Seda İğret Araz . Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos. Communications in Analysis and Mechanics, 2024, 16(1): 169-192. doi: 10.3934/cam.2024008
    [5] Caojie Li, Haixiang Zhang, Xuehua Yang . A new $ \alpha $-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation. Communications in Analysis and Mechanics, 2024, 16(1): 147-168. doi: 10.3934/cam.2024007
    [6] Yining Yang, Cao Wen, Yang Liu, Hong Li, Jinfeng Wang . Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model. Communications in Analysis and Mechanics, 2024, 16(1): 24-52. doi: 10.3934/cam.2024002
    [7] Lovelesh Sharma . Brezis Nirenberg type results for local non-local problems under mixed boundary conditions. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038
    [8] Katica R. (Stevanović) Hedrih, Gradimir V. Milovanović . Elements of mathematical phenomenology and analogies of electrical and mechanical oscillators of the fractional type with finite number of degrees of freedom of oscillations: linear and nonlinear modes. Communications in Analysis and Mechanics, 2024, 16(4): 738-785. doi: 10.3934/cam.2024033
    [9] Farrukh Dekhkonov . On a boundary control problem for a pseudo-parabolic equation. Communications in Analysis and Mechanics, 2023, 15(2): 289-299. doi: 10.3934/cam.2023015
    [10] Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009
  • In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p()(ω). We also obtained the boundedness of the morder multilinear fractional Hardy operator Hβ,m and its adjoint operator Hβ,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω).



    Since Kováčik and Rákosník established the theory of variable-exponent function spaces in [1], the subject has attracted extensive attention by many scholars. The theory of the variable-exponent Lebesgue spaces Lp()(Rn) has been extensively investigated, see [2,3,4,5]. Izuki first introduced the variable-exponent Herz spaces ˙Kα,qp()(Rn) [6] and considered the boundedness of commutators of fractional integrals in these spaces; for more research about the boundedness of operators in the above spaces, see [7,8]. Subsequently, Izuki generalized the Herz-Morrey spaces M˙Kα,λq,p(Rn) in [9] into the variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(Rn) [10], for more research about M˙Kα,λq,p()(Rn), see [11,12,13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic analysis, [14,15,16,17]. By using the basics on Banach function spaces and the variable-exponent Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces ˙Kα,qp()(ω) [18,19,20]. After that, the research for the boundedness of some operators, such as the commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional Hardy operators achieved good results on weighted variable Herz-Morrey spaces M˙Kα,λq,p()(ω); for more details, see [21,22,23,24,25,26]. Consequently, many scholars have contributed to the study of function spaces and related differential equations, [27,28].

    Motivated by the mentioned works, the main goal of this paper is to establish the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p()(ω) and to establish boundedness of the morder multilinear fractional Hardy operator Hβ,m and its adjoint operator Hβ,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω). The paper is organized as follows: In Section 2, we collect some preliminary definitions and lemmas. Our main results and their proof will be given in Section 3 and Section 4.

    Now, let us recall some notations that will be used in this paper.

    In [29], Hardy defined the classical Hardy operator as follows:

    P(f)(x):=1xx0f(t)dt,x>0. (1.1)

    In [30], Christ and Grafakos defined the ndimensional Hardy operator as follows:

    H(f)(x):=1|x|n|t|<|x|f(t)dt,xRn{0}, (1.2)

    and established the boundedness of H(f)(x) in Lp(Rn), obtaining the best constants.

    In [31], under the condition of 0β<n and |x|=ni=1x2i, Fu et al. defined the ndimensional fractional Hardy operator and its adjoint operator as follows:

    Hβf(x):=1|x|nβ|t|<|x|f(t)dt,Hβf(x):=|t||x|f(t)|t|nβdt,xRn{0}, (1.3)

    and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.

    Let m and n be positive integers with m1, n2, and 0β<mn, and let L1loc(Rn) be the collection of all locally integrable functions on Rn. Wu and Zhang in [12] defined the morder multilinear fractional Hardy operator and its adjoint operator as follows:

    Hβ,m(f)(x):=1|x|mnβ|t1|<|x||t2|<|x||tm|<|x|f1(t1)f2(t2)fm(tm)dt1dt2dtm, (1.4)
    Hβ,m(f)(x):=|t1||x||t2||x||tm||x|f1(t1)f2(t2)fm(tm)|(t1,t2,,tm)|mnβdt1dt2dtm, (1.5)

    where xRn{0}, |(t1,t2,tm)|=t21+t22++t2m. f=(f1,f2,,fm) is a vector-valued function, where fi(i=1,2,,m)L1loc(Rn).

    Obviously, when m=1, Hβ,m=Hβ, Hβ,m=Hβ. When β=0, Hm indicates a multilinear operator H0,m corresponding to the Hardy operator H, and Hm indicates a multilinear operator H0,m corresponding to the adjoint operator H:=H0.

    Let L1loc(Rn) be the collection of all locally integrable functions on Rn, and given a function bL1loc(Rn), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as follows:

    BMO(Rn):={bL1loc(Rn):bBMO(Rn)<}, (1.6)
    bBMO(Rn):=supB:ball1|B|B|b(x)bB|dx. (1.7)

    where the supremum is taken over all the balls BRn and bB=|B|1Bb(y)dy.

    Let bBMO(Rn), 0<β<n, and the fractional integral operator Iβ and the commutator of fractional integral operator [b,Iβ]f(x) are defined, respectively, as follows:

    Iβ(f)(x):=Rnf(y)|xy|nβdy,xRn. (1.8)
    [b,Iβ]f(x):=b(x)Iβ(f)(x)Iβ(bf)(x),xRn. (1.9)

    Let bBMO(Rn), 0<β<n, and mN. The higher-order commutator of fractional integrals operator Imβ,b is defined as follows:

    Imβ,bf(x):=Rn[b(x)b(y)]m|xy|nβf(y)dy,xRn. (1.10)

    Obviously, when m=1, I1β,b(f)(x)=[b,Iβ]f(x); and when m=0, I0β,b(f)(x)=Iβ(f)(x).

    For 0β<n and fL1loc(Rn), the fractional maximal operator Mβ is defined as follows:

    Mβf(x):=supxB1|B|1βnB|f(y)|dy,xRn. (1.11)

    Where the supremum is taken over all balls BRn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.

    Throughout this paper, we use the following symbols and notations:

    1. For a constant R>0 and a point xRn, we write B(x,R):={yRn:|xy|<R}.

    2. For any measurable set ERn, |E| denotes the Lebesgue measure and χE means the characteristic function.

    3. Given kZ, we write Bk:=¯B(0,2k)={xRn:|x|2k}.

    4. We define a family {Ck}k= by Ck:=BkBk1={xRn:2k1<|x|2k}. Moreover χk denotes the characteristic function of Ck, namely, χk:=χCk.

    5. For any index 1<p(x)<, p(x) is denoted by its conjugate index, namely, 1p(x)+1p(x)=1.

    6. If there exists a positive constant C independent of the main parameters such that ACB, then we write AB. Additionally AB means that both AB and BA hold.

    In this section, we first recall some definitions related to the variable Lebesgue space and variable Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function space and weighted Banach function space. Then, we present several relevant lemmas that will aid in the proof of our main boundedness result.

    Definition 2.1 (see [2]) Let p():Rn[1,) be a real-valued measurable function.

    (i) The Lebesgue space with variable-exponent Lp()(Rn) is defined by

    Lp()(Rn):={fisameasurablefunction:Rn(|f(x)|λ)p(x)dx<forsomeconstantλ>0}

    (ii) The spaces with variable-exponent Lp()loc(E) are defined by

    Lp()loc(Rn):={fisameasurablefunction:fLp()(K)forallcompactsubsetsKRn}

    The variable-exponent Lebesgue space Lp()(Rn) is a Banach space with the norm defined by

    fLp()(Rn):=inf{λ>0:Rn(|f(x)|λ)p(x)dx1}.

    Definition 2.2 (see [2]) (i) The set P0(Rn) consists of all measurable functions p():Rn(0,) satisfying

    0<pp(x)p+<, (2.1)

    where

    p:=essinf{p(x):xRn}>0,p+:=esssup{p(x):xRn}<. (2.2)

    (ii) The set P(Rn) consists of all measurable functions p():Rn[1,) satisfying

    1<pp(x)p+<, (2.3)

    where

    p:=essinf{p(x):xRn}>1,p+:=esssup{p(x):xRn}<. (2.4)

    (iii) The set B(Rn) consists of all measurable functions p()P(Rn) satisfying that the Hardy-Littlewood maximal operator M is bounded on Lp()(Rn).

    Definition 2.3 (see [2]) Suppose that p() is a real-valued function on Rn. We say that

    (i)Clogloc(Rn) is the set of all local log-Hölder continuous functions p() satisfying

    |p(x)p(y)|Clog(|xy|),|xy|<12,x,yRn. (2.5)

    (ii)Clog0(Rn) is the set of all local log-Hölder continuous functions p() satisfying at origin

    |p(x)p0|Clog(e+1|x|),xRn. (2.6)

    (iii)Clog(Rn) is the set of all local log-Hölder continuous functions satisfying at infinity

    |p(x)p|Clog(e+|x|),xRn. (2.7)

    (iv)Clog(Rn)=Clog(Rn)Clogloc(Rn) denotes the set of all global log-Hölder continuous functions p().

    In [2], the author proved that if p()Clog(Rn), then p()Clog(Rn), and also proved that if p()P(Rn)Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp()(Rn).

    Definition 2.4 (see [17]) (i) Given a non-negative, measure function ω, for 1<p<, ωAp if

    [ω]Ap:=supB(1|B|Bω(x)dx)(1|B|Bω(x)1pdx)p1<, (2.8)

    where the supremum is taken over all balls BRn.

    (ii) A weight ω is called a Muckenhoupt weight A1 if

    [ω]A1:=supB1|B|Bω(x)dxessinf{ω(x):xB}<. (2.9)

    (iii) A weight ω is called a Muckenhoupt weight A if

    A:=1<r<Ar. (2.10)

    Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, ωAp, 1<p<, if and only if M:Lp(ω)Lp(ω).

    Definition 2.5 (see [18]) Suppose that p()P(Rn), a weight ω is in the class Ap() if

    supB:ball|B|1ω1p()χBLp()ω1p()χBLp()<. (2.11)

    Obviously, if p()=p,1<p<, then the above definition reduces to the classical Muckenhoupt Ap class. In [18], suppose p(),q()P(Rn) and p()q(), then A1Ap()Aq().

    Definition 2.6 (see [18]) Let 0<β<n and p1(),p2()P(Rn) such that 1p2(x)=1p1(x)βn. A weighted ω is said to be an A(p1(),p2()) weight, then for all balls BRn satisfying

    ωχBLp2()ω1χBLp1()C|B|1βn. (2.12)

    In [14], suppose p1(),p2()P(Rn) and β(0,n) such that 1p2(x)=1p1(x)βn. Then ωA(p1(),p2()) if and only if ωp2()A1+p2()p1().

    Definition 2.7 (see [25]) Let p()P(Rn) and ωAp(), the weighted variable-exponent Lebesgue space Lp()(ω) denotes the set of all complex-valued measurable functions f satisfying

    Lp()(ω)={f:fω1p()Lp()(Rn)}.

    This is a Banach space equipped with the norm:

    fLp()(ω)=fω1p()Lp()(Rn).

    Definition 2.8 (see [25]) Let αR,0<q<, p()P(Rn) and 0λ<. The homogeneous weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω) are defined by

    M˙Kα,λq,p()(ω)={fLp()loc(Rn{0},ω):fM˙Kα,λq,p()(ω)<},

    where

    fM˙Kα,λq,p()(ω)=supLZ2Lλ{Lk=2kαqfχkqLp()(ω)}1q.

    Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [25]. When λ=0, the weighted variable-exponent Herz-Morrey spaces become weighted variable-exponent Herz spaces, see [18].

    Definition 2.9 (see [32]) Let p()P(Rn),αR,θ>0,0<r<,0λ<. The homogeneous grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p()(ω) are the collection of Lp()loc(Rn{0},ω) such that

    M˙Kα,r),θλ,p()(ω)={fLp()loc(Rn{0},ω):fM˙Kα,r),θλ,p()(ω)<},

    where

    fM˙Kα,r),θλ,p()(ω)=supδ>0supLZ2Lλ{δθkZ2kαr(1+δ)fχkr(1+δ)Lp()(ω)}1r(1+δ).

    Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [32]. When λ=0, the grand weighted variable-exponent Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].

    Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined on Rn, and X a linear subspace of M.

    1. The space X is said to be a Banach function space if there exists a function X:M[0,] satisfying the following properties: Let f,g,fjM(j=1,2,), then

    (a) fX holds if and only if fX<.

    (b) Norm property:

    i. Positivity: fX0.

    ii. Strict positivity: fX=0 holds if and only if f(x)=0 for almost every xRn.

    iii. Homogeneity: λfX=|λ|fX holds for all λC.

    iv. Triangle inequality: f+gXfX+gX.

    (c) Symmetry: fX=|f|X.

    (d) Lattice property: If 0g(x)f(x) for almost every xRn, then gXfX.

    (e) Fatou property: If 0fj(x)fj+1(x) for all j and fj(x)f(x) as j for almost every xRn, then limjfjX=fX.

    (f) For every measurable set FRn such that |F|<, χFX is finite. Additionally, there exists a constant CF>0 depending only on F so that F|h(x)|dxCFhX holds for all hX.

    2. Suppose that X is a Banach function space equipped with a norm X. The associated space X is defined by

    X={fM:fX<},

    where

    fX=supg{|Rnf(x)g(x)dx|:gX1}.

    Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set Xloc(Rn) consists of all measurable functions f such that fχEX for any compact set E with |E|<. Given a function W such that 0<W(x)< for almost every x(Rn), WXloc(Rn) and W1(X)loc(Rn), the weighted Banach function space is defined by

    X(Rn,W):={fM:fWX}.

    Lemma 2.1 (see [34]) Let X be a Banach function space, then we have

    (i) The associated space X is also a Banach function spaces.

    (ii)(X) and X are equivalent.

    (iii) If gX and fX, then

    Rn|f(x)g(x)|dxfXgX, (2.13)

    is the generalized Hölder inequality.

    Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,

    1|B|1χBXχBX. (2.14)

    Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X, that is,

    χ{Mf>λ}Xλ1fX

    is true for all fX and all λ>0. Then, we have

    supB:ball1|B|χBXχBX<. (2.15)

    Lemma 2.4 (see [18]) (i) The weighted Banach function space X(Rn,W) is a Banach function space equipped by the norm

    fX(Rn,W):=fWX.

    (ii) The associate space of X(Rn,W) is a Banach function space and equals X(Rn,W1).

    Remark 2.5 (see [21]) Let p()P(Rn) and by comparing the Lp()(ωp()) and Lp()(ωp()) with the definition of X(Rn,W), we have

    1. If we take W=ω and X=Lp()(Rn), then we get Lp()(Rn,ω)=Lp()(ωp()).

    2. If we consider W=ω1 and X=Lp()(Rn), then we get Lp()(Rn,ω1)=Lp()(ωp()). By virtue of Lemma 2.4, we get

    (Lp()(Rn,ω))=(Lp()(ωp()))=Lp()(ωp())=Lp()(Rn,ω1).

    Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the associate space X. Then there exists a constant 0<δ<1 such that for all balls BRn and all measurable sets EB,

    χEXχBX(|E||B|)δ. (2.16)

    The paper [1] shows that Lp()(Rn) is a Banach function space and the associated space Lp()(Rn) has equivalent norm.

    Lemma 2.7 (see [20]) Let p()P(Rn)Clog(Rn) and ωAp(), then there are constants δ1,δ2(0,1) and C>0 such that for all k,lZ with kl,

    χkLp()(ωp())χlLp()(ωp())=χk(Lp()(ωp()))χl(Lp()(ωp()))C(|Ck||Cl|)δ1, (2.17)

    and

    χk(Lp()(ωp()))χl(Lp()(ωp()))C(|Ck||Cl|)δ2. (2.18)

    Lemma 2.8 (see [35] Theorem 3.12) Let p1()P(Rn)LH(Rn) and 0<β<np+1. Define p2() by 1p1()1p2()=βn. If ωA(p1(),p2()), then Iβ is bounded from Lp1()(ωp1()) to Lp2()(ωp2()).

    Lemma 2.9 (see [35] Theorem 3.14) Suppose that bBMO(Rn) and mN. Let p1()P(Rn)Clog(Rn) and 0<β<np+1. Define p2() by 1p1()1p2()=βn. If ωA(p1(),p2()), then

    Imβ,b(f)Lp2()(ωp2())bmBMO(Rn)fLp1()(ωp1()).

    Lemma 2.10 (see [36] Theorem 2.3) Let p(),p1(),p2()P0(Rn) such that 1p(x)=1p1(x)+1p2(x) for xRn. Then, there exists a constant Cp,p1 independent of functions f and g such that

    fgLp()Cp,p1fLp1()gLp2(), (2.19)

    holds for every fLp1()(Rn) and gLp2()(Rn).

    Lemma 2.11 (see [23] Corollary 3.11) Let bBMO(Rn),mN, and k,jZ with k>j. Then we have

    C1bmBMO(Rn)supB1χBLp()(ω)(bbB)mχBLp()(ω)CbmBMO(Rn), (2.20)

    and

    (bbBj)mχBkLp()(ω)C(kj)mbmBMO(Rn)χBkLp()(ω). (2.21)

    In this section, under certain hypothetical conditions, we first establish the boundedness of higher-order commutators Imβ,b generated by the fractional integrals operator with BMO functions on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω). Then, we establish the boundedness of Imβ,b on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p()(ω).

    Theorem 3.1  Suppose that bBMO(Rn) and mN. Let 0<λ<, 0<q1q2<, p2()P(Rn)Clog(Rn), ωp2()A1, δ1,δ2(0,1) are the constants appearing in (2.17) and (2.18) respectively. α and β are such that

    (i)nδ1+λ<α<nδ2β+λ

    (ii)0<β<n(δ1+δ2).

    Define p1() by 1p2()=1p1()βn, then Imβ,b are bounded from M˙Kα,λq2,p2()(ωp2()) to M˙Kα,λq1,p1()(ωp1()).

    Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all fM˙Kα,λq2,p2()(ωp2())(Rn) and bBMO(Rn), if we denote fj:=fχj=fχCj for each jZ, then f=j=fj. So we can write

    f(x)=j=f(x)χj(x)=j=fj(x).

    Because of 0<q1q21, then the Jensen inequality follows that

    (j=|aj|)q1q2j=|aj|q1q2, (3.1)

    By virtue of (3.1), we obtain

    Imβ,b(f)q1M˙Kα,λq2,p2()(ωp2())=supLZ2Lλq1(Lk=2kαq2Imβ,b(f)χkq2Lp2()(ωp2()))q1q2supLZ2Lλq1Lk=2kαq1Imβ,b(f)χkq1Lp2()(ωp2())supLZ2Lλq1{Lk=2kαq1(k2j=Imβ,b(fj)χkLp2()(ωp2()))q1}+supLZ2Lλq1{Lk=2kαq1(k+1j=k1Imβ,b(fj)χkLp2()(ωp2()))q1}+supLZ2Lλq1{Lk=2kαq1(j=k+2Imβ,b(fj)χkLp2()(ωp2()))q1}=:(J1+J2+J3).

    First we estimate J1. Note that if xCk, yCj, and jk2, then |xy||x|2k. By Cp inequality and generalized Hölder inequality, for every j,kZ, we get

    |Imβ,b(fj)(x)χk|CCj|b(x)b(y)|m|xy|nβ|fj(y)|dyχk(x)2k(βn)Cj|fj(y)||b(x)b(y)|mdyχk(x)2k(βn){|b(x)bCj|mCj|fj(y)|dy+Cj|fj(y)||b(y)bCj|mdy}χk(x)2k(βn)fjLp1()(ωp1()){|b(x)bCj|mχj(Lp1()(ωp1()))+|b(y)bCj|mχj(Lp1()(ωp1()))}χk(x). (3.2)

    By taking the Lp2()(ωp2())norm for (3.2), by Lemma 2.11, we have

    Imβ,b(fj)(x)χkLp2()(ωp2())2k(βn)fjLp1()(ωp1()){|b(x)bCj|mχkLp2()(ωp2())χj(Lp1()(ωp1()))+|b(y)bCj|mχj(Lp1()(ωp1()))χkLp2()(ωp2())}2k(βn)fjLp1()(ωp1()){(kj)mbmBMO(Rn)χkLp2()(ωp2())χj(Lp1()(ωp1()))+bmBMO(Rn)χj(Lp1()(ωp1()))χkLp2()(ωp2())}2k(βn)(kj)mbmBMO(Rn)fjLp1()(ωp1())χj(Lp1()(ωp1()))χkLp2()(ωp2()). (3.3)

    By virtue of Lemma 2.6, we have

    χjXχBjXC(|Ck||Bk|)δ=CχjXCχBjX. (3.4)

    Note that χBj(x)2jβIβ(χBj) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain

    χjLp2()(ωp2())χBjLp2()(ωp2())2jβIβ(χBj)Lp2()(ωp2())2jβχBjLp1()(ωp1())2j(nβ)χBj1(Lp1()(ωp1()))2j(nβ)χj1(Lp1()(ωp1())). (3.5)

    By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have

    2k(βn)χj(Lp1()(ωp1()))χkLp2()(ωp2())=2kβχj(Lp1()(ωp1()))2knχkLp2()(ωp2())2kβχj(Lp1()(ωp1()))χk1(Lp2()(ωp2()))=2kβχj(Lp1()(ωp1()))χj1(Lp2()(ωp2()))χj(Lp2()(ωp2()))χk(Lp2()(ωp2()))2kβ2nδ2(jk)χj(Lp1()(ωp1()))χj1(Lp2()(ωp2()))2kβ2nδ2(jk)2j(nβ)χj1Lp2()(ωp2())χj1(Lp2()(ωp2()))=2kβ2nδ2(jk)2jβ(2jnχjLp2()(ωp2())χj(Lp2()(ωp2())))12(βnδ2)(kj). (3.6)

    Hence by virtue of (3.3) and (3.6), we have

    Imβ,b(fj)(x)χkLp2()(ωp2())2(βnδ2)(kj)(kj)mbmBMO(Rn)fjLp1()(ωp1()). (3.7)

    On the other hand, note the following fact:

    fjLp1()(ωp1())=2jα(2jαq1fχjq1Lp1()(ωp1()))1q12jα(ji=2iαq1fχiq1Lp1()(ωp1()))1q1=2j(λα){2jλ(ji=2iαq1fχiq1Lp1()(ωp1()))1q1}2j(λα)fM˙Kα,λq1,p1()(ωp1()). (3.8)

    Thus, by virtue of (3.7) and (3.8), remark that α<nδ2β+λ,

    J1=supLZ2Lλq1{Lk=2kαq1(k2j=Imβ,b(fj)χkLp2()(ωp2()))q1}supLZ2Lλq1{Lk=2kαq1(k2j=(kj)mbmBMO(Rn)fjLp1()(ωp1())2(βnδ2)(kj))q1}bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1())supLZ2Lλq1{Lk=2kλq1(k2j=(kj)m2(kj)(α+βnδ2λ))q1}bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1())supLZ2Lλq1(Lk=2kλq1)bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1()).

    Next, we estimate J2. Using Lemma 2.9, we get

    J2=supLZ2Lλq1{Lk=2kαq1(k+1j=k1Imβ,b(fj)χkLp2()(ωp2()))q1}bmq1BMO(Rn)supLZ2Lλq1{Lk=2kαq1(k+1j=k1fjχkLp1()(ωp1()))q1}bmq1BMO(Rn)supLZ2Lλq1{Lk=2kαq1fjχkq1Lp1()(ωp1())}=bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1()).

    Finally, we estimate J3. Note that if xCk, yCj, and jk+2, then |xy||x|2j. By the Cp inequality and generalized Hölder inequality, for every j,kZ, we get

    |Imβ,b(fj)(x)χk|CCj|b(x)b(y)|m|xy|nβ|fj(y)|dyχk(x)2j(βn)Cj|fj(y)||b(x)b(y)|mdyχk(x)2j(βn){|b(x)bCj|mCj|fj(y)|dy+Cj|fj(y)||b(y)bCj|mdy}χk(x)2j(βn)fjLp1()(ωp1()){|b(x)bCj|mχj(Lp1()(ωp1()))+|b(y)bCj|mχj(Lp1()(ωp1()))}χk(x). (3.9)

    Thus, by taking the Lp2()(ωp2())norm for (3.9), by virtue of Lemma 2.11, we have

    Imβ,b(fj)(x)χkLp2()(ωp2())2j(βn)fjLp1()(ωp1()){|b(x)bCj|mχkLp2()(ωp2())χj(Lp1()(ωp1()))+|b(y)bCj|mχj(Lp1()(ωp1()))χkLp2()(ωp2())}2j(βn)fjLp1()(ωp1()){(jk)mbmBMO(Rn)χkLp2()(ωp2())χj(Lp1()(ωp1()))+bmBMO(Rn)χj(Lp1()(ωp1()))χkLp2()(ωp2())}2j(βn)(jk)mbmBMO(Rn)fjLp1()(ωp1())χkLp2()(ωp2())χj(Lp1()(ωp1())). (3.10)

    On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have

    2j(βn)χkLp2()(ωp2())χj(Lp1()(ωp1()))=2jβχkLp2()(ωp2())2jnχj(Lp1()(ωp1()))2jβχkLp2()(ωp2())χj1Lp1()(ωp1())=2jβχj1Lp1()(ωp1())χjLp2()(ωp2())χkLp2()(ωp2())χjLp2()(ωp2())2jβ2nδ1(kj)χj1Lp1()(ωp1())χjLp2()(ωp2())2jβ2nδ1(kj)2j(nβ)χj1Lp1()(ωp1())χj1(Lp1()(ωp1()))=2jβ2nδ1(kj)2jβ(2jnχjLp1()(ωp1())χj(Lp1()(ωp1())))12nδ1(kj). (3.11)

    Hence, combining (3.10) and (3.11), we obtain

    Imβ,b(fj)χkLp2()(ωp2())2nδ1(kj)(jk)mbmBMO(Rn)fjLp1()(ωp1()). (3.12)

    Thus, by virtue of (3.9) and (3.12), remark that λnδ1<α, and we conclude that

    J3=supLZ2Lλq1{Lk=2kαq1(j=k+2Imβ,b(fj)χkLp2()(ωp2()))q1}supLZ2Lλq1{Lk=2kαq1(j=k+2(jk)mbmBMO(Rn)fjLp1()(ωp1())2nδ1(kj))q1}bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1())supLZ2Lλq1{Lk=2kλq1(j=k+2(jk)m2(jk)(λnδ1α))q1}bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1())supLZ2Lλq1(Lk=2kλq1)bmq1BMO(Rn)fq1M˙Kα,λq1,p1()(ωp1()).

    Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.1.

    Theorem 3.2 Suppose that bBMO(Rn) and mN. Let 0λ<, 1<r<, p2()P(Rn)Clog(Rn), ωp2()A1, δ1,δ2(0,1) be the constants appearing in (2.17) and (2.18) respectively. α and β are such that

    (i)nδ1<α<nδ2β

    (ii)0<β<n(δ1+δ2).

    Define p1() by 1p2()=1p1()βn, then Imβ,b is bounded from M˙Kα,r),θλ,p2()(ωp2()) to M˙Kα,r),θλ,p1()(ωp1()).

    Proof We prove the homogeneous case, as the nonhomogeneous case is similar. For all fM˙Kα,r),θλ,p2()(ωp2()) and bBMO(Rn), if we denote fj:=fχj=fχCj for each jZ, then f=j=fj. So we can write

    f(x)=j=f(x)χj(x)=j=fj(x).

    Then we have

    Imβ,b(f)M˙Kα,r),θλ,p2()(ωp2())=supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)Imβ,b(f)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)=supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)j=Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)jk2Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)+supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)k+1j=k1Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)+supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)jk+2Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)=:(J1+J2+J3).

    First, we estimate J1. Remark that α<nδ2β, thus we consider two cases: 1<r(1+δ)< and 0<r(1+δ)1. For the case 1<r(1+δ)<, by applying (3.7) and Hölder inequality, we have

    J1=supδ>0supLZ2Lλ(δθk=2kαr(1+δ)k2j=Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)supδ>0supLZ2Lλ{δθk=2kαr(1+δ)(k2j=Imβ,b(fj)χkLp2()(ωp2()))r(1+δ)}1r(1+δ)supδ>0supLZ2Lλ{δθk=2kαr(1+δ)(k2j=bmBMO(Rn)fjLp1()(ωp1())×(kj)m2(βnδ2)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=(k2j=2αjfjLp1()(ωp1())(kj)m2(βnδ2+α)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=(k2j=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(kj)mr(1+δ)2(βnδ2+α)(kj)r(1+δ)2)×(k2j=2(βnδ2+α)(kj)(r(1+δ))2)r(1+δ)(r(1+δ))}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=k2j=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(kj)mr(1+δ)2(βnδ2+α)(kj)r(1+δ)2}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())kj+2(kj)mr(1+δ)2(βnδ2+α)(kj)r(1+δ)2}1r(1+δ)bmBMO(Rn)supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())}1r(1+δ)bmBMO(Rn)fM˙Kα,r),θλ,p1()(ωp1()).

    For 0<r(1+δ)1, by virtue of (3.7), we have

    J1=supδ>0supLZ2Lλ(δθk=2kαr(1+δ)k2j=Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)supδ>0supLZ2Lλ{δθk=2kαr(1+δ)(k2j=Imβ,b(fj)χkLp2()(ωp2()))r(1+δ)}1r(1+δ)supδ>0supLZ2Lλ{δθk=2kαr(1+δ)(k2j=bmBMO(Rn)fjLp1()(ωp1())×(kj)m2(βnδ2)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=(2αjk2j=fjLp1()(ωp1())(kj)m2(βnδ2+α)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=k2j=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(kj)mr(1+δ)2(βnδ2+α)(kj)r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())kj+2(kj)mr(1+δ)2(βnδ2+α)(kj)r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())}1r(1+δ)bmBMO(Rn)fM˙Kα,r),θλ,p1()(ωp1()).

    Next, we estimate J2. Using Lemma 2.9, we get

    J2=supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)k+1j=k1Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)bmBMO(Rn)supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)k+1j=k1(fχj)r(1+δ)Lp1()(ωp1()))1r(1+δ)bmBMO(Rn)supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)(fχk)r(1+δ)Lp1()(ωp1()))1r(1+δ)bmBMO(Rn)fM˙Kα,r),θλ,p1()(ωp1()).

    Finally, we estimate J3. By virtue of (3.12), we have

    J3=supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)jk+2Imβ,b(fj)χkr(1+δ)Lp2()(ωp2()))1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ(δθkZ2kαr(1+δ)jk+22nδ1(kj)r(1+δ)(jk)mr(1+δ)fjr(1+δ)Lp1()(ωp1()))1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθkZ(jk+2fjLp1()(ωp1())(jk)m2αj2(α+nδ1)(kj))r(1+δ)}1r(1+δ).

    Remark that α+nδ1>0, thus we consider two cases 1<r(1+δ)< and 0<r(1+δ)1. For the case 1<r(1+δ)<, by applying Hölder inequality, we have

    J3bmBMO(Rn)×supδ>0supLZ2Lλ{δθkZ(jk+2fjLp1()(ωp1())(jk)m2αj2(α+nδ1)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=(jk+22αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(jk)mr(1+δ)2(nδ1+α)(kj)r(1+δ)2)×(jk+22(nδ1+α)(kj)(r(1+δ))2)r(1+δ)(r(1+δ))}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=jk+22αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(jk)mr(1+δ)2(nδ1+α)(kj)r(1+δ)2}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())kj2(jk)mr(1+δ)2(nδ1+α)(kj)r(1+δ)2}1r(1+δ)bmBMO(Rn)supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())}1r(1+δ)bmBMO(Rn)fM˙Kα,r),θλ,p1()(ωp1()).

    For 0<r(1+δ)1, we have

    J3bmBMO(Rn)×supδ>0supLZ2Lλ{δθkZ(jk+2fjLp1()(ωp1())(jk)m2αj2(α+nδ1)(kj))r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθk=jk+22αjr(1+δ)fjr(1+δ)Lp1()(ωp1())(jk)mr(1+δ)2(nδ1+α)(kj)r(1+δ)}1r(1+δ)bmBMO(Rn)×supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())kj2(jk)mr(1+δ)2(nδ1+α)(kj)r(1+δ)}1r(1+δ)bmBMO(Rn)supδ>0supLZ2Lλ{δθj=2αjr(1+δ)fjr(1+δ)Lp1()(ωp1())}1r(1+δ)bmBMO(Rn)fM˙Kα,r),θλ,p1()(ωp1()).

    Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.2.

    Remark 3.3 When λ=0 and m=0, Theorem 3.1 holds on weighted variable-exponent Herz spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0<λ<n and m=1, Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m=0, Theorem 3.2 holds on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32] (see Theorem 2).

    In this section, under some assumed conditions, we first establish the boundedness of the morder multilinear fractional Hardy operator Hβ,m on weighted variable exponent Herz-Morrey spaces M˙Kα,λq,p()(ω). Then, we establish the boundedness of the adjoint operator of the morder multilinear fractional Hardy operator Hβ,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p()(ω). As a corollary of the above two results, we also obtain the corresponding result for multilinear Hardy operator Hm and its adjoint operator Hm.

    Theorem 4.1 Let pi()P(Rn)Clog(Rn)(i=1,2,,m,mZ+), p() is defined as follows:

    mi=11pi(x)1p(x)=βn.

    Let 0<β<mnmax1im(pi)+, 0<qi<, λi>0, 1q=mi=11qiβn, λ=mi=1λi, α=mi=1αi, ωAp(), ωiApi(), ω=mi=1ωi, αi<λi+nδi2, where δi2(0,1) are the constants in (2.18) for exponents pi() and weights ωpi()i, then

    Hβ,m(f)M˙Kα,λq,p()(ωp())Cmi=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all mZ+(m1). When m=2, then we have

    Hβ,2(f)(x)=1|x|2nβ|t1|<|x||t2|<|x|f1(t1)f2(t2)dt1dt2.

    For arbitrary fiM˙Kαi,λiqi,pi()(ωpi()i)(i=1,2), let fki:=fiχki=fiχCki, then

    fi(x)=ki=fi(x)χki(x)=ki=fki(x).

    By virtue of the definition of Hβ,2 and generalized Hölder inequality (2.13), we have

    |Hβ,2(f)(x)χk(x)|1|x|2nβ|t1|<|x||t2|<|x||f1(t1)f2(t2)|dt1dt2χk(x)2k(β2n)BkBk|f1(t1)f2(t2)|dt1dt2χk(x)2k(β2n)kk1=kk2=Ck1Ck2|f1(t1)f2(t2)|dt1dt2χk(x)2k(β2n)kk1=kk2=(Ck1|f1(t1)|dt1)(Ck2|f2(t2)|dt2)χk(x)2k(β2n)kk1=kk2=(fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2)))χk(x). (4.1)

    Note that if u(),p1(),p2()P(Rn) such that 1u(x)=1p1(x)+1p2(x) for xRn, and ωAu() with ωiApi(), ω=2i=1ωi, by (2.19) of Lemma 2.10, we have

    fgLu()(ωu())=fgωLu()(Rn)=fω1gω2Lp()(Rn)fω1Lp1()(Rn)gω2Lp2()(Rn)=fLp1()(ωp1()1)gLp2()(ωp2()2). (4.2)

    By virtue of (2.16) of Lemma 2.6, we have

    χkXχBkX(|Ck||Bk|)δ=CχkXCχBkX. (4.3)

    Let 1u(x)=1p1(x)+1p2(x), then by the condition of Theorem 4.1, it implies that βn=1u(x)1p(x). Note that χBkC2kβIβ(χBk)(x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have

    χkLp()(ωp())χBkLp()(ωp())2kβIβ(χBk)Lp()(ωp())2kβχBkLu()(ωu())2kβχBkLp1()(ωp1()1)χBkLp2()(ωp2()2)2k(2nβ)χBk1(Lp1()(ωp1()1))χBk1(Lp2()(ωp2()2))2k(2nβ)χk1(Lp1()(ωp1()1))χk1(Lp2()(ωp2()2)) (4.4)

    Remark that k1k,k2k. By applying (2.18) and (4.4), we have

    2k(β2n)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))χkLp()(ωp())χk1(Lp1()(ωp1()1))χk(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))χk(Lp2()(ωp2()2))2(k1k)nδ122(k2k)nδ22. (4.5)

    Thus, by taking the Lp()(ωp())norm for (4.1), and by virtue of (4.5), we have

    Hβ,2(f)χkLp()(ωp())2k(β2n)kk1=kk2=(fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2)))χkLp()(ωp())(kk1=2(k1k)nδ12fk1Lp1()(ωp1()1))(kk2=2(k2k)nδ22fk2Lp2()(ωp2()2))2i=1(kki=2(kik)nδi2fkiLpi()(ωpi()i)). (4.6)

    Let 0<γ1, then by the Jensen inequality it follows that

    (j=|aj|)γj=|aj|γ, (4.7)

    Let 1v=1q1+1q2, then 1q=1vβn, therefore q>v. By applying (4.6), (4.7), and Hölder inequality in sequential form, we have

    Hβ,2(f)M˙Kα,λq,p()(ωp())=supLZ2Lλ{Lk=2kαqHβ,2(f)χkqLp()(ωp())}1qsupLZ2Lλ{Lk=2kαq2i=1(kki=2(kik)nδi2fkiLpi()(ωpi()i))q}1qsupLZ2Lλ{Lk=2i=1(kki=2kαi+(kik)nδi2fkiLpi()(ωpi()i))q}1qsupLZ2Lλ{Lk=2i=1(kki=2kαi+(kik)nδi2fkiLpi()(ωpi()i))v}1v2i=1supLZ2Lλi{Lk=(kki=2kαi+(kik)nδi2fkiLpi()(ωpi()i))qi}1qi. (4.8)

    on the other hand, note the following fact:

    fkiLpi()(ωpi()i)=2kiαi(2kiαiqifiχkiqiLpi()(ωpi()i))1qi2kiαi(kiji=2jiαiqifiχjiqiLpi()(ωpi()i))1qi=2ki(λiαi){2kiλi(kiji=2jiαiqifiχjiqiLpi()(ωpi()i))1qi}2ki(λiαi)fiM˙Kαi,λiqi,pi()(ωpi()i). (4.9)

    Remark that αi<λi+nδi2. By applying (4.7), (4.8), and (4.9), we have

    Hβ,2(f)M˙Kα,λq,p()(ωp())2i=1supLZ2Lλi{Lk=(kki=2kαi+(kik)nδi2fkiLpi()(ωpi()i))qi}1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i)supLZ2Lλi{Lk=2kλiqi(kki=2(kik)(λiαi+nδi2))qi}1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i)supLZ2Lλi(Lk=2kλiqi)1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    This finishes the proof of Theorem 4.1.

    Theorem 4.2 Let pi()P(Rn)Clog(Rn)(i=1,2,,m,mZ+), p() is defined as follows:

    mi=11pi(x)1p(x)=βn.

    Let 0<β<mnmax1im(pi)+, 0<qi<, λi>0, 1q=mi=11qiβn, λ=mi=1λi, α=mi=1αi, ωAp(), ωiApi(), ω=mi=1ωi, αi>λi+βmnδi1, where δi1(0,1) are the constants in (2.17) for exponents pi() and weights ωpi()i, then

    Hβ,m(f)M˙Kα,λq,p()(ωp())Cmi=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all mZ+(m1). When m=2, then we have

    Hβ,2(f)(x)=|t1||x||t2||x|f1(t1)f2(t2)|(t1,t2)|2nβdt1dt2.

    For arbitrary fiM˙Kαi,λiqi,pi()(ωpi()i)(i=1,2), let fki:=fiχki=fiχCki, then

    fi(x)=ki=fi(x)χki(x)=ki=fki(x).

    Note that |t1|nβ2|t2|nβ2<|(t1,t2)|2nβ (see [37] p.11). By virtue of the definition of Hβ,2 and generalized Hölder inequality, we have

    |Hβ,2(f)(x)χk(x)||t1||x||t2||x||f1(t1)f2(t2)||(t1,t2)|2nβdt1dt2χk(x)k1=kk2=kCk1Ck2|f1(t1)f2(t2)||(t1,t2)|2nβdt1dt2χk(x)k1=kk2=k2(k1+k2)(β2n)(Ck1|f1(t1)|dt1)(Ck2|f2(t2)|dt2)χk(x)k1=kk2=k2(k1+k2)(β2n)(fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2)))χk(x). (4.10)

    Remark that k1k,k2k. By applying (2.14), (2.17), and (4.4), we have

    2(k1+k2)(β2n)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))χkLp()(ωp())2(k1+k2)(β2n)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))2k(2nβ)χk1(Lp1()(ωp1()1))χk1(Lp2()(ωp2()2))2(k1+k2)(β2n)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))2kβχkLp1()(ωp1()1)χkLp2()(ωp2()2)2(k1+k2)(β2n)2nk1χk11Lp1()(ωp1()1)2nk2χk21Lp2()(ωp2()2)2kβχkLp1()(ωp1()1)χkLp2()(ωp2()2)=2(k1+k22k)β2χk11Lp1()(ωp1()1)χk21Lp2()(ωp2()2)χkLp1()(ωp1()1)χkLp2()(ωp2()2)=2(k1+k22k)β2χkLp1()(ωp1()1)χk1Lp1()(ωp1()1)χkLp2()(ωp2()2)χk2Lp2()(ωp2()2)2(k1+k22k)β22(kk1)nδ112(kk2)nδ21=2(k1k)(β2nδ11)2(k1k)(β2nδ21). (4.11)

    Thus, by taking the Lp()(ωp())norm for (4.10), and by virtue of (4.11), we have

    Hβ,2(f)χkLp()(ωp())k1=kk2=k2(k1+k2)(β2n)(fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2)))χkLp()(ωp())(k1=k2(k1k)(β2nδ11)fk1Lp1()(ωp1()1))(k2=k2(k2k)(β2nδ21)fk2Lp2()(ωp2()2))2i=1(ki=k2(kik)(β2nδi1)fkiLpi()(ωpi()i)). (4.12)

    Let 1v=1q1+1q2, then 1q=1vβn; therefore, q>v. By applying (4.7), (4.12), and Hölder inequality in sequential form, we have

    Hβ,2(f)M˙Kα,λq,p()(ωp())=supLZ2Lλ{Lk=2kαqHβ,2(f)χkqLp()(ωp())}1qsupLZ2Lλ{Lk=2kαq2i=1(ki=k2(kik)(β2nδi1)fkiLpi()(ωpi()i))q}1qsupLZ2Lλ{Lk=2i=1(ki=k2kαi+(kik)(β2nδi1)fkiLpi()(ωpi()i))q}1qsupLZ2Lλ{Lk=2i=1(ki=k2kαi+(kik)(β2nδi1)fkiLpi()(ωpi()i))v}1v2i=1supLZ2Lλi{Lk=(ki=k2kαi+(kik)(β2nδi1)fkiLpi()(ωpi()i))qi}1qi. (4.13)

    Remark that αi>λi+β2nδi1. By applying (4.7), (4.9), and (4.13), we have

    Hβ,2(f)M˙Kα,λq,p()(ωp())2i=1supLZ2Lλi{Lk=(ki=k2kαi+(kik)(β2nδi1)fkiLpi()(ωpi()i))qi}1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i)supLZ2Lλi{Lk=2kλiqi(ki=k2(kik)(λi+β2αinδi1))qi}1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i)supLZ2Lλi(Lk=2kλiqi)1qi2i=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    This finishes the proof of Theorem 4.2.

    Theorem 4.3 Let pi()P(Rn)Clog(Rn)(i=1,2,,m,mZ+), p() is defined as follows:

    mi=11pi(x)=1p(x).

    Let 0<qi<, λi>0, 1q=mi=11qi, λ=mi=1λi, ωAp(), ωiApi(), ω=mi=1ωi, δi1,δi2(0,1) are the constants in Lemma 2.7 for exponents pi() and weights ωpi()i, then

    (i) When αi<λi+nδi2, we have

    Hm(f)M˙Kα,λq,p()(ωp())Cmi=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    (ii) When αi>λinδi1, we have

    Hm(f)M˙Kα,λq,p()(ωp())Cmi=1fiM˙Kαi,λiqi,pi()(ωpi()i).

    Proof(i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all mZ+(m1). When m=2, similar to the estimation of (4.1), by virtue of the definition of H2 and generalized Hölder inequality, we have

    |H2(f)(x)χk(x)|22knkk1=kk2=(fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2)))χk(x). (4.14)

    By taking the Lp()(ωp())norm for (4.14) and applying (2.18) and (4.4), we have

    H2(f)χkLp()(ωp())22knkk1=kk2={fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))}χkLp()(ωp())22knkk1=kk2={fk1Lp1()(ωp1()1)fk2Lp2()(ωp2()2)χk1(Lp1()(ωp1()1))χk2(Lp2()(ωp2()2))}2k(2nβ)χk1(Lp1()(ωp1()1))χk1(Lp2()(ωp2()2))2i=1{kki=fkiLpi()(ωpi()i)χki(Lpi()(ωpi()i))χk1(Lpi()(ωpi()i))}=2i=1{kki=fkiLpi()(ωpi()i)χki(Lpi()(ωpi()i))χk(Lpi()(ωpi()))}2i=1{kki=2(kik)nδi2fkiLpi()(ωpi()i)}. (4.15)

    Next, the required results are obtained in a way similar to the proof of Theorem 4.1.

    We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case . Actually, a similar procedure works for all . When , similar to the estimation of (4.10), by virtue of the definition of and generalized Hölder inequality, we have

    (4.16)

    By taking the norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have

    (4.17)

    Similar to the estimation of (4.13). By applying (4.7), (4.17), and Hölder inequality in sequential form, we have

    (4.18)

    Remark that . By applying (4.7), (4.9), and (4.18), we have

    This finishes the proof idea of Theorem 4.3.

    Because of , let from Theorem 4.1 and Theorem 4.2. Then we can obtain the boundedness of the order multilinear fractional Hardy operator and its adjoint operator from the weighted variable-exponent Herz product space

    to the homogeneous weighted variable-exponent Herz space . Obviously, from Theorem 4.3, the order multilinear Hardy operator and its adjoint operator have similar results.

    This paper first considered the boundedness of higher-order commutators generated by the fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey spaces and grand weighted variable-exponent Herz-Morrey spaces , and generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the boundedness of the order multilinear fractional Hardy operator and its adjoint operator on weighted variable-exponent Herz-Morrey spaces , and generalized some relevant results of Wu [12].

    Ming Liu and Binhua Feng wrote the main manuscript text and approved the final manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We wish to thank the handing editor and the referees for their valuable comments and suggestions. B. Feng is supported by the National Natural Science Foundation of China (No.12461035,12261079), the Natural Science Foundation of Gansu Province (No.24JRRA242).

    The authors declare there is no conflict of interest.



    [1] O. Kováčik, J. Rákosník, On spaces and , Czech. Math. J., 41 (1991), 582–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [2] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [3] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces and , Math. Nachr., 268 (2004), 31–43. https://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157
    [4] A. Nekvinda, Hardy-Littlewood maximal operator on , Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
    [5] H. Wang, Z. Fu, Z. Liu, Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci. A, 32 (2012), 1092–1101.
    [6] M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
    [7] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [8] L. Wang, M. Qu, L. Shu, Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent, J. Funct. Space. Appl., 2013 (2013), 1–7. https://doi.org/10.1155/2013/257537 doi: 10.1155/2013/257537
    [9] S. Lu, L. Xu, Boundedness of rough singular integral operators on the Homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
    [10] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253.
    [11] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [12] J. Wu, P. Zhang, Boundedness of Multilinear Fractional Hardy Operators on the Product of Herz-Morrey Spaces with Variable Exponent, J. Coll. Univ., 2 (2013), 154–164.
    [13] J. Wu, Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent, Kyoto J. Math., 54 (2014), 483–495. https://doi.org/10.1215/21562261-2693397 doi: 10.1215/21562261-2693397
    [14] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 223–238. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [15] D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
    [16] M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J.Anal. Appl., 11 (2013), 27–41.
    [17] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
    [18] M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
    [19] M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.7153/jmi-2017-11-62 doi: 10.7153/jmi-2017-11-62
    [20] M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
    [21] M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 1–12. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
    [22] A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the Fractional Hardy Operator on Weighted Variable Herz-Morrey Spaces, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [23] S. Wang, J. Xu, Commutators of bilinear hardy operators on weighted Herz-Morrey spaces with variable exponent, Acta Math. Sin., 64 (2021), 123–138.
    [24] S. Wang, J. Xu, Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponent, Open Math., 19 (2021), 412–426. https://doi.org/10.1515/math-2021-0024 doi: 10.1515/math-2021-0024
    [25] D. Xiao, L. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Math. Res. Commun., 34 (2018), 371–382.
    [26] H. Zhao, Z. Liu, Boundedness of commutators of fractional integral operators on variable weighted Herz-Morrey spaces, Adv. Math., 51 (2022), 103–116.
    [27] H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [28] F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
    [29] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [30] M. Chirst, L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
    [31] Z. Fu, Z. Liu, S. Lu, H. Wong, Characterization for commutators of dimensional fractional Hardy operators, Sci. China, Ser. A: Math., 50 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
    [32] B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz-Morrey Spaces with Variable Exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [33] B. Sultan, M. Sultan, M. Mehmood, M. Azmi, F. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [34] C. Bennett, R. C. Sharpley, Interpolation of Operators, Springer-Verlag, New York, 1988.
    [35] A. L. Bernardis, E. D. Dalmasso, G. G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces, Ann. Acad. Sci. Fenn. Math., 39 (2014), 23–50. https://doi.org/10.5186/aasfm.2014.3904 doi: 10.5186/aasfm.2014.3904
    [36] A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
    [37] C. Kening, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1991), 1–15. http://dx.doi.org/10.4310/mrl.1999.v6.n1.a1 doi: 10.4310/mrl.1999.v6.n1.a1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(174) PDF downloads(21) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog