In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω). We also obtained the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω).
Citation: Ming Liu, Binhua Feng. Grand weighted variable Herz-Morrey spaces estimate for some operators[J]. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012
[1] | Heng Yang, Jiang Zhou . Some estimates of multilinear operators on tent spaces. Communications in Analysis and Mechanics, 2024, 16(4): 700-716. doi: 10.3934/cam.2024031 |
[2] | Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu . Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020 |
[3] | Jizheng Huang, Shuangshuang Ying . Hardy-Sobolev spaces of higher order associated to Hermite operator. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037 |
[4] | İrem Akbulut Arık, Seda İğret Araz . Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos. Communications in Analysis and Mechanics, 2024, 16(1): 169-192. doi: 10.3934/cam.2024008 |
[5] | Caojie Li, Haixiang Zhang, Xuehua Yang . A new $ \alpha $-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation. Communications in Analysis and Mechanics, 2024, 16(1): 147-168. doi: 10.3934/cam.2024007 |
[6] | Yining Yang, Cao Wen, Yang Liu, Hong Li, Jinfeng Wang . Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model. Communications in Analysis and Mechanics, 2024, 16(1): 24-52. doi: 10.3934/cam.2024002 |
[7] | Lovelesh Sharma . Brezis Nirenberg type results for local non-local problems under mixed boundary conditions. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038 |
[8] | Katica R. (Stevanović) Hedrih, Gradimir V. Milovanović . Elements of mathematical phenomenology and analogies of electrical and mechanical oscillators of the fractional type with finite number of degrees of freedom of oscillations: linear and nonlinear modes. Communications in Analysis and Mechanics, 2024, 16(4): 738-785. doi: 10.3934/cam.2024033 |
[9] | Farrukh Dekhkonov . On a boundary control problem for a pseudo-parabolic equation. Communications in Analysis and Mechanics, 2023, 15(2): 289-299. doi: 10.3934/cam.2023015 |
[10] | Xiaotian Hao, Lingzhong Zeng . Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009 |
In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω). We also obtained the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω).
Since Kováčik and Rákosník established the theory of variable-exponent function spaces in [1], the subject has attracted extensive attention by many scholars. The theory of the variable-exponent Lebesgue spaces Lp(⋅)(Rn) has been extensively investigated, see [2,3,4,5]. Izuki first introduced the variable-exponent Herz spaces ˙Kα,qp(⋅)(Rn) [6] and considered the boundedness of commutators of fractional integrals in these spaces; for more research about the boundedness of operators in the above spaces, see [7,8]. Subsequently, Izuki generalized the Herz-Morrey spaces M˙Kα,λq,p(Rn) in [9] into the variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(Rn) [10], for more research about M˙Kα,λq,p(⋅)(Rn), see [11,12,13]. On the other hand, the Muckenhoupt weight theory is a powerful tool in harmonic analysis, [14,15,16,17]. By using the basics on Banach function spaces and the variable-exponent Muckenhoupt theory, Izuki and Noi developed the theory of weighted variable-exponent Herz spaces ˙Kα,qp(⋅)(ω) [18,19,20]. After that, the research for the boundedness of some operators, such as the commutator of bilinear Hardy operators, commutators of fractional integral operators, and fractional Hardy operators achieved good results on weighted variable Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω); for more details, see [21,22,23,24,25,26]. Consequently, many scholars have contributed to the study of function spaces and related differential equations, [27,28].
Motivated by the mentioned works, the main goal of this paper is to establish the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) and to establish boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). The paper is organized as follows: In Section 2, we collect some preliminary definitions and lemmas. Our main results and their proof will be given in Section 3 and Section 4.
Now, let us recall some notations that will be used in this paper.
In [29], Hardy defined the classical Hardy operator as follows:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [30], Christ and Grafakos defined the n−dimensional Hardy operator as follows:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of H(f)(x) in Lp(Rn), obtaining the best constants.
In [31], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operator and its adjoint operator as follows:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let m and n be positive integers with m≥1, n≥2, and 0≤β<mn, and let L1loc(Rn) be the collection of all locally integrable functions on Rn. Wu and Zhang in [12] defined the m−order multilinear fractional Hardy operator and its adjoint operator as follows:
Hβ,m(→f)(x):=1|x|mn−β∫|t1|<|x|∫|t2|<|x|⋯∫|tm|<|x|f1(t1)f2(t2)⋯fm(tm)dt1dt2⋯dtm, | (1.4) |
H∗β,m(→f)(x):=∫|t1|≥|x|∫|t2|≥|x|⋯∫|tm|≥|x|f1(t1)f2(t2)⋯fm(tm)|(t1,t2,⋯,tm)|mn−βdt1dt2⋯dtm, | (1.5) |
where x∈Rn∖{0}, |(t1,t2,⋯tm)|=√t21+t22+⋯+t2m. →f=(f1,f2,⋯,fm) is a vector-valued function, where fi(i=1,2,⋯,m)∈L1loc(Rn).
Obviously, when m=1, Hβ,m=Hβ, H∗β,m=H∗β. When β=0, Hm indicates a multilinear operator H0,m corresponding to the Hardy operator H, and H∗m indicates a multilinear operator H∗0,m corresponding to the adjoint operator H∗:=H∗0.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn, and given a function b∈L1loc(Rn), the bounded mean oscillation (BMO) space and the BMO norm are defined, respectively, as follows:
BMO(Rn):={b∈L1loc(Rn):‖b‖BMO(Rn)<∞}, | (1.6) |
‖b‖BMO(Rn):=supB:ball1|B|∫B|b(x)−bB|dx. | (1.7) |
where the supremum is taken over all the balls B∈Rn and bB=|B|−1∫Bb(y)dy.
Let b∈BMO(Rn), 0<β<n, and the fractional integral operator Iβ and the commutator of fractional integral operator [b,Iβ]f(x) are defined, respectively, as follows:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.8) |
[b,Iβ]f(x):=b(x)Iβ(f)(x)−Iβ(bf)(x),x∈Rn. | (1.9) |
Let b∈BMO(Rn), 0<β<n, and m∈N. The higher-order commutator of fractional integrals operator Imβ,b is defined as follows:
Imβ,bf(x):=∫Rn[b(x)−b(y)]m|x−y|n−βf(y)dy,x∈Rn. | (1.10) |
Obviously, when m=1, I1β,b(f)(x)=[b,Iβ]f(x); and when m=0, I0β,b(f)(x)=Iβ(f)(x).
For 0≤β<n and f∈L1loc(Rn), the fractional maximal operator Mβ is defined as follows:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn. | (1.11) |
Where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Throughout this paper, we use the following symbols and notations:
1. For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
2. For any measurable set E⊂Rn, |E| denotes the Lebesgue measure and χE means the characteristic function.
3. Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
4. We define a family {Ck}∞k=−∞ by Ck:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ck, namely, χk:=χCk.
5. For any index 1<p(x)<∞, p′(x) is denoted by its conjugate index, namely, 1p(x)+1p′(x)=1.
6. If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲B. Additionally A≈B means that both A≲B and B≲A hold.
In this section, we first recall some definitions related to the variable Lebesgue space and variable Muckenhoupt weight theory. On this basis, we review some definitions of weighted variable-exponent Lebesgue spaces, weighted variable-exponent Herz-Morrey spaces, and grand weighted variable-exponent Herz-Morrey spaces. In addition, we recall some definitions of Banach function space and weighted Banach function space. Then, we present several relevant lemmas that will aid in the proof of our main boundedness result.
Definition 2.1 (see [2]) Let p(⋅):Rn→[1,∞) be a real-valued measurable function.
(i) The Lebesgue space with variable-exponent Lp(⋅)(Rn) is defined by
Lp(⋅)(Rn):={fisameasurablefunction:∫Rn(|f(x)|λ)p(x)dx<∞forsomeconstantλ>0} |
(ii) The spaces with variable-exponent Lp(⋅)loc(E) are defined by
Lp(⋅)loc(Rn):={fisameasurablefunction:f∈Lp(⋅)(K)forallcompactsubsetsK⊂Rn} |
The variable-exponent Lebesgue space Lp(⋅)(Rn) is a Banach space with the norm defined by
‖f‖Lp(⋅)(Rn):=inf{λ>0:∫Rn(|f(x)|λ)p(x)dx≤1}. |
Definition 2.2 (see [2]) (i) The set P0(Rn) consists of all measurable functions p(⋅):Rn→(0,∞) satisfying
0<p−≤p(x)≤p+<∞, | (2.1) |
where
p−:=essinf{p(x):x∈Rn}>0,p+:=esssup{p(x):x∈Rn}<∞. | (2.2) |
(ii) The set P(Rn) consists of all measurable functions p(⋅):Rn→[1,∞) satisfying
1<p−≤p(x)≤p+<∞, | (2.3) |
where
p−:=essinf{p(x):x∈Rn}>1,p+:=esssup{p(x):x∈Rn}<∞. | (2.4) |
(iii) The set B(Rn) consists of all measurable functions p(⋅)∈P(Rn) satisfying that the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.3 (see [2]) Suppose that p(⋅) is a real-valued function on Rn. We say that
(i)Clogloc(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying
|p(x)−p(y)|≤−Clog(|x−y|),|x−y|<12,x,y∈Rn. | (2.5) |
(ii)Clog0(Rn) is the set of all local log-Hölder continuous functions p(⋅) satisfying at origin
|p(x)−p0|≤Clog(e+1|x|),x∈Rn. | (2.6) |
(iii)Clog∞(Rn) is the set of all local log-Hölder continuous functions satisfying at infinity
|p(x)−p∞|≤Clog(e+|x|),x∈Rn. | (2.7) |
(iv)Clog(Rn)=Clog∞(Rn)∩Clogloc(Rn) denotes the set of all global log-Hölder continuous functions p(⋅).
In [2], the author proved that if p(⋅)∈Clog(Rn), then p′(⋅)∈Clog(Rn), and also proved that if p(⋅)∈P(Rn)∩Clog(Rn), then the Hardy-Littlewood maximal operator M is bounded on Lp(⋅)(Rn).
Definition 2.4 (see [17]) (i) Given a non-negative, measure function ω, for 1<p<∞, ω∈Ap if
[ω]Ap:=supB(1|B|∫Bω(x)dx)(1|B|∫Bω(x)1−p′dx)p−1<∞, | (2.8) |
where the supremum is taken over all balls B⊂Rn.
(ii) A weight ω is called a Muckenhoupt weight A1 if
[ω]A1:=supB1|B|∫Bω(x)dxessinf{ω(x):x∈B}<∞. | (2.9) |
(iii) A weight ω is called a Muckenhoupt weight A∞ if
A∞:=⋃1<r<∞Ar. | (2.10) |
Note that these weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, ω∈Ap, 1<p<∞, if and only if M:Lp(ω)→Lp(ω).
Definition 2.5 (see [18]) Suppose that p(⋅)∈P(Rn), a weight ω is in the class Ap(⋅) if
supB:ball|B|−1‖ω1p(⋅)χB‖Lp(⋅)‖ω−1p(⋅)χB‖Lp′(⋅)<∞. | (2.11) |
Obviously, if p(⋅)=p,1<p<∞, then the above definition reduces to the classical Muckenhoupt Ap class. In [18], suppose p(⋅),q(⋅)∈P(Rn) and p(⋅)≤q(⋅), then A1⊂Ap(⋅)⊂Aq(⋅).
Definition 2.6 (see [18]) Let 0<β<n and p1(⋅),p2(⋅)∈P(Rn) such that 1p2(x)=1p1(x)−βn. A weighted ω is said to be an A(p1(⋅),p2(⋅)) weight, then for all balls B⊂Rn satisfying
‖ωχB‖Lp2(⋅)‖ω−1χB‖Lp′1(⋅)≤C|B|1−βn. | (2.12) |
In [14], suppose p1(⋅),p2(⋅)∈P(Rn) and β∈(0,n) such that 1p2(x)=1p1(x)−βn. Then ω∈A(p1(⋅),p2(⋅)) if and only if ωp2(⋅)∈A1+p2(⋅)p′1(⋅).
Definition 2.7 (see [25]) Let p(⋅)∈P(Rn) and ω∈Ap(⋅), the weighted variable-exponent Lebesgue space Lp(⋅)(ω) denotes the set of all complex-valued measurable functions f satisfying
Lp(⋅)(ω)={f:fω1p(⋅)∈Lp(⋅)(Rn)}. |
This is a Banach space equipped with the norm:
‖f‖Lp(⋅)(ω)=‖fω1p(⋅)‖Lp(⋅)(Rn). |
Definition 2.8 (see [25]) Let α∈R,0<q<∞, p(⋅)∈P(Rn) and 0≤λ<∞. The homogeneous weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω) are defined by
M˙Kα,λq,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,λq,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,λq,p(⋅)(ω)=supL∈Z2−Lλ{L∑k=−∞2kαq‖fχk‖qLp(⋅)(ω)}1q. |
Nonhomogeneous weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [25]. When λ=0, the weighted variable-exponent Herz-Morrey spaces become weighted variable-exponent Herz spaces, see [18].
Definition 2.9 (see [32]) Let p(⋅)∈P(Rn),α∈R,θ>0,0<r<∞,0≤λ<∞. The homogeneous grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω) are the collection of Lp(⋅)loc(Rn∖{0},ω) such that
M˙Kα,r),θλ,p(⋅)(ω)={f∈Lp(⋅)loc(Rn∖{0},ω):‖f‖M˙Kα,r),θλ,p(⋅)(ω)<∞}, |
where
‖f‖M˙Kα,r),θλ,p(⋅)(ω)=supδ>0supL∈Z2−Lλ{δθ∑k∈Z2kαr(1+δ)‖fχk‖r(1+δ)Lp(⋅)(ω)}1r(1+δ). |
Nonhomogeneous grand weighted variable-exponent Herz-Morrey spaces can be defined in a similar way. For more details, see [32]. When λ=0, the grand weighted variable-exponent Herz-Morrey spaces become grand weighted variable-exponent Herz spaces, see [33].
Definition 2.10 (see [18]) Let M be the set of all complex-valued measurable functions defined on Rn, and X a linear subspace of M.
1. The space X is said to be a Banach function space if there exists a function ‖⋅‖X:M→[0,∞] satisfying the following properties: Let f,g,fj∈M(j=1,2,…), then
(a) f∈X holds if and only if ‖f‖X<∞.
(b) Norm property:
i. Positivity: ‖f‖X≥0.
ii. Strict positivity: ‖f‖X=0 holds if and only if f(x)=0 for almost every x∈Rn.
iii. Homogeneity: ‖λf‖X=|λ|⋅‖f‖X holds for all λ∈C.
iv. Triangle inequality: ‖f+g‖X≤‖f‖X+‖g‖X.
(c) Symmetry: ‖f‖X=‖|f|‖X.
(d) Lattice property: If 0≤g(x)≤f(x) for almost every x∈Rn, then ‖g‖X≤‖f‖X.
(e) Fatou property: If 0≤fj(x)≤fj+1(x) for all j and fj(x)→f(x) as j→∞ for almost every x∈Rn, then limj→∞‖fj‖X=‖f‖X.
(f) For every measurable set F⊂Rn such that |F|<∞, ‖χF‖X is finite. Additionally, there exists a constant CF>0 depending only on F so that ∫F|h(x)|dx≤CF‖h‖X holds for all h∈X.
2. Suppose that X is a Banach function space equipped with a norm ‖⋅‖X. The associated space X′ is defined by
X′={f∈M:‖f‖X′<∞}, |
where
‖f‖X′=supg{|∫Rnf(x)g(x)dx|:‖g‖X≤1}. |
Definition 2.11 Let(see [18]) Let X be a Banach function spaces. The set Xloc(Rn) consists of all measurable functions f such that fχE∈X for any compact set E with |E|<∞. Given a function W such that 0<W(x)<∞ for almost every x∈(Rn), W∈Xloc(Rn) and W−1∈(X′)loc(Rn), the weighted Banach function space is defined by
X(Rn,W):={f∈M:fW∈X}. |
Lemma 2.1 (see [34]) Let X be a Banach function space, then we have
(i) The associated space X′ is also a Banach function spaces.
(ii)‖⋅‖(X′)′ and ‖⋅‖X are equivalent.
(iii) If g∈X and f∈X′, then
∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′, | (2.13) |
is the generalized Hölder inequality.
Lemma 2.2 (see [34]) If X is a Banach function space, then we have, for all balls B,
1≤|B|−1‖χB‖X‖χB‖X′. | (2.14) |
Lemma 2.3 (see [16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X, that is,
‖χ{Mf>λ}‖X≲λ−1‖f‖X |
is true for all f∈X and all λ>0. Then, we have
supB:ball1|B|‖χB‖X‖χB‖X′<∞. | (2.15) |
Lemma 2.4 (see [18]) (i) The weighted Banach function space X(Rn,W) is a Banach function space equipped by the norm
‖f‖X(Rn,W):=‖fW‖X. |
(ii) The associate space of X(Rn,W) is a Banach function space and equals X′(Rn,W−1).
Remark 2.5 (see [21]) Let p(⋅)∈P(Rn) and by comparing the Lp(⋅)(ωp(⋅)) and Lp′(⋅)(ω−p′(⋅)) with the definition of X(Rn,W), we have
1. If we take W=ω and X=Lp(⋅)(Rn), then we get Lp(⋅)(Rn,ω)=Lp(⋅)(ωp(⋅)).
2. If we consider W=ω−1 and X=Lp′(⋅)(Rn), then we get Lp′(⋅)(Rn,ω−1)=Lp′(⋅)(ω−p′(⋅)). By virtue of Lemma 2.4, we get
(Lp(⋅)(Rn,ω))′=(Lp(⋅)(ωp(⋅)))′=Lp′(⋅)(ω−p′(⋅))=Lp′(⋅)(Rn,ω−1). |
Lemma 2.6 (see [18]) Let X be a Banach function space. Suppose that M is bounded on the associate space X′. Then there exists a constant 0<δ<1 such that for all balls B⊂Rn and all measurable sets E⊂B,
‖χE‖X‖χB‖X≲(|E||B|)δ. | (2.16) |
The paper [1] shows that Lp(⋅)(Rn) is a Banach function space and the associated space Lp′(⋅)(Rn) has equivalent norm.
Lemma 2.7 (see [20]) Let p(⋅)∈P(Rn)∩Clog(Rn) and ω∈Ap(⋅), then there are constants δ1,δ2∈(0,1) and C>0 such that for all k,l∈Z with k≤l,
‖χk‖Lp(⋅)(ωp(⋅))‖χl‖Lp(⋅)(ωp(⋅))=‖χk‖(Lp′(⋅)(ω−p′(⋅)))′‖χl‖(Lp′(⋅)(ω−p′(⋅)))′≤C(|Ck||Cl|)δ1, | (2.17) |
and
‖χk‖(Lp(⋅)(ωp(⋅)))′‖χl‖(Lp(⋅)(ωp(⋅)))′≤C(|Ck||Cl|)δ2. | (2.18) |
Lemma 2.8 (see [35] Theorem 3.12) Let p1(⋅)∈P(Rn)∩LH(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then Iβ is bounded from Lp1(⋅)(ωp1(⋅)) to Lp2(⋅)(ωp2(⋅)).
Lemma 2.9 (see [35] Theorem 3.14) Suppose that b∈BMO(Rn) and m∈N. Let p1(⋅)∈P(Rn)∩Clog(Rn) and 0<β<np+1. Define p2(⋅) by 1p1(⋅)−1p2(⋅)=βn. If ω∈A(p1(⋅),p2(⋅)), then
‖Imβ,b(f)‖Lp2(⋅)(ωp2(⋅))≲‖b‖mBMO(Rn)‖f‖Lp1(⋅)(ωp1(⋅)). |
Lemma 2.10 (see [36] Theorem 2.3) Let p(⋅),p1(⋅),p2(⋅)∈P0(Rn) such that 1p(x)=1p1(x)+1p2(x) for x∈Rn. Then, there exists a constant Cp,p1 independent of functions f and g such that
‖fg‖Lp(⋅)≤Cp,p1‖f‖Lp1(⋅)‖g‖Lp2(⋅), | (2.19) |
holds for every f∈Lp1(⋅)(Rn) and g∈Lp2(⋅)(Rn).
Lemma 2.11 (see [23] Corollary 3.11) Let b∈BMO(Rn),m∈N, and k,j∈Z with k>j. Then we have
C−1‖b‖mBMO(Rn)≤supB1‖χB‖Lp(⋅)(ω)‖(b−bB)mχB‖Lp(⋅)(ω)≤C‖b‖mBMO(Rn), | (2.20) |
and
‖(b−bBj)mχBk‖Lp(⋅)(ω)≤C(k−j)m‖b‖mBMO(Rn)‖χBk‖Lp(⋅)(ω). | (2.21) |
In this section, under certain hypothetical conditions, we first establish the boundedness of higher-order commutators Imβ,b generated by the fractional integrals operator with BMO functions on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). Then, we establish the boundedness of Imβ,b on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω).
Theorem 3.1 Suppose that b∈BMO(Rn) and m∈N. Let 0<λ<∞, 0<q1≤q2<∞, p2(⋅)∈P(Rn)∩Clog(Rn), ωp2(⋅)∈A1, δ1,δ2∈(0,1) are the constants appearing in (2.17) and (2.18) respectively. α and β are such that
(i)−nδ1+λ<α<nδ2−β+λ
(ii)0<β<n(δ1+δ2).
Define p1(⋅) by 1p2(⋅)=1p1(⋅)−βn, then Imβ,b are bounded from M˙Kα,λq2,p2(⋅)(ωp2(⋅)) to M˙Kα,λq1,p1(⋅)(ωp1(⋅)).
Proof We prove the homogeneous case while the nonhomogeneous case is similar. For all f∈M˙Kα,λq2,p2(⋅)(ωp2(⋅))(Rn) and ∀b∈BMO(Rn), if we denote fj:=fχj=fχCj for each j∈Z, then f=∑∞j=−∞fj. So we can write
f(x)=∞∑j=−∞f(x)χj(x)=∞∑j=−∞fj(x). |
Because of 0<q1q2≤1, then the Jensen inequality follows that
(∞∑j=−∞|aj|)q1q2≤∞∑j=−∞|aj|q1q2, | (3.1) |
By virtue of (3.1), we obtain
‖Imβ,b(f)‖q1M˙Kα,λq2,p2(⋅)(ωp2(⋅))=supL∈Z2−Lλq1(L∑k=−∞2kαq2‖Imβ,b(f)χk‖q2Lp2(⋅)(ωp2(⋅)))q1q2≲supL∈Z2−Lλq1L∑k=−∞2kαq1‖Imβ,b(f)χk‖q1Lp2(⋅)(ωp2(⋅))≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}+supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}=:(J1+J2+J3). |
First we estimate J1. Note that if x∈Ck, y∈Cj, and j≤k−2, then |x−y|≈|x|≈2k. By Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2k(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2k(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.2) |
By taking the Lp2(⋅)(ωp2(⋅))−norm for (3.2), by Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(k−j)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2k(β−n)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅)). | (3.3) |
By virtue of Lemma 2.6, we have
‖χj‖X‖χBj‖X≤C(|Ck||Bk|)δ=C⟹‖χj‖X≤C‖χBj‖X. | (3.4) |
Note that χBj(x)≲2−jβIβ(χBj) (see [11] p.350), by applying (2.15), (3.4), and Lemma 2.8, we obtain
‖χj‖Lp2(⋅)(ωp2(⋅))≤‖χBj‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖Iβ(χBj)‖Lp2(⋅)(ωp2(⋅))≲2−jβ‖χBj‖Lp1(⋅)(ωp1(⋅))≲2j(n−β)‖χBj‖−1(Lp1(⋅)(ωp1(⋅)))′≲2j(n−β)‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′. | (3.5) |
By virtue of (2.14) and (2.15), combining (2.18) and (3.5), we have
2k(β−n)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′2−kn‖χk‖Lp2(⋅)(ωp2(⋅))≲2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′‖χj‖(Lp2(⋅)(ωp2(⋅)))′‖χk‖(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′≲2kβ2nδ2(j−k)2j(n−β)‖χj‖−1Lp2(⋅)(ωp2(⋅))‖χj‖−1(Lp2(⋅)(ωp2(⋅)))′=2kβ2nδ2(j−k)2−jβ(2−jn‖χj‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp2(⋅)(ωp2(⋅)))′)−1≲2(β−nδ2)(k−j). | (3.6) |
Hence by virtue of (3.3) and (3.6), we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2(β−nδ2)(k−j)(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.7) |
On the other hand, note the following fact:
‖fj‖Lp1(⋅)(ωp1(⋅))=2−jα(2jαq1‖fχj‖q1Lp1(⋅)(ωp1(⋅)))1q1≤2−jα(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1=2j(λ−α){2−jλ(j∑i=−∞2iαq1‖fχi‖q1Lp1(⋅)(ωp1(⋅)))1q1}≲2j(λ−α)‖f‖M˙Kα,λq1,p1(⋅)(ωp1(⋅)). | (3.8) |
Thus, by virtue of (3.7) and (3.8), remark that α<nδ2−β+λ,
J1=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(k−2∑j=−∞(k−j)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2(β−nδ2)(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(k−2∑j=−∞(k−j)m2(k−j)(α+β−nδ2−λ))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Next, we estimate J2. Using Lemma 2.9, we get
J2=supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1(k+1∑j=k−1‖fjχk‖Lp1(⋅)(ωp1(⋅)))q1}≲‖b‖mq1BMO(Rn)supL∈Z2−Lλq1{L∑k=−∞2kαq1‖fjχk‖q1Lp1(⋅)(ωp1(⋅))}=‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Finally, we estimate J3. Note that if x∈Ck, y∈Cj, and j≥k+2, then |x−y|≈|x|≈2j. By the Cp inequality and generalized Hölder inequality, for every j,k∈Z, we get
|Imβ,b(fj)(x)χk|≤C∫Cj|b(x)−b(y)|m|x−y|n−β|fj(y)|dyχk(x)≲2j(β−n)∫Cj|fj(y)||b(x)−b(y)|mdyχk(x)≲2j(β−n){|b(x)−bCj|m∫Cj|fj(y)|dy+∫Cj|fj(y)||b(y)−bCj|mdy}χk(x)≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){|b(x)−bCj|m‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′}χk(x). | (3.9) |
Thus, by taking the Lp2(⋅)(ωp2(⋅))−norm for (3.9), by virtue of Lemma 2.11, we have
‖Imβ,b(fj)(x)χk‖Lp2(⋅)(ωp2(⋅))≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){‖|b(x)−bCj|mχk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖|b(y)−bCj|mχj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)‖fj‖Lp1(⋅)(ωp1(⋅)){(j−k)m‖b‖mBMO(Rn)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′+‖b‖mBMO(Rn)‖χj‖(Lp1(⋅)(ωp1(⋅)))′‖χk‖Lp2(⋅)(ωp2(⋅))}≲2j(β−n)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′. | (3.10) |
On the other hand, by (2.14) and (2.15), combining (2.17) and (3.5), we have
2j(β−n)‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′=2jβ‖χk‖Lp2(⋅)(ωp2(⋅))2−jn‖χj‖(Lp1(⋅)(ωp1(⋅)))′≲2jβ‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖−1Lp1(⋅)(ωp1(⋅))=2jβ‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))‖χk‖Lp2(⋅)(ωp2(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖Lp2(⋅)(ωp2(⋅))≲2jβ2nδ1(k−j)2j(n−β)‖χj‖−1Lp1(⋅)(ωp1(⋅))‖χj‖−1(Lp1(⋅)(ωp1(⋅)))′=2jβ2nδ1(k−j)2−jβ(2−jn‖χj‖Lp1(⋅)(ωp1(⋅))‖χj‖(Lp1(⋅)(ωp1(⋅)))′)−1≲2nδ1(k−j). | (3.11) |
Hence, combining (3.10) and (3.11), we obtain
‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅))≲2nδ1(k−j)(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅)). | (3.12) |
Thus, by virtue of (3.9) and (3.12), remark that λ−nδ1<α, and we conclude that
J3=supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))q1}≲supL∈Z2−Lλq1{L∑k=−∞2kαq1(∞∑j=k+2(j−k)m‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))2nδ1(k−j))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1{L∑k=−∞2kλq1(∞∑j=k+2(j−k)m2(j−k)(λ−nδ1−α))q1}≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅))supL∈Z2−Lλq1(L∑k=−∞2kλq1)≲‖b‖mq1BMO(Rn)‖f‖q1M˙Kα,λq1,p1(⋅)(ωp1(⋅)). |
Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.1.
Theorem 3.2 Suppose that b∈BMO(Rn) and m∈N. Let 0≤λ<∞, 1<r<∞, p2(⋅)∈P(Rn)∩Clog(Rn), ωp2(⋅)∈A1, δ1,δ2∈(0,1) be the constants appearing in (2.17) and (2.18) respectively. α and β are such that
(i)−nδ1<α<nδ2−β
(ii)0<β<n(δ1+δ2).
Define p1(⋅) by 1p2(⋅)=1p1(⋅)−βn, then Imβ,b is bounded from M˙Kα,r),θλ,p2(⋅)(ωp2(⋅)) to M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)).
Proof We prove the homogeneous case, as the nonhomogeneous case is similar. For all f∈M˙Kα,r),θλ,p2(⋅)(ωp2(⋅)) and ∀b∈BMO(Rn), if we denote fj:=fχj=fχCj for each j∈Z, then f=∑∞j=−∞fj. So we can write
f(x)=∞∑j=−∞f(x)χj(x)=∞∑j=−∞fj(x). |
Then we have
‖Imβ,b(f)‖M˙Kα,r),θλ,p2(⋅)(ωp2(⋅))=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)‖Imβ,b(f)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∞∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≤k−2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)+supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)+supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)=:(J1+J2+J3). |
First, we estimate J1. Remark that α<nδ2−β, thus we consider two cases: 1<r(1+δ)<∞ and 0<r(1+δ)≤1. For the case 1<r(1+δ)<∞, by applying (3.7) and Hölder inequality, we have
J1=supδ>0supL∈Z2−Lλ(δθ∞∑k=−∞2kαr(1+δ)k−2∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))r(1+δ)}1r(1+δ)≲supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))×(k−j)m2(β−nδ2)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(k−2∑j=−∞2αj‖fj‖Lp1(⋅)(ωp1(⋅))(k−j)m2(β−nδ2+α)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2)×(k−2∑j=−∞2(β−nδ2+α)(k−j)(r(1+δ))′2)r(1+δ)(r(1+δ))′}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≥j+2(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
For 0<r(1+δ)≤1, by virtue of (3.7), we have
J1=supδ>0supL∈Z2−Lλ(δθ∞∑k=−∞2kαr(1+δ)k−2∑j=−∞‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≤supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖Imβ,b(fj)χk‖Lp2(⋅)(ωp2(⋅)))r(1+δ)}1r(1+δ)≲supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞2kαr(1+δ)(k−2∑j=−∞‖b‖mBMO(Rn)‖fj‖Lp1(⋅)(ωp1(⋅))×(k−j)m2(β−nδ2)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(2αjk−2∑j=−∞‖fj‖Lp1(⋅)(ωp1(⋅))(k−j)m2(β−nδ2+α)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞k−2∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≥j+2(k−j)mr(1+δ)2(β−nδ2+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Next, we estimate J2. Using Lemma 2.9, we get
J2=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≲‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)k+1∑j=k−1‖(fχj)‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)‖(fχk)‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Finally, we estimate J3. By virtue of (3.12), we have
J3=supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+2‖Imβ,b(fj)χk‖r(1+δ)Lp2(⋅)(ωp2(⋅)))1r(1+δ)≲‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ(δθ∑k∈Z2kαr(1+δ)∑j≥k+22nδ1(k−j)r(1+δ)(j−k)mr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅)))1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ). |
Remark that α+nδ1>0, thus we consider two cases 1<r(1+δ)<∞ and 0<r(1+δ)≤1. For the case 1<r(1+δ)<∞, by applying Hölder inequality, we have
J3≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞(∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2)×(∑j≥k+22(nδ1+α)(k−j)(r(1+δ))′2)r(1+δ)(r(1+δ))′}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≤j−2(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)2}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
For 0<r(1+δ)≤1, we have
J3≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∑k∈Z(∑j≥k+2‖fj‖Lp1(⋅)(ωp1(⋅))(j−k)m2αj2(α+nδ1)(k−j))r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑k=−∞∑j≥k+22αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)×supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))∑k≤j−2(j−k)mr(1+δ)2(nδ1+α)(k−j)r(1+δ)}1r(1+δ)≤‖b‖mBMO(Rn)supδ>0supL∈Z2−Lλ{δθ∞∑j=−∞2αjr(1+δ)‖fj‖r(1+δ)Lp1(⋅)(ωp1(⋅))}1r(1+δ)≤‖b‖mBMO(Rn)‖f‖M˙Kα,r),θλ,p1(⋅)(ωp1(⋅)). |
Combining the estimates of J1,J2,J3, we complete the proof of Theorem 3.2.
Remark 3.3 When λ=0 and m=0, Theorem 3.1 holds on weighted variable-exponent Herz spaces and generalizes the result of Izuki in [18] (see Theorem 4). When 0<λ<n and m=1, Theorem 3.1 has been proved by Zhao in [26] (see Theorem 2.2). When m=0, Theorem 3.2 holds on grand weighted variable-exponent Herz-Morrey spaces, and generalizes the result of Sultan in [32] (see Theorem 2).
In this section, under some assumed conditions, we first establish the boundedness of the m−order multilinear fractional Hardy operator Hβ,m on weighted variable exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). Then, we establish the boundedness of the adjoint operator of the m−order multilinear fractional Hardy operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω). As a corollary of the above two results, we also obtain the corresponding result for multilinear Hardy operator Hm and its adjoint operator H∗m.
Theorem 4.1 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)−1p(x)=βn. |
Let 0<β<mnmax1≤i≤m(pi)+, 0<qi<∞, λi>0, 1q=∑mi=11qi−βn, λ=∑mi=1λi, α=∑mi=1αi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, αi<λi+nδi2, where δi2∈(0,1) are the constants in (2.18) for exponents pi(⋅) and weights ωpi(⋅)i, then
‖Hβ,m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, then we have
Hβ,2(→f)(x)=1|x|2n−β∫|t1|<|x|∫|t2|<|x|f1(t1)f2(t2)dt1dt2. |
For arbitrary fi∈M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)(i=1,2), let fki:=fi⋅χki=fi⋅χCki, then
fi(x)=∞∑ki=−∞fi(x)⋅χki(x)=∞∑ki=−∞fki(x). |
By virtue of the definition of Hβ,2 and generalized Hölder inequality (2.13), we have
|Hβ,2(→f)(x)⋅χk(x)|≤1|x|2n−β∫|t1|<|x|∫|t2|<|x||f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)∫Bk∫Bk|f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞∫Ck1∫Ck2|f1(t1)f2(t2)|dt1dt2⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞(∫Ck1|f1(t1)|dt1)(∫Ck2|f2(t2)|dt2)⋅χk(x)≲2k(β−2n)k∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.1) |
Note that if u(⋅),p1(⋅),p2(⋅)∈P(Rn) such that 1u(x)=1p1(x)+1p2(x) for x∈Rn, and ω∈Au(⋅) with ωi∈Api(⋅), ω=∏2i=1ωi, by (2.19) of Lemma 2.10, we have
‖fg‖Lu(⋅)(ωu(⋅))=‖fgω‖Lu(⋅)(Rn)=‖fω1gω2‖Lp(⋅)(Rn)≲‖fω1‖Lp1(⋅)(Rn)‖gω2‖Lp2(⋅)(Rn)=‖f‖Lp1(⋅)(ωp1(⋅)1)‖g‖Lp2(⋅)(ωp2(⋅)2). | (4.2) |
By virtue of (2.16) of Lemma 2.6, we have
‖χk‖X‖χBk‖X≤(|Ck||Bk|)δ=C⟹‖χk‖X≤C‖χBk‖X. | (4.3) |
Let 1u(x)=1p1(x)+1p2(x), then by the condition of Theorem 4.1, it implies that βn=1u(x)−1p(x). Note that χBk≤C2−kβIβ(χBk)(x) (see [11] p.350), by virtue of (2.15), (4.2), (4.3), and Lemma 2.8, we have
‖χk‖Lp(⋅)(ωp(⋅))≤‖χBk‖Lp(⋅)(ωp(⋅))≲2−kβ‖Iβ(χBk)‖Lp(⋅)(ωp(⋅))≲2−kβ‖χBk‖Lu(⋅)(ωu(⋅))≲2−kβ‖χBk‖Lp1(⋅)(ωp1(⋅)1)‖χBk‖Lp2(⋅)(ωp2(⋅)2)≲2k(2n−β)‖χBk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χBk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′ | (4.4) |
Remark that k1≤k,k2≤k. By applying (2.18) and (4.4), we have
2k(β−2n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖Lp(⋅)(ωp(⋅))≲‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖(Lp2(⋅)(ωp2(⋅)2))′≲2(k1−k)nδ122(k2−k)nδ22. | (4.5) |
Thus, by taking the Lp(⋅)(ωp(⋅))−norm for (4.1), and by virtue of (4.5), we have
‖Hβ,2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲2k(β−2n)k∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)‖χk‖Lp(⋅)(ωp(⋅))≲(k∑k1=−∞2(k1−k)nδ12‖fk1‖Lp1(⋅)(ωp1(⋅)1))(k∑k2=−∞2(k2−k)nδ22‖fk2‖Lp2(⋅)(ωp2(⋅)2))≲2∏i=1(k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i)). | (4.6) |
Let 0<γ≤1, then by the Jensen inequality it follows that
(∞∑j=−∞|aj|)γ≤∞∑j=−∞|aj|γ, | (4.7) |
Let 1v=1q1+1q2, then 1q=1v−βn, therefore q>v. By applying (4.6), (4.7), and Hölder inequality in sequential form, we have
‖Hβ,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))=supL∈Z2−Lλ{L∑k=−∞2kαq‖Hβ,2(→f)χk‖qLp(⋅)(ωp(⋅))}1q≲supL∈Z2−Lλ{L∑k=−∞2kαq2∏i=1(k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))v}1v≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi. | (4.8) |
on the other hand, note the following fact:
‖fki‖Lpi(⋅)(ωpi(⋅)i)=2−kiαi(2kiαiqi‖fiχki‖qiLpi(⋅)(ωpi(⋅)i))1qi≤2−kiαi(ki∑ji=−∞2jiαiqi‖fiχji‖qiLpi(⋅)(ωpi(⋅)i))1qi=2ki(λi−αi){2−kiλi(ki∑ji=−∞2jiαiqi‖fiχji‖qiLpi(⋅)(ωpi(⋅)i))1qi}≲2ki(λi−αi)‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). | (4.9) |
Remark that αi<λi+nδi2. By applying (4.7), (4.8), and (4.9), we have
‖Hβ,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(k∑ki=−∞2kαi+(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi{L∑k=−∞2kλiqi(k∑ki=−∞2(ki−k)(λi−αi+nδi2))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi(L∑k=−∞2kλiqi)1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
This finishes the proof of Theorem 4.1.
Theorem 4.2 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)−1p(x)=βn. |
Let 0<β<mnmax1≤i≤m(pi)+, 0<qi<∞, λi>0, 1q=∑mi=11qi−βn, λ=∑mi=1λi, α=∑mi=1αi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, αi>λi+βm−nδi1, where δi1∈(0,1) are the constants in (2.17) for exponents pi(⋅) and weights ωpi(⋅)i, then
‖H∗β,m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof We prove the homogeneous case, since the nonhomogeneous case is similar. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, then we have
H∗β,2(→f)(x)=∫|t1|≥|x|∫|t2|≥|x|f1(t1)f2(t2)|(t1,t2)|2n−βdt1dt2. |
For arbitrary fi∈M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)(i=1,2), let fki:=fi⋅χki=fi⋅χCki, then
fi(x)=∞∑ki=−∞fi(x)⋅χki(x)=∞∑ki=−∞fki(x). |
Note that |t1|n−β2|t2|n−β2<|(t1,t2)|2n−β (see [37] p.11). By virtue of the definition of H∗β,2 and generalized Hölder inequality, we have
|H∗β,2(→f)(x)⋅χk(x)|≤∫|t1|≥|x|∫|t2|≥|x||f1(t1)f2(t2)||(t1,t2)|2n−βdt1dt2⋅χk(x)≤∞∑k1=k∞∑k2=k∫Ck1∫Ck2|f1(t1)f2(t2)||(t1,t2)|2n−βdt1dt2⋅χk(x)≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(∫Ck1|f1(t1)|dt1)(∫Ck2|f2(t2)|dt2)⋅χk(x)≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.10) |
Remark that k1≥k,k2≥k. By applying (2.14), (2.17), and (4.4), we have
2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′‖χk‖Lp(⋅)(ωp(⋅))≲2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2(k1+k2)(β2−n)‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′2−kβ‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)≲2(k1+k2)(β2−n)2nk1‖χk1‖−1Lp1(⋅)(ωp1(⋅)1)2nk2‖χk2‖−1Lp2(⋅)(ωp2(⋅)2)2−kβ‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)=2(k1+k2−2k)β2‖χk1‖−1Lp1(⋅)(ωp1(⋅)1)‖χk2‖−1Lp2(⋅)(ωp2(⋅)2)‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)=2(k1+k2−2k)β2‖χk‖Lp1(⋅)(ωp1(⋅)1)‖χk1‖Lp1(⋅)(ωp1(⋅)1)‖χk‖Lp2(⋅)(ωp2(⋅)2)‖χk2‖Lp2(⋅)(ωp2(⋅)2)≲2(k1+k2−2k)β22(k−k1)nδ112(k−k2)nδ21=2(k1−k)(β2−nδ11)2(k1−k)(β2−nδ21). | (4.11) |
Thus, by taking the Lp(⋅)(ωp(⋅))−norm for (4.10), and by virtue of (4.11), we have
‖H∗β,2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲∞∑k1=k∞∑k2=k2(k1+k2)(β2−n)(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)‖χk‖Lp(⋅)(ωp(⋅))≲(∞∑k1=k2(k1−k)(β2−nδ11)‖fk1‖Lp1(⋅)(ωp1(⋅)1))(∞∑k2=k2(k2−k)(β2−nδ21)‖fk2‖Lp2(⋅)(ωp2(⋅)2))≲2∏i=1(∞∑ki=k2(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i)). | (4.12) |
Let 1v=1q1+1q2, then 1q=1v−βn; therefore, q>v. By applying (4.7), (4.12), and Hölder inequality in sequential form, we have
‖H∗β,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))=supL∈Z2−Lλ{L∑k=−∞2kαq‖H∗β,2(→f)χk‖qLp(⋅)(ωp(⋅))}1q≲supL∈Z2−Lλ{L∑k=−∞2kαq2∏i=1(∞∑ki=k2(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))q}1q≲supL∈Z2−Lλ{L∑k=−∞2∏i=1(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))v}1v≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi. | (4.13) |
Remark that αi>λi+β2−nδi1. By applying (4.7), (4.9), and (4.13), we have
‖H∗β,2(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≲2∏i=1supL∈Z2−Lλi{L∑k=−∞(∞∑ki=k2kαi+(ki−k)(β2−nδi1)‖fki‖Lpi(⋅)(ωpi(⋅)i))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi{L∑k=−∞2kλiqi(∞∑ki=k2(ki−k)(λi+β2−αi−nδi1))qi}1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i)supL∈Z2−Lλi(L∑k=−∞2kλiqi)1qi≲2∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
This finishes the proof of Theorem 4.2.
Theorem 4.3 Let pi(⋅)∈P(Rn)∩Clog(Rn)(i=1,2,⋯,m,m∈Z+), p(⋅) is defined as follows:
m∑i=11pi(x)=1p(x). |
Let 0<qi<∞, λi>0, 1q=∑mi=11qi, λ=∑mi=1λi, ω∈Ap(⋅), ωi∈Api(⋅), ω=∏mi=1ωi, δi1,δi2∈(0,1) are the constants in Lemma 2.7 for exponents pi(⋅) and weights ωpi(⋅)i, then
(i) When αi<λi+nδi2, we have
‖Hm(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
(ii) When αi>λi−nδi1, we have
‖H∗m(→f)‖M˙Kα,λq,p(⋅)(ωp(⋅))≤Cm∏i=1‖fi‖M˙Kαi,λiqi,pi(⋅)(ωpi(⋅)i). |
Proof(i) We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.1, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case m=2. Actually, a similar procedure works for all m∈Z+(m≥1). When m=2, similar to the estimation of (4.1), by virtue of the definition of H2 and generalized Hölder inequality, we have
|H2(→f)(x)⋅χk(x)|≲2−2knk∑k1=−∞k∑k2=−∞(‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′)χk(x). | (4.14) |
By taking the Lp(⋅)(ωp(⋅))−norm for (4.14) and applying (2.18) and (4.4), we have
‖H2(→f)⋅χk‖Lp(⋅)(ωp(⋅))≲2−2knk∑k1=−∞k∑k2=−∞{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}‖χk‖Lp(⋅)(ωp(⋅))≲2−2knk∑k1=−∞k∑k2=−∞{‖fk1‖Lp1(⋅)(ωp1(⋅)1)‖fk2‖Lp2(⋅)(ωp2(⋅)2)⋅‖χk1‖(Lp1(⋅)(ωp1(⋅)1))′‖χk2‖(Lp2(⋅)(ωp2(⋅)2))′}2k(2n−β)‖χk‖−1(Lp1(⋅)(ωp1(⋅)1))′‖χk‖−1(Lp2(⋅)(ωp2(⋅)2))′≲2∏i=1{k∑ki=−∞‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χki‖(Lpi(⋅)(ωpi(⋅)i))′‖χk‖−1(Lpi(⋅)(ωpi(⋅)i))′}=2∏i=1{k∑ki=−∞‖fki‖Lpi(⋅)(ωpi(⋅)i)‖χki‖(Lpi(⋅)(ωpi(⋅)i))′‖χk‖(Lpi(⋅)(ωpi(⋅)))′}≲2∏i=1{k∑ki=−∞2(ki−k)nδi2‖fki‖Lpi(⋅)(ωpi(⋅)i)}. | (4.15) |
Next, the required results are obtained in a way similar to the proof of Theorem 4.1.
We prove the homogeneous case, since the nonhomogeneous case is similar. Since the proof method is similar to the Theorem 4.2, we only give the proof idea here and omit the detailed proof. Without loss of generality, we only consider the case . Actually, a similar procedure works for all . When , similar to the estimation of (4.10), by virtue of the definition of and generalized Hölder inequality, we have
(4.16) |
By taking the norm for (4.16), applying (2.14), (2.15), (2.17), and (4.4), we have
(4.17) |
Similar to the estimation of (4.13). By applying (4.7), (4.17), and Hölder inequality in sequential form, we have
(4.18) |
Remark that . By applying (4.7), (4.9), and (4.18), we have
This finishes the proof idea of Theorem 4.3.
Because of , let from Theorem 4.1 and Theorem 4.2. Then we can obtain the boundedness of the order multilinear fractional Hardy operator and its adjoint operator from the weighted variable-exponent Herz product space
to the homogeneous weighted variable-exponent Herz space . Obviously, from Theorem 4.3, the order multilinear Hardy operator and its adjoint operator have similar results.
This paper first considered the boundedness of higher-order commutators generated by the fractional integral operator with BMO functions on weighted variable-exponent Herz-Morrey spaces and grand weighted variable-exponent Herz-Morrey spaces , and generalized Theorem 4 of Izuki [18] as well as Theorem 2 of Sultan [32]. Then, we considered the boundedness of the order multilinear fractional Hardy operator and its adjoint operator on weighted variable-exponent Herz-Morrey spaces , and generalized some relevant results of Wu [12].
Ming Liu and Binhua Feng wrote the main manuscript text and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We wish to thank the handing editor and the referees for their valuable comments and suggestions. B. Feng is supported by the National Natural Science Foundation of China (No.12461035,12261079), the Natural Science Foundation of Gansu Province (No.24JRRA242).
The authors declare there is no conflict of interest.
[1] |
O. Kováčik, J. Rákosník, On spaces and , Czech. Math. J., 41 (1991), 582–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[2] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[3] |
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces and , Math. Nachr., 268 (2004), 31–43. https://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157
![]() |
[4] |
A. Nekvinda, Hardy-Littlewood maximal operator on , Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
![]() |
[5] | H. Wang, Z. Fu, Z. Liu, Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci. A, 32 (2012), 1092–1101. |
[6] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
![]() |
[7] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
![]() |
[8] |
L. Wang, M. Qu, L. Shu, Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent, J. Funct. Space. Appl., 2013 (2013), 1–7. https://doi.org/10.1155/2013/257537 doi: 10.1155/2013/257537
![]() |
[9] |
S. Lu, L. Xu, Boundedness of rough singular integral operators on the Homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
![]() |
[10] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[11] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[12] | J. Wu, P. Zhang, Boundedness of Multilinear Fractional Hardy Operators on the Product of Herz-Morrey Spaces with Variable Exponent, J. Coll. Univ., 2 (2013), 154–164. |
[13] |
J. Wu, Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent, Kyoto J. Math., 54 (2014), 483–495. https://doi.org/10.1215/21562261-2693397 doi: 10.1215/21562261-2693397
![]() |
[14] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 223–238. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
![]() |
[15] |
D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
![]() |
[16] | M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J.Anal. Appl., 11 (2013), 27–41. |
[17] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[18] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
![]() |
[19] |
M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.7153/jmi-2017-11-62 doi: 10.7153/jmi-2017-11-62
![]() |
[20] |
M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
![]() |
[21] |
M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 1–12. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
![]() |
[22] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the Fractional Hardy Operator on Weighted Variable Herz-Morrey Spaces, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[23] | S. Wang, J. Xu, Commutators of bilinear hardy operators on weighted Herz-Morrey spaces with variable exponent, Acta Math. Sin., 64 (2021), 123–138. |
[24] |
S. Wang, J. Xu, Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponent, Open Math., 19 (2021), 412–426. https://doi.org/10.1515/math-2021-0024 doi: 10.1515/math-2021-0024
![]() |
[25] | D. Xiao, L. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Math. Res. Commun., 34 (2018), 371–382. |
[26] | H. Zhao, Z. Liu, Boundedness of commutators of fractional integral operators on variable weighted Herz-Morrey spaces, Adv. Math., 51 (2022), 103–116. |
[27] |
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
![]() |
[28] |
F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
![]() |
[29] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[30] |
M. Chirst, L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
![]() |
[31] |
Z. Fu, Z. Liu, S. Lu, H. Wong, Characterization for commutators of dimensional fractional Hardy operators, Sci. China, Ser. A: Math., 50 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
![]() |
[32] |
B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz-Morrey Spaces with Variable Exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
![]() |
[33] |
B. Sultan, M. Sultan, M. Mehmood, M. Azmi, F. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
![]() |
[34] | C. Bennett, R. C. Sharpley, Interpolation of Operators, Springer-Verlag, New York, 1988. |
[35] |
A. L. Bernardis, E. D. Dalmasso, G. G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces, Ann. Acad. Sci. Fenn. Math., 39 (2014), 23–50. https://doi.org/10.5186/aasfm.2014.3904 doi: 10.5186/aasfm.2014.3904
![]() |
[36] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
![]() |
[37] |
C. Kening, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1991), 1–15. http://dx.doi.org/10.4310/mrl.1999.v6.n1.a1 doi: 10.4310/mrl.1999.v6.n1.a1
![]() |