[1]
|
Yu FX, Zhao B, Panupinthu N, et al. (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150: 780–791. doi: 10.1016/j.cell.2012.06.037
|
[2]
|
Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27: 355–371. doi: 10.1101/gad.210773.112
|
[3]
|
Lee A, Fakler B, Kaczmarek LK, et al. (2014) More than a pore: ion channel signaling complexes. J Neurosci 34: 15159–15169. doi: 10.1523/JNEUROSCI.3275-14.2014
|
[4]
|
Asuthkar S, Elustondo PA, Demirkhanyan L, et al. (2015) The TRPM8 protein is a testosterone receptor: I. Biochemical evidence for direct TRPM8-testosterone interactions. J Biol Chem 290: 2659–2669.
|
[5]
|
Changeux JP (2012) The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem 287: 40207–40215. doi: 10.1074/jbc.R112.407668
|
[6]
|
Elliott WJ, Ram CV (2011) Calcium channel blockers. J Clin Hypertens (Greenwich) 13: 687–689. doi: 10.1111/j.1751-7176.2011.00513.x
|
[7]
|
Grigg P (1986) Biophysical studies of mechanoreceptors. J Appl Physiol (1985) 60: 1107–1115.
|
[8]
|
Kung C (2005) A possible unifying principle for mechanosensation. Nature 436: 647–654. doi: 10.1038/nature03896
|
[9]
|
O'Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451: 193–203. doi: 10.1007/s00424-005-1424-4
|
[10]
|
Woo SH, Ranade S, Weyer AD, et al. (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509: 622–626. doi: 10.1038/nature13251
|
[11]
|
Baumgarten CM, Clemo HF (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82: 25–42. doi: 10.1016/S0079-6107(03)00003-8
|
[12]
|
Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13: 867–878.
|
[13]
|
Takahashi K, Kakimoto Y, Toda K, et al. (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17: 225–232. doi: 10.1111/jcmm.12027
|
[14]
|
Bett GC, Sachs F (2000) Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membr Biol 173: 255–263. doi: 10.1007/s002320001024
|
[15]
|
Song S, Yamamura A, Yamamura H, et al. (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307: C373–383. doi: 10.1152/ajpcell.00115.2014
|
[16]
|
Lansman JB, Franco-Obregon A (2006) Mechanosensitive ion channels in skeletal muscle: a link in the membrane pathology of muscular dystrophy. Clin Exp Pharmacol Physiol 33: 649–656. doi: 10.1111/j.1440-1681.2006.04393.x
|
[17]
|
Nauli SM, Alenghat FJ, Luo Y, et al. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33: 129–137. doi: 10.1038/ng1076
|
[18]
|
Chen YF, Chen YT, Chiu WT, et al. (2013) Remodeling of calcium signaling in tumor progression. J Biomed Sci 20: 23. doi: 10.1186/1423-0127-20-23
|
[19]
|
Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338: 260–263. doi: 10.1126/science.1222376
|
[20]
|
Corey DP, Garcia-Anoveros J, Holt JR, et al. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432: 723–730. doi: 10.1038/nature03066
|
[21]
|
Ito H, Aizawa N, Sugiyama R, et al. (2015) Functional role of the TRPM8 ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int.
|
[22]
|
Jin Y, Li J, Wang Y, et al. (2015) Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod 85: 87–94. doi: 10.2319/123113-955.1
|
[23]
|
Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123: 371–385. doi: 10.1016/j.pharmthera.2009.05.009
|
[24]
|
Davidson RM, Tatakis DW, Auerbach AL (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416: 646–651. doi: 10.1007/BF00370609
|
[25]
|
Mienville J, Barker JL, Lange GD (1996) Mechanosensitive properties of BK channels from embryonic rat neuroepithelium. J Membr Biol 153: 211–216. doi: 10.1007/s002329900124
|
[26]
|
Farrugia G, Holm AN, Rich A, et al. (1999) A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117: 900–905. doi: 10.1016/S0016-5085(99)70349-5
|
[27]
|
Vilceanu D, Stucky CL (2010) TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons. Plos One 5: e12177. doi: 10.1371/journal.pone.0012177
|
[28]
|
Tsutsumi T, Kajiya H, Fukawa T, et al. (2013) The potential role of transient receptor potential type A1 as a mechanoreceptor in human periodontal ligament cells. Eur J Oral Sci 121: 538–544. doi: 10.1111/eos.12083
|
[29]
|
Cao DS, Zhong L, Hsieh TH, et al. (2012) Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and Its Role in Insulin Release from Rat Pancreatic Beta Cells. Plos One 7: e38005. doi: 10.1371/journal.pone.0038005
|
[30]
|
Story GM, Peier AM, Reeve AJ, et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819–829. doi: 10.1016/S0092-8674(03)00158-2
|
[31]
|
Brierley SM, Hughes PA, Page AJ, et al. (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137: 2084–2095 e2083. doi: 10.1053/j.gastro.2009.07.048
|
[32]
|
Seth M, Zhang ZS, Mao L, et al. (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105: 1023–1030. doi: 10.1161/CIRCRESAHA.109.206581
|
[33]
|
Shenton FC, Pyner S (2014) Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart. Neuroscience 267: 195–204. doi: 10.1016/j.neuroscience.2014.02.047
|
[34]
|
Kerstein PC, Jacques-Fricke BT, Rengifo J, et al. (2013) Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth. J Neurosci 33: 273–285. doi: 10.1523/JNEUROSCI.2142-12.2013
|
[35]
|
Fabian A, Fortmann T, Dieterich P, et al. (2008) TRPC1 channels regulate directionality of migrating cells. Pflugers Arch 457: 475–484. doi: 10.1007/s00424-008-0515-4
|
[36]
|
Quick K, Zhao J, Eijkelkamp N, et al. (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2: 120068. doi: 10.1098/rsob.120068
|
[37]
|
Anderson M, Kim EY, Hagmann H, et al. (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 305: C276–289. doi: 10.1152/ajpcell.00095.2013
|
[38]
|
Mene P, Punzo G, Pirozzi N (2013) TRP channels as therapeutic targets in kidney disease and hypertension. Curr Top Med Chem 13: 386–397. doi: 10.2174/1568026611313030013
|
[39]
|
Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82: 735–767. doi: 10.1152/physrev.00007.2002
|
[40]
|
Kim EC, Choi SK, Lim M, et al. (2013) Role of endogenous ENaC and TRP channels in the myogenic response of rat posterior cerebral arteries. PLoS One 8: e84194. doi: 10.1371/journal.pone.0084194
|
[41]
|
Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772: 1022–1027. doi: 10.1016/j.bbadis.2007.01.002
|
[42]
|
Heidenreich M, Lechner SG, Vardanyan V, et al. (2012) KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15: 138–145.
|
[43]
|
Beyder A, Rae JL, Bernard CE, et al. (2010) Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol.
|
[44]
|
Wang JA, Lin W, Morris T, et al. (2009) Membrane trauma and Na+ leak from Nav1.6 channels. Am J Physiol Cell Physiol 297: C823–834. doi: 10.1152/ajpcell.00505.2008
|
[45]
|
Bodi I, Mikala G, Koch SE, et al. (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115: 3306–3317. doi: 10.1172/JCI27167
|
[46]
|
Lyford GL, Strege PR, Shepard A, et al. (2002) alpha(1C) (Ca(v)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283: C1001–C1008.
|
[47]
|
Just S, Heppelmann B (2003) Voltage-gated calcium channels may be involved in the regulation of the mechanosensitivity of slowly conducting knee joint afferents in rat. Exp Brain Res 150: 379–384.
|
[48]
|
Guinamard R, Chatelier A, Demion M, et al. (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558: 75–83. doi: 10.1113/jphysiol.2004.063974
|
[49]
|
Demion M, Thireau J, Gueffier M, et al. (2014) Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 9: e115256. doi: 10.1371/journal.pone.0115256
|
[50]
|
Kruse M, Schulze-Bahr E, Corfield V, et al. (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119: 2737–2744. doi: 10.1172/JCI38292
|
[51]
|
Sah R, Mesirca P, Van den Boogert M, et al. (2013) Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 110: E3037–3046. doi: 10.1073/pnas.1311865110
|
[52]
|
Du J, Xie J, Zhang Z, et al. (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106: 992–1003. doi: 10.1161/CIRCRESAHA.109.206771
|
[53]
|
Domes K, Patrucco E, Loga F, et al. (2015) Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflugers Arch 467: 2229–2234. doi: 10.1007/s00424-014-1682-0
|
[54]
|
Seo K, Rainer PP, Shalkey Hahn V, et al. (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111: 1551–1556. doi: 10.1073/pnas.1308963111
|
[55]
|
Senatore S, Rami RV, Semeriva M, et al. (2010) Response to Mechanical Stress Is Mediated by the TRPA Channel Painless in the Drosophila Heart. PLoS Genet 6: e1001088. doi: 10.1371/journal.pgen.1001088
|
[56]
|
Skerry TM, Suva LJ (2003) Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct 21: 223–229. doi: 10.1002/cbf.1077
|
[57]
|
Carmeliet G, Vico L, Bouillon R (2001) Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 11: 131–144.
|
[58]
|
Robling AG (2012) The interaction of biological factors with mechanical signals in bone adaptation: recent developments. Curr Osteoporos Rep 10: 126–131. doi: 10.1007/s11914-012-0099-y
|
[59]
|
Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103: 2–17. doi: 10.1016/j.pbiomolbio.2009.10.002
|
[60]
|
Rezzonico R, Cayatte C, Bourget-Ponzio I, et al. (2003) Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18: 1863–1871. doi: 10.1359/jbmr.2003.18.10.1863
|
[61]
|
Winter LC, Walboomers XF, Bumgardner JD, et al. (2003) Intermittent versus continuous stretching effects on osteoblast-like cells in vitro. J Biomed Mater Res A 67: 1269–1275.
|
[62]
|
Nishimura G, Lausch E, Savarirayan R, et al. (2012) TRPV4-associated skeletal dysplasias. Am J Med Genet C Semin Med Genet 160C: 190–204. doi: 10.1002/ajmg.c.31335
|
[63]
|
Mizoguchi F, Mizuno A, Hayata T, et al. (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216: 47–53. doi: 10.1002/jcp.21374
|
[64]
|
Suzuki T, Notomi T, Miyajima D, et al. (2013) Osteoblastic differentiation enhances expression of TRPV4 that is required for calcium oscillation induced by mechanical force. Bone 54: 172–178. doi: 10.1016/j.bone.2013.01.001
|
[65]
|
Xiao E, Yang HQ, Gan YH, et al. (2015) Brief reports: TRPM7 Senses mechanical stimulation inducing osteogenesis in human bone marrow mesenchymal stem cells. Stem Cells 33: 615–621. doi: 10.1002/stem.1858
|
[66]
|
Perozo E, Cortes DM, Sompornpisut P, et al. (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948. doi: 10.1038/nature00992
|
[67]
|
Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80: 2074–2081.
|
[68]
|
Sukharev SI, Sigurdson WJ, Kung C, et al. (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113: 525–539. doi: 10.1085/jgp.113.4.525
|
[69]
|
Sawada Y, Murase M, Sokabe M (2012) The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations: from tension sensing to channel opening. Channels (Austin) 6: 317–331. doi: 10.4161/chan.21895
|
[70]
|
Deplazes E, Louhivuori M, Jayatilaka D, et al. (2012) Structural investigation of MscL gating using experimental data and coarse grained MD simulations. PLoS Comput Biol 8: e1002683. doi: 10.1371/journal.pcbi.1002683
|
[71]
|
Moiseenkova-Bell VY, Stanciu LA, Serysheva, II, et al. (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 105: 7451–7455. doi: 10.1073/pnas.0711835105
|
[72]
|
Long SB, Tao X, Campbell EB, et al. (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376–382. doi: 10.1038/nature06265
|
[73]
|
Rahman KS, Cui G, Harvey SC, et al. (2013) Modeling the Conformational Changes Underlying Channel Opening in CFTR. Plos One 8: e74574. doi: 10.1371/journal.pone.0074574
|
[74]
|
Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516: 126–130. doi: 10.1038/nature14013
|
[75]
|
Lee CH, Lu W, Michel JC, et al. (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511: 191–197. doi: 10.1038/nature13548
|
[76]
|
Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflugers Arch 454: 361–371. doi: 10.1007/s00424-007-0222-6
|
[77]
|
Milac A, Anishkin A, Fatakia SN, et al. (2011) Structural models of TREK channels and their gating mechanism. Channels (Austin) 5: 23–33. doi: 10.4161/chan.5.1.13905
|
[78]
|
Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436–441. doi: 10.1126/science.1213808
|
[79]
|
Takahashi K, Naruse K (2012) Stretch-activated BK channel and heart function. Prog Biophys Mol Biol 110: 239–244. doi: 10.1016/j.pbiomolbio.2012.08.001
|
[80]
|
Caceres M, Ortiz L, Recabarren T, et al. (2015) TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 10: e0130540. doi: 10.1371/journal.pone.0130540
|
[81]
|
Martinac B (2014) The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta 1838: 682–691. doi: 10.1016/j.bbamem.2013.07.015
|
[82]
|
Andersen OS, Koeppe RE, 2nd (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36: 107–130. doi: 10.1146/annurev.biophys.36.040306.132643
|
[83]
|
Yoo J, Cui Q (2009) Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. Biophys J 97: 2267–2276. doi: 10.1016/j.bpj.2009.07.051
|
[84]
|
Cueva JG, Mulholland A, Goodman MB (2007) Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27: 14089–14098. doi: 10.1523/JNEUROSCI.4179-07.2007
|
[85]
|
Zhang W, Cheng LE, Kittelmann M, et al. (2015) Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 162: 1391–1403. doi: 10.1016/j.cell.2015.08.024
|
[86]
|
Eastwood AL, Goodman MB (2012) Insight into DEG/ENaC channel gating from genetics and structure. Physiology (Bethesda) 27: 282–290. doi: 10.1152/physiol.00006.2012
|
[87]
|
Tabarean IV, Morris CE (2002) Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions. Biophys J 82: 2982–2994. doi: 10.1016/S0006-3495(02)75639-7
|
[88]
|
Maingret F, Patel AJ, Lesage F, et al. (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274: 26691–26696. doi: 10.1074/jbc.274.38.26691
|
[89]
|
Xian Tao L, Dyachenko V, Zuzarte M, et al. (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69: 86–97. doi: 10.1016/j.cardiores.2005.08.018
|
[90]
|
Lolicato M, Riegelhaupt PM, Arrigoni C, et al. (2014) Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron 84: 1198–1212. doi: 10.1016/j.neuron.2014.11.017
|
[91]
|
Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72: 973–983. doi: 10.1161/01.RES.72.5.973
|
[92]
|
Gu Y, Preston MR, El Haj AJ, et al. (2001) Three types of K(+) currents in murine osteocyte-like cells (MLO-Y4). Bone 28: 29–37. doi: 10.1016/S8756-3282(00)00439-7
|
[93]
|
Kawakubo T, Naruse K, Matsubara T, et al. (1999) Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes. Am J Physiol 276: H1827–1838.
|
[94]
|
Peng SQ, Hajela RK, Atchison WD (2005) Fluid flow-induced increase in inward Ba2+ current expressed in HEK293 cells transiently transfected with human neuronal L-type Ca2+ channels. Brain Res 1045: 116–123. doi: 10.1016/j.brainres.2005.03.039
|
[95]
|
Zhang WK, Wang D, Duan Y, et al. (2010) Mechanosensitive gating of CFTR. Nat Cell Biol 12: 812. doi: 10.1038/ncb0810-812
|
[96]
|
Gadsby DC, Nagel G, Hwang TC (1995) The CFTR chloride channel of mammalian heart. Annu Rev Physiol 57: 387–416. doi: 10.1146/annurev.ph.57.030195.002131
|
[97]
|
Brierley SM, Castro J, Harrington AM, et al. (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589: 3575–3593. doi: 10.1113/jphysiol.2011.206789
|
[98]
|
Maroto R, Raso A, Wood TG, et al. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7: 179–185. doi: 10.1038/ncb1218
|
[99]
|
Spassova MA, Hewavitharana T, Xu W, et al. (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103: 16586–16591. doi: 10.1073/pnas.0606894103
|
[100]
|
Kuwahara K, Wang Y, McAnally J, et al. (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116: 3114–3126. doi: 10.1172/JCI27702
|
[101]
|
Grimm C, Kraft R, Sauerbruch S, et al. (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278: 21493–21501. doi: 10.1074/jbc.M300945200
|
[102]
|
Brown RL, Xiong WH, Peters JH, et al. (2015) TRPM3 expression in mouse retina. PLoS One 10: e0117615. doi: 10.1371/journal.pone.0117615
|
[103]
|
Son GY, Yang YM, Park WS, et al. (2015) Hypotonic stress induces RANKL via transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) in human PDL cells. J Dent Res 94: 473–481. doi: 10.1177/0022034514567196
|
[104]
|
Vriens J, Held K, Janssens A, et al. (2014) Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat Chem Biol 10: 188–195. doi: 10.1038/nchembio.1428
|
[105]
|
Fruhwald J, Camacho LJ, Dembla S, et al. (2012) Alternative splicing of a protein domain indispensable for function of transient receptor potential melastatin 3 (TRPM3) ion channels. J Biol Chem 287: 36663–36672. doi: 10.1074/jbc.M112.396663
|
[106]
|
Kwon M, Baek SH, Park CK, et al. (2014) Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch Oral Biol 59: 1266–1271. doi: 10.1016/j.archoralbio.2014.07.016
|
[107]
|
Heckel E, Boselli F, Roth S, et al. (2015) Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development. Curr Biol 25: 1354–1361. doi: 10.1016/j.cub.2015.03.038
|
[108]
|
Adapala RK, Thoppil R, Luther DJ, et al. (2012) TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol.
|
[109]
|
Kloda A, Lua L, Hall R, et al. (2007) Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proc Natl Acad Sci U S A 104: 1540–1545. doi: 10.1073/pnas.0609649104
|